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Abstract: The issue of population dataset reliability is of particular importance when it comes to 
broadening the understanding of spatial structure, pattern and configuration of humans’ 
geographical location. The aim of the paper was to estimate the reliability of LandScan based on the 
official Polish Population Grid. The adopted methodology was based on the change detection 
approach, spatial pattern and continuity analysis, as well as statistical analysis at the grid-cell level. 
Our results show that the LandScan data can estimate the Polish population very well. The number 
of grid cells with equal people counts in both datasets amounts to 10.5%. The most and highly 
reliable data cover 72% of the country territory, while less reliable ones cover only 4.3%. The 
LandScan algorithm tends to underestimate people counts, with a total value of 79,735 people 
(0.21%). The highest underestimation was noticed in densely populated areas as well as in the 
transition areas between urban and rural, while overestimation was observed in moderately 
populated regions, along main roads and in city centres. The underestimation results mainly from 
the spatial pattern and size of Polish rural settlements, namely a big number of shadowed single 
households dispersed over agricultural areas and in the vicinity of forests. An excessive assessment 
of the number of people may be a consequence of the well-known blooming effect. 
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1. Introduction 

A better understanding of many phenomena and processes related to the Earth’s surface 
requires information on the locations and characteristics of humans. The problem of reliable 
population distribution is being increasingly raised in the Earth and life sciences, particularly urban 
geography, health geography, crime geography, risk management, natural hazard exposure, ecology, 
climate change and many others. Detailed, timely and reliable information on the spatial distribution 
of people is important for local and regional communities, and therefore, it constitutes to be an 
important element of land administration systems [1].  

The official providers of population data are national census agencies. They give the most 
reliable and the most complete information on population distribution related to pre-defined units, 
the size of which depends on the country and population density. Despite the undoubted advantages, 
statistical population data also have a number of drawbacks widely discussed in literature. As stated 
by [2], the main disadvantages are: long intervals between censuses and changes in borders of 
dissemination units, which make the data outdated and incomparable. Moreover, in many 
geographical regions, particularly those of irregular and dispersed population distribution, statistical 
data aggregated to administrative units’ gives an unrealistic view of the location of humans. This 
problem has been noticed by scientists as early as the beginning of the 20th century. The Russian 
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cartographer Tian-Shansky coined the term ‘dasymetric mapping’ and elaborated the first dasymetric 
population density map of European Russia, scale 1:420,000, published in the 1920s [3]. 

Recent years have witnessed a significant increase in publicly available spatial datasets showing 
global or regional population distribution in a regular grid. The benefits of using grid cells as an 
alternative for administrative units comprise: undemanding data comparison over space and time, 
straightforward integration with other geographical data and easy data aggregation. Gridded 
population of the world (GPW) was the first global, spatially consistent, and commonly available 
dataset that adopted Tobler’s smooth pycnophylactic (mass-preserving) interpolation algorithm for 
transformation of census population to a grid [4–7]. The GPW was the core source data for the Global 
Rural-Urban Mapping (GRUMP) project. GRUMP delivered more reliable human distribution data 
thanks to the use of complementary geographical data (e.g., footprint of urban centres, settlement 
point location) and satellite data, especially NOAA’s night-time lights images [4,8]. LandScan is the 
third world-wide population database that characterises an ambient, averaged over 24 hours, 
humans’ geographical distribution in 30 arc-second resolution [9]. People counts, as integer values, 
are attributed to a 30 sec. grid in WGS 84 (Word Geodetic System) datum. The constantly revised 
multi-variable dasymetric ‘smart’ interpolation algorithm integrates a recently updated number of 
auxiliary geographical data, mainly derived from high-resolution satellite imagery [10,11]. Since the 
year 2000, LandScan has been updated annually. However, regularly revised methods and 
supplementary data are not conducive to version comparison. In 2013, GPW, GRUMP and LandScan 
initiated the broader studies on people distribution for low-income countries of Africa, Asia and 
South America resulting in the common project WoldPop [12]. The WorldPop 100 m gridded 
population datasets depict a reliable representation of population distributions based on census data 
supplemented with a variety of geographical data including social media [13] or cell phones [14,15].  

In 2010, the Joint Research Centre (JRC), the European Commission's science and knowledge 
service, initiated the concept of the Global Human Settlement Layer (GHSL). GHSL delivers data on 
people’s presence in the world in the form of thematic maps (layers); namely, built up, population 
density and settlement maps. The disaggregation approach relies on built-up data as a threshold to 
limit and improve the distribution of people [16]. A brief description of global population datasets is 
presented in Table 1. 

Literature presents many metrics for comparative evaluation of raster population distribution. 
Most of them are based on pixel level and detailed official population datasets delivered by census 
agencies and perceived as ground truth data. The simplest ones measure the differences between two 
datasets, more advanced, geo-referenced metrics originate from geostatistics, meteorology or signal 
processing [17]. Moreover, errors of the population estimation are generally measured by RMSE, 
MAE, MAPE, omission and commission [12,18–22]. However, the ability to validate the global raster 
population data is still very limited because no independent sources exist that could serve this 
purpose. Validation of global gridded population surfaces hitherto has based on crosschecking with 
population totals reported by the UN (for GPW and GRUMP) or by the national official sources for 
LandScan and GHS-POP. The results show that, for most of the countries, the differences in 
population counts are insignificant [15,18,22-26]. Other studies, e.g., [13,21], also highlight overall 
good correspondence of the total population, especially in low income countries. Nevertheless, in 
some regions, like the coastal zone, these differences are significant [20]. Moreover, [20] found that 
large differences in population counts are dominant in those countries where the estimation of 
population spatial distribution was based on outdated and course input data. Some researchers 
[18,20–24] also noticed that the simple areal weighting algorithm used to generate the GPW and 
GRUMP sometimes leads to considerable estimation errors, while the approach based on advanced 
‘smart’ methods and a huge set of ancillary data (such as LandScan, WordPop) gives a better 
assessment of population.  

The objective of this paper was to estimate the comprehensive, cell-based reliability of LandScan 
data using the set of metrics, setting up the criteria of reliable data, and to portray spatial distribution 
of reliability classes in a user-friendly and efficient way. The selection of LandScan was supported by 
the following reasons. Primarily, the literature review shows that LandScan, with a more advanced 
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dasymetric algorithm and a broad scope of satellite derived detailed ancillary data provides the best 
estimates of people counts [11,17,18,23,24]. 

Table 1. Overview of global population datasets. 

Abbreviations GPW GRUMP LandScan GHSL 

Name 
Gridded Population 

of the World 

Global Rural-
Urban Mapping 

Project 

LandScan (LS) Global 
Population 

Global Human 
Settlement Layer 

Reference years 
of population 

estimation 

1990, 2000, 2005, 
2010, prediction for 

2015, 2020 
1990, 1995, 2000 

1998, from 2000 each 
year 

1975, 1990, 2000, 
2014 

Format 
spatial 

resolution 

Grid/raster, ASCII 
2.5 arc-minutes  

30 arc-seconds for 
2010 

Grid/raster 
30 arc-seconds 

Grid 
30 arc-seconds 

TIF and OVR files 
259 m, 1 km 

World Mollweide 

Source and 
ancillary data 

Data from nation 
census agencies, 

water mask, 
coastline 

GPW, urban mask, 
settlement points, 

NOAA’s night-
time lights data 

Census data, roads, 
slope NIMA’s DTED, 

Global Land cover 
database, VMap, 
satellite imagery, 
night-time light 
NGDC, regional 

statistics 

GPWv4, 
population 

censuses, Global, 
fine-scale satellite 

images, census 
data, volunteering 

geographic 
information 

sources 

Method and 
algorithm 

Disaggregation of 
national census data, 

smooth 
pycnophylactic 

(mass-preserving) 
interpolation 

Disaggregation of 
national census 

data, smooth 
pycnophylactic 

(mass-preserving) 
interpolation  

Disaggregation sub-
national census counts 
within administrative 

boundary, locally 
adoptive ‘smart’ 

interpolation 
algorithm 

Spatial data 
mining 

technologies 

Data producer CIESIN & CIAT 
CIESIN & IFPRI & 

CIAT & World 
Bank 

ORNL 

European 
Commission Joint 
Research Centre 

(JRC) 

Delivery policy 

Creative Commons 
Attribution 4.0 
International 

License 

Creative 
Commons 

Attribution 4.0 
International 

License 

Available for purchase 
Open and free 

data 

Applications  

Demonstrate the 
spatial relationship 

of human 
populations and the 
environment (e.g., 
pollution, diseases, 
biodiversity) across 

the globe 

Delimitation of 
urban and rural 

areas 

Trends and 
demographic changes, 

risk assessment, 
strategic planning, and 

sustainable 
development, 

humanitarian aid and 
human well-being, 
people exposure to 
different types of 

hazards 

Crisis 
management, 
demographic 

trends, 
monitoring urban 

growth and 
degree of 

urbanisation  

Number of 
publication in 
WoS/Scopus 
databases 1 

17/13 12/11 66/93 29/40 

1 Received on February 5, 2019. 
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Moreover, LandScan dataset is of common interest of researchers from all over the world and 
diversified scientific disciplines e.g., remote sensing, geosciences, environmental, urban and 
engineering studies, meteorology, health geography, demography and geophysics [11,17,20–24]. The 
number of articles indexed inWeb of Science (WoS) and Scopus databases on LandScan usability and 
potential applications equals 66 (from 2009 to 2018), and is several times higher than other global 
population datasets (see Table 1). LandScan is the only global population dataset that has been 
updated annually since 2000. Therefore, it can be used to analyse the trends in demography and 
geographical distribution of population according to urbanisation, suburbanisation or urban sprawl. 
Moreover, the preliminary analysis conducted by [27], based on the comparison of total population 
of Poland and global gridded population datasets, found that LandScan corresponds to Polish census 
data (available in 1 km grid) better than GRUMPv1 and GPWv4. The Pearson coefficient of 
correlation between census people counts and the population estimated by LandScan, GRUMPv1, 
and GPWv4 equals 0.72, 0.52 and 0.49, respectively.  

The presented analysis is a step forward to gridded population data usability and fit for purpose 
studies, not only for Poland, but also for any region with an irregular and scattered settlement 
network, where dispersed population distribution is observed (e.g., Eastern and Southern European 
Countries). The novelty and main scientific contribution of this study relay on establishing the 
method of estimated population data reliability evaluation based on simple statistical and GIS 
measures.  

The analysis facilitates understanding the relations between the two information outputs, which 
differ in the population disaggregation approaches. Moreover, the issue of reliability of population 
datasets is of particular importance when it comes to broadening the understanding of spatial 
structure and the pattern or configuration of the geographical location of humans. The main 
objectives of the study are in line with the questions regarding: 

- What is the relatedness of LandScan and Polish Population Grid data? 
- What is the spatial pattern of highly over- and underestimated areas? 
- What is the relation between reliability classes and the types of built-up area and the district 

status? 
The method can be easily duplicated to assess the reliability (or uncertainty) of any gridded 

population datasets at the cell level. The results can be used to identify regions that are particularly 
difficult to estimate people counts in grid format, and hence, to further improve dasymetric 
modelling techniques.  

The next section (Section 2) provides a description of the area, methods and data used; the results 
are presented and discussed in sections 3 and 4. The paper ends with a brief concluding section. 

2. Area, Materials and Methods  

2.1. Overview of Polish Population  

Poland is inhabited by 38,492,223 people [28], and is the ninth most populous country in Europe 
and 33rd in the word, constituting 5.4% of the European and 0.5% of the word population. Total 
population is almost stagnant, with the population growth lower than 0.08% [28]. 61.5% of the 
country population lives in urban areas, namely 930 cities with an average population density of 1105 
people per 1 km2. Population density in rural areas is over 22 times lower, and equals 50 people per 
1 km². The country average is 123 people/km². The capital city, Warsaw, counts more than 1.764 
million inhabitants, with 3,412 population density, and is the biggest Polish city. The current 
population of Poland was shaped by political and economic changes, especially economic recession, 
development of agriculture and industry, and the most of the country border changes as a result of 
many wars, particularly, the First and the Second Word Wars. The settlement network is dominated 
by big cities located in the central and southern part of the country, and relatively small numbers of 
cities in the peripheral regions (Figure 1). According to [29], the population distribution in Polish 
cities is characterised by the exponential model, with a noticeable decline in population density at 
distances of 3.0–3.5 km from the centre. Moreover, the depopulation of city centres is rather rarely 
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observed, and takes place in just a few Polish cities. This led [30] to the conclusion that current 
urbanisation in Poland differs significantly from that of highly-developed countries, and it is not 
justified to say that the Polish population distribution has a de-urbanization trend. 

 

Figure 1. Poland. First level administration units (voivodships) and selected big cities. 

2.2. The Source Data 

The release of LandScan 2012 (the 14th version of LandScan) Global Population Database was 
used in this study. The main improvements of this release include updating country census data. 
Temporal consistency was achieved by normalising census count on July 2012 using national 
population estimates provided by the CIA World Factbook. Moreover, urban built-up areas and 
thousands of smaller villages and populated places were refined or added based on high-resolution 
imagery. Finally, the spatial precision and values of the population distribution were substantially 
improved. The LandScan 2012 Global Population Database at 30 arc-seconds (1 km or finer) was 
delivered by ORNL in raster ESRI Grid format on July 15, 2013 (see Figure 2a).  

 

 
(a) (b) 

Figure 2. Population distribution by LandScan (a) and Polish Population Grid (PPG) (b). 

Polish Population Grid (PPG) represents residential population of the year 2011 (Figure 2b). It is 
the official dataset created by the Central Statistical Office (CSO). The number of inhabitants 
attributed to each square kilometre cell is assigned on the basis of the Population and Housing Census 
2011 by addresses and dwelling geolocation [31]. Thus, the data represent the number of people 
staying at home at night, i.e., the population of place of residence at night time. This dataset is further 
perceived as reference data. PPG is tailored to European standards by way of data processing and 
storage, as well as preserving statistical confidentiality. Hence, the smallest number of people 
assigned to one grid cell equals 3, which is the nationwide average number of people in one 
household. The dataset was made within the frame of GEOSTAT11, the project established by 
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Eurostat, the European Statistical Office. The data are available via geostatistical portal [32] in ESRI 
shp format. Figure 2 shows the spatial distribution of people according to both analysed gridded 
population data, LandScan (left) and PPG (right), by choropleth map. Each cell is coloured one of 
nine possible shades to show the places from uninhabited (grey), thinly (yellow), moderately (red), 
till very dense (brown) populated areas in Poland. The colour scheme follows the rules of census 
population cartography [33]. 

Built-up areas, stored in the General Geographic Database (BDOO), were used to analyse the 
relationship between the reliability of LS data and the built-up areas (namely: multi and single family 
residential, industrial, commercial, and other). BDOO is the official georeferenced set of data at the 
level of detail corresponding to a 1:250,000 scale map. The boundaries of second level (district) 
administration division were obtained from the state Register of Boundaries (PRG), which is the 
official dataset and constitutes the main reference frame for statistical data [34].  

2.2. Methods Used 

The reliability of spatial data refers to the degree to which they portray the reality in a sufficiently 
complete and error-free way to be convincing for their purpose and context. Reliability means that 
any errors found within a tolerable range (threshold) are not significant and do not disturb 
conclusions, findings or recommendation based on the data. It could be expressed as a parameter 
associated with the data that characterises the dispersion of the values that could reasonably be 
attributed to the measured ones.  

LandScan (LS) reliability analysis methodology comprises three different approaches: 
1. Change in the detection approach to obtain discrepancies at the grid cell level measured by 

two disparity indexes. The values of these indices constituted the basis for determining the 
LS reliability classes.  

2. GIS and spatial incremental statistics approach to analyse the spatial pattern of the 
population reliability classes expressed by the Spatial Contiguity Index (SCI) index and 
Average Nearest Neighbour (ANN) ratio. 

3. Statistical approach to investigate the concentration of reliability classes presented by 
statistical measure of concentration and dispersion, relations between reliability classes and 
built-up areas and the type of administrative units. 

The quantification of LS reliability bases on the general assumption that the Polish Population 
Grid (PPG) is a reference dataset. The disparity indices, i.e., the absolute disparity index (ADI) and 
the deviation rate index (DRI), are computed on cross-comparison analysis of all corresponding grid 
cells in considered datasets, namely PPG and LS. They indicate how much the LS values deviate from 
the PPG. The absolute disparity index (ADI), similar to absolute estimation error (AEE), measures 
the total difference in people counts in each i- spatial location (grid cell), and is expressed as (Equation 
1): 𝐴𝐷𝐼 = 𝑃𝑃𝐺 − 𝐿𝑆 , (1)

The ADI takes values from the range <−LSmax; PPGmax>. A value lower than 0 means data 
overestimation, while a value greater than 0 means an underestimation of LS data. 

The deviation rate index (DRI) is defined as (Equation 2): 𝐷𝑅𝐼 =   , (2)

DRIi is derived from the assumption that the deviation rate is the difference between the LSi 
population estimated data and the average of PPGi and LSi expressed as . The DRI values 
are normalised between −1 and +1. Values near zero indicate small differences, while values close to 
−1 and 1 show great discrepancy in population counts. Values lower than zero depict overestimation, 
and higher than zeroshow underestimation of PPG population counts in the corresponding area, 
represented as a grid cell. DRI takes value 1 for PPG = 0 and LS ≠ 0 and -1 for PPG ≠ 0 and LS = 0.  

The LandScan data reliability quantification is based on the disparity indices and a general 
assumption that the threshold of population counts is 9 (triple average number of people in the 
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household). This means that −9 ≤ ADI ≤ 9 depicts highly reliable data. The median mean absolute 
deviation (MAD) was used to establish the reliability classes. For PPG = 0 and LS ≠ 0 or PPG ≠ 0 and 
LS = 0 DRI takes the value of 1 or -1, respectively, without a possibility to assess the rate of over- or 
underestimation of population by LS data. That is why the ADI index has to be used to determine 
the level of reliability. Finally, the four LS reliability classes were distinguished, namely: the most 
reliable, highly reliable, reasonably reliable and poorly reliable, as presented in the Table 2.  

Table 2. LandScan reliability classes. 

Reliability classes Range of ADI Range of DRI 
M—the most reliable −9 ≤ ADIi ≤ 9 −0.5 MAD < DRIi < +0.5 MAD 

H—highly reliable 

 
−1.0 MAD < DRIi ≤−0.5 MAD 

or 
0.5 MAD ≤ DRIi < +1.0 MAD 

−1.0 MAD < ADIi ≤ −0.5 MAD 
or 

0.5 MAD ≤ ADIi < +1.0 MAD 
DRI1 = 1 or DRI1 =−1 

R—reasonably reliable 

------ 
−1.5 MAD < DRIi ≤ −1.0 MAD 

or 
1.0 MAD ≤ DRIi < +1.5 MAD 

−1.5 MAD< ADIi ≤ −1.0 MAD 
or 

1.0 MAD≤ ADIi < +1.5 MAD 
DRI1 = 1 or DRI1 =−1 

P—poorly reliable 

------ 
−1.5 MAD ≤ DRIi  

or  
DRIi ≥ +1.5 MAD  

−1.5 MAD ≤ ADIi  

or  
ADIi ≥ +1.5 MAD 

DRI1 = 1 or DRI1 =−1 

The spatial pattern of reliability classes was assessed by the Average Nearest Neighbour (ANN) 
ratio analysis and the Spatial Contiguity Index (SCI). The ANN statistics was calculated as the 
observed average distance between spatial objects divided by the expected average distance. The 
expected average distance is based on a hypothetical random distribution with the same number of 
features covering the same total area. The significance of the results was tested by p-value. An ANN 
ratio value lower than 1 means that the pattern of each class exhibits clustering. Otherwise, the trend 
is toward dispersion [35]. 

The Spatial Contiguity Index (SCI) uses a statistic called polygon neighbours, defined by Lai et 
al. [36] as a measure of polygons contiguity. The index is calculated for four adjacent grid neighbours, 
according to the formula given by Calka [37] (Equation 3): 𝑆𝐶𝐼 = ∑ 𝑠 4𝑚 𝑛  (3)

where: n—the number of reliability classes; m—the number of grid cells in a given reliability class; 
s—the number of neighbours in the same class. The SCI takes vales from 0 to 1, with 0 for a highly 
dispersed reliability class (low proximity), and 1 for a highly concentrated class (high proximity). 

Finally, the map depicting varying degrees of reliability associated with each LandScan grid cell 
was proposed in a form of a choropleth map, according to the rules established by [38]. 

3. Results 

3.1. Relatedness of LandScan and Polish Population Grid Data  

Gridded population data varies sharply across the country territory, with the minimum value 
of 0 for uninhabited areas, to the largest number of people per 1 km2, which equals to 21,531 in PPG 
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and 12,802 in LS. The measures of central tendency (mean, median, mode), as well as the measures 
of dispersion such as variance, standard deviation and interquartile range (Table 3) emphasise the 
high variability of population distribution, and show the general population underestimation of LS 
data. The total underestimation counts 79,735 people, which corresponds to 0.21% of Polish 
population. However, for sparsely populated areas, LS tends to overestimate the people counts (Table 
3—lower quartile (Q1) values). 

Table 3. Descriptive statistics of PPG, LS and disparity indexes. 

Descriptive statistics PPG LS ADI DRI 
Min 0 0 −10,271 −1 

The first quartile (Q1) 0 2 −3.0 −1 
Median  12 6 0 0 
Mean 123.1 65 57.6 −0.023 
Mode 0 0 0 −1 

The third quartile (Q3) 65 19 37.0 0.667 
Max 21,531 12,802 16,823 1 

Range 21,531 12,802 27,094 2 
Interquartile range 65 17 40 1.667 

Percentile 10 0 0 −16.0 −1 
Percentile 90 187 100 115.0 0.882 

Skewness 13.64 14.74 13.84 −0.210 
Kurtosis 236.1 300.0 286.9 −1.462 

Standard deviation 657.45 344.46 476.0 0.732 
Variance 432,661 118,652 226,871 0.534 

Sum (number of people) 38,492,223 38,414,488 - - 
The coefficient of the simple linear regression between PPG and LS equals to 0.74 and the 

coefficient of determination R2 takes the value of 0.55 (with p < 0.0000, and standard error of estimate 
231.43). However, the observed spread of data (Figure 3) does not entitled to draw any conclusions 
regarding the matching between LS and PPG data based only on R2 and slope of the regression line. 

 

 
Figure 3. Scatterplot of PPG and LS. 

The number of grid cells with equal population counts in both datasets (ADI = 0 and DRI = 0) 
amounts to 32,946 (10.5%), overestimated data constitutes of 40.4%, while underestimated constituted 
of 49.1 % of all cells. For 35.7% of the cells, the differences in people counts did not increase by over 
nine persons. These data are perceived as the most reliable. The overestimation greater than 5,000 
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people occurred in 56 grid cells, 4999–1000 people—in 1,274 cells (0.41%), and 999–500 people—in 
20,625 grid cells (6.6%) (see Figure 4a–b). The highest overestimation of 10,271 people was found in 
Warsaw, while the largest underestimation took a value of 12,802. Counts larger than 100 people 
were noted in 69,039 (22.1%) cells, while larger than 5,000 were noted in 1,339 (0.43%). The DRI values 
from the range of <−0.999; −0.945> enhance the overestimation; however, they comprised only a few 
cells (320 cells, 0.1%). In general, the highest overestimation was observed in city centres (Figure 4c). 
The DRI equals -1 for at least 90,000 cells (28.65%), where PPG = 0 and LS ≠ 0 (see Figure 4d). 

 

(a) 
 

(b) 

(c) (d) 

Figure 4. Disparity indices: (a) ADI—absolute disparity index; (b) histogram of ADI values, the 
number of grid cells (vertical axis) is presented in logarithmic scale; (c) DRI—deviation rate index; (d) 
histogram of DRI values. 

Analysis of these grid cells shows that for 25%, the overestimation does not exceed 2 persons; 
for 75%, it does not exceed 8 persons; and for 90% it does not exceed 18 people. Moreover, for 80% 
the ADI takes values from the range of <−9; −1>, which means it has the highest reliability. The DRI 
values close to 1 point to high underestimation, with 8,676 cells (2.8%) of values in the range of <0.999; 
−0.945>. Investigation of these cells indicates that for 10% grids the overestimation does not exceed 3 
persons, i.e., the Polish average number of people in one household, and the middle 50% 
(interquartile range) amounts to 26 people. The underestimation is clearly visible in densely 
populated areas, mainly cities, along main roads and in the sparsely populated transition areas 
between urban and rural, while overestimation is present in moderately populated and almost 
unpopulated regions to balance the totals. 

3.1.1. Reliability of LandScan Data 

The most reliable data comprise 56.9% of all grid cells (Figure 5b, Table 4), out of which for 46.2% 
the LandScan estimation equals the values assigned by Polish reference statistical population data 
(PPG). About 5% of cells that belong to this class tend to have an insignificant under- or 
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overestimation of no greater than 9 persons. This confirms the preliminary statement concerning high 
reliability of LandScan data, and its relatedness with PPG of nearly 57%. Highly reliable data 
constitute 15.1%, of which 10.7% tend to low underestimation, and 4.4% overestimate the official 
people counts a little (Figure 5c). Reasonably reliable data cover 23.7%, with 21.3 % of moderate 
underestimation (Figure 5d). Low quality, poorly reliable data constitute just 4.3%, of which 3.1% are 
highly underestimated (Figure 5e). 

Table 4. Classes of reliability of LandScan data. 

Reliability classes 
Grid cells number 

(%) Level of uncertainty Number (%) 

M—the most reliable 177,663 (56.9) 
No change 

Insignificant overestimation 
Insignificant underestimation 

144,484 
(46.2) 

17,504 (5.6) 
15,672 (5.1) 

H—highly reliable 47,296 (15.1) 
Low overestimation (Ho) 

Low underestimation (Hu) 
13,986 (4.4) 
33,319 (10.7) 

R—reasonably 
reliable 

74,188 (23.7) 
Moderate overestimation (Ro) 

Moderate underestimation 
(Ru) 

7,476 (2.4) 
66,712 (21.4) 

P—poorly reliable 13,318 (4.3) High overestimation (Po) 
High underestimation (Pu) 

3,705 (1.2) 
9,613 (3.1) 

The most reliable data are dispersed over the whole country and form irregular continuous 
clusters (SCI = 0.33) of different sizes: the biggest ones are found in forests and the smallest ones in 
urban areas. Highly and reasonably reliable classes contain weakly clustered data (Figure 5c,d) with 
the ANN ratio values close to 1 (Table 5). These clusters are formed by several grid cells that share 
borders, which is highlighted by low SCI values: 0.07 and 0.11, respectively. Highly uncertain data 
are also clustered (Figure 5e), but the cells share borders with a few adjacent elements (SCI = 0.05).  

Table 5. Spatial pattern of LS reliability classes. 

Reliability class SCI ANN (z score; p-value) 
M—the most reliable 0.33 1.30 (243.81; 0.0000) 

H—highly reliable 0.07 0.88 (−47.75; 0.0000) 
R—reasonably reliable 0.11 0.96 (−15.78; 0.0000) 

P—poorly reliable 0.05 0.77 (−48.64; 0.0000) 
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Figure 5. Spatial distribution of LS data reliability: (a) LS reliability classes; (b) the most reliable data; 
(c) highly reliable data; (d) reasonably reliable; (e) poorly reliable LS data. 
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3.1.2. Relatedness with Built-Up Areas and District Status 

Built-up areas cover 41.7% of the country territory, of which 91.3% constitute residential built-
up (88.5% single-family and 2.8% multifamily housing). The estimation of people counts in single-
family housing areas varies significantly. The most reliable data account for 31.1%, highly reliable – 
24.0%. Reasonably reliable data cover 37.4% of single-family housing areas and tend to moderate 
underestimation (34.7), while poorly reliable data comprise only 7.4% of single-family housing and 
indicate high underestimation (6.7%) of people counts. Population estimation in multifamily housing 
areas is almost infallible for 30.7% and very good for 34.1%. Reasonably reliable data cover 30.0% 
with evident moderate underestimation (27.4%), while poorly estimated population data constitute 
5.0%, 3.8% of which are highly underestimated. In the industrial zones, the most reliable data 
constitute 35.6%, while in commercial as much as 32.7% of areas. The worst estimation (poor 
reliability) covers 5.3% of commercial zones and 10.3% of industrial areas. To balance the totals, the 
moderate and high overestimation of the population (Ro, Po) occurs primarily in industrial and 
commercial zones (about 30.3%), single-family housing (3.1%), and multifamily housing (3.8%) areas.  

 

 
(a) 

 
(b) 

Figure 6. Krakow: (a) overestimation of LandScan data presented by DGI index and ADI values for 
the most overestimated cells; (b) Building types delivered from National Topographic database. 

Moreover, the LandScan algorithm overestimates people counts in agricultural areas, where 
settlement network is spatially dispersed. Figure 6 illustrates the overestimation in the fringe part of 
Krakow, the metropolitan centre located in southern Poland, with a 770 thousand inhabitants and 
average population density of 2354 person per sq. kilometre. The grey cells indicate DRI values equal 
to 1, what means unpopulated areas according to Polish Census Data (PPG), the numbers point out 
the value of overestimation, namely the ADI value. The overestimation indicated assigning too many 
people to industrial warehouse and farm buildings by LS dasymetric algorithm (Figure 6b). 
Furthermore, the correlation analysis indicates lack of dependence between the LS reliability classes 
and population density in districts. The Pearson coefficient (PCC) indicates a moderate positive 
relationship between population density and the percentage share of reasonably reliable LS data. For 
the remaining reliability classes this dependence is negative and weak (see Table 6). 

Table 6. Overall global statistics of LS reliability classes shares in districts. 

Share of LS 
reliability classes  Mean  Std. Dev Min Max PCC 

statistical significance at p < 0.05 

The most reliable 52.19 13.59 20.94 84.19 −0.098 
Highly reliable 18.04 7.42 3.14 46.15 −0.355 

Reasonably reliable 24.67 7.81 4.94 44.58 0.446 
Poorly reliable 5.06 3.10 0.00 21.94 −0.049 
The minimal share of the most reliable data in districts, which are the second level of 

administration division in Poland, amounts to 20.9%, while the maximum reaches 84.2%, with the 
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mean of 52.2%. The inadequately estimated population data (Poor LS class) range from zero to 21.9%, 
with the mean value of 5.1% and standard deviation of 3.1% (Table 6). The classification of districts 
by k-means algorithm, according to the share of LandScan reliability classes distinguishes four 
regions (Figure 7). The red one comprises heavily urbanised and densely populated cities, which are 
district centres. This group contains as much as 58% of the global range of the most reliable data (see 
Table 6), and takes the highest value of poorly reliable data that fall outside the upper quartile 
(73.7%). The region marked in blue covers sparsely populated ‘land’ districts, with a significant 
percentage of forest areas and agricultural land. The LS estimates people counts there very well; the 
share of the most reliable data is the highest with the value of 58.85%, while poorly reliable data are 
in the range of global lower quartile (27.88%).  

 
Figure 7. Poland, districts classification according to share of LS reliability classes. 

The green region reflects districts with the highest value of reasonably reliable data (68.14%), as 
well as a relatively low share of the most and poorly reliable data: 37.3 and 39.6%, respectively, that 
fall in the lower global quartile. The LS data tends to moderate underestimation. The golden group 
of districts is not spatially continuous; it comprises 134 districts with varied population density (min. 
24, max. 2898, mean 174 people per 1 km²). Share of the most and poorly reliable data equal to 31.5 
and 48.5%, respectively. The LandScan data tend there to moderate or low overestimation.  

4. Discussion 

Any dasymetric modelling is subjective, which has been broadly discussed in literature [1,3,11]. 
The subjectivity and, consequently, the uncertainty arises from the disaggregation algorithm and the 
imperfection of ancillary data [3,39]. The importance of uncertainty in dasymetric modelling has not 
yet been sufficiently recognized. LandScan uses a big set of data and allocates empirical weighing 
factors to data layers as well as sub-categories within these data [4–6,10,11]. Hence, the results of 
people allocation to grid-cells are very good. However, the variability of the real word, its 
physiographic, cultural and socioeconomic diversity, cause enormous difficulties in adjusting the 
model for individual grid-cell level.  

The adopted methodology of LandScan reliability analysis is simple and based on well-known 
statistical and GIS measures of dispersion. Comparing this methodology with others presented in the 
literature, we noted both similarities and differences in the approaches to assessing the accuracy of 
estimated gridded population datasets. The difference indexes of people counts in two analysed 
datasets, which were adopted in this study, resemble those described in other studies. The absolute 
disparity index (ADI) corresponds to absolute estimation error defined by Bai et al. [18], fractional 
area coverage described by Sabesan et al. [17], or omission rate used by Potere el al [40]. At the same 
time, the deviation rate index (DRI) definition is similar to the difference dataset index computed by 
Hall et al. [26] and difference rate implemented by Oyabu et al. [41]. Furthermore, similar to 
[17,25,26,41], we attributed accuracy to the grid cell, whereas [10,13,18,23,24] accuracy results are 
more vague and refer to administrative units.  
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Despite the relatively extensive research on global population data quality, only a few studies 
defined the levels of accuracy or uncertainty. For example, Bai et al. [18], based on relative estimation 
error (REE), established five categories of accuracy of gridded population datasets for China using 
thresholds of 25, 50 and 100% of REE. Nowak et al. [25] also classified uncertainties up to five degrees, 
adjusting class thresholds to natural breaks in the histogram of differences in population counts. 
Aubrecht et al. [42] showed the diversity of gridded population data for Austria in five ranges, but 
the final quality assessment was generalised to the district level. Our approach to defining the 
reliability classes of gridded population data, besides providing information of underestimated, 
overestimated or unchanged data (in five degrees), also provides information on the level of data 
significance, referred to by the names of reliability classes, as: most reliable, highly, reasonably and 
poorly reliable. This gives users a broader view of information value concerning the quality of 
population distribution in a given area. 

Comparable to [17,18,26], reliability in our study reflects similarity to the census counts rather 
than an absolute ground truth. Furthermore, this reliability depends on the threshold of ADI and DRI 
indexes. Along with the increase in the ADI threshold, the number of grid cells recognized as ‘no 
change’, and thus belonging to the most reliable uncertainty class, increases. However, this upsurge 
is not significant and equals 15% for the very pessimistic assumption of PPG uncertainty in people 
counts amounts to 18 persons for each 1 km2. The increase of LS grid cell attributed to the most reliable 
class is balanced by a slight decrease in highly and reasonably reliable classes. It is worth noting that 
the number and spatial distribution of LS cells that are characterized by the most significant 
uncertainty in population estimation (those belonging to the poorly reliable class) basically did not 
change. The sensitivity analysis of ADI threshold impact on LandScan grid cell allocated to reliability 
classes (as per cent of total number of grid cells) is shown in Table 7. 

Table 7. Summarisation of the ADI threshold values and linear trends estimation. 

Reliability 
class 

ADI threshold 
Slope  

Inter-
ception 

R 
square 

Std. 
error 0 3 6 9 12 15 18 21 

M—the 
most 

reliable 
51.81 52.6 54.7 56.9 58.8 64.0 65.8 67.4 2.440 48.038 0.9716 1.104 

H—highly 
reliable 

19.3 18.3 16.8 15.1 14.1 11.3 10.4 9.7 −1.474 20.997 0.9850 0.481 

R—
reasonably 

reliable 
24.7 24.8 24.3 23.7 22.9 21.5 20.6 1.,7 −0.775 26.265 0.9438 0.500 

P—poorly 
reliable 4.2 4.3 4.2 4.3 4.2 3.2 3.2 3.2 −0.192 4.700 0.7103 0.324 

1 Per cent of total grid cells. 

The threshold of DRI is based on median absolute deviation (MAD) values, a robust measure of 
the variability of quantitative data, which is very insensitive to the presence of outliers. The threshold 
depends strongly on the stringency of the researcher's criteria, and according to Leys et al. [43] the 
median plus or minus 2.5 or even 2.0 times the MAD for outlier detection is recommended. In our 
study, the median of DRI takes the value of 0, with the maximum equal to 1, and the minimum equal 
to −1 (see Table 3). The MAD amounts to 0.633. Hence, the stringent MAD threshold cannot exceed 
1.5 (i.e., 0.944). 

The analysis assumes that Polish Populated Grid, elaborated by Central Statistical Office on the 
bases of full statistical survey, works as a ground truth data, which definitely influences the final 
results. The accuracy of census data and subsequently the ability to tie them to a specific location was 
previously discussed by [17,18,24,25]. As stated by [44], coverage, sampling and nonresponse are 
sources of error common to all statistical surveys. However, due to introducing some IT techniques 
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(e.g., portable, hand-held terminals with the possibility of respondents’ geolocation) during the 2011 
census in Poland these errors decreased significantly [45]. Moreover, the census data show where 
people are officially registered, and that could differ from where they really live. According to [29], 
this is mainly observed in big cities; for example, in Warsaw the actual population could be even 6–
10% greater than official statistics say.  

The Polish settlement network is dispersed and comprises more than 56.6 thousand small 
villages or other rural settlement units like hamlets or lodges. Tree-covered, dispersed along 
agricultural lands, single homesteads are almost impossible to detect on satellite images [4,17,46]. 
Moreover, insufficiently illuminated small settlements do not give the blooming effect on the night-
time lights satellite scenes [8,11], and consequently provide rather to underestimation than 
overestimation. The highest population overestimation in the centres of the cities confirms the 
findings of [29,30] concerning depopulation of Polish big cities. Moreover, the VmapL2 used data 
from the years 2000–2002 as an ancillary source for Poland [47], i.e., it portrayed the reality 10 years 
earlier. This definitely resulted in omission of residential houses and even small settlements.  

The overall accuracy assessment of LandScan data for Poland measured by RMSE equals to 
467.90. Comparing the results with those achieved by [25], LandScan outperforms the GRUMP 
gridded population data in Poland. Similar findings were noticed by [26]. However, the observed 
differences in people counts assigned to a grid-cell in Sweden far outweigh those in Poland. The 
relatedness of LS, measured by R2, in Poland and Sweden is as far as 0.55 and 0.59, respectively. 
However, they are much lower than those received by [11] for Los Angeles county and Ellis county 
(CA, USA), which are 0.81 and 0.93, respectively. 

However, this simple method, suited for cell-to-cell evaluation, is also appropriate for other 
units (e.g., administrative, towns, coastal zones). The comparison of two gridded population datasets 
shows in particular their similarity (or dissimilarity); hence, the method could be applied to assess 
the relatedness of analysed sets. Moreover, it can be quickly implemented to compare any gridded 
population datasets at the cell based level. The established reliability classes of LandScan can also act 
as classes of similarity (or relatedness) of analysed data sets. This is especially important when 
analysing any gridded population datasets, without the initial assumption that one of them is less 
uncertain.  

5. Conclusions 

One of the fundamental problems of spatial data users is the awareness of data reliability, 
particularly the information where people counts are under or overestimated. The lack of 
comprehensive approaches for reliable quantification of grid-based, high-resolution global 
population data limits their use in decision support and is perceived as the main drawback of those 
datasets. This paper takes a step towards formal reliability quantification by developing a set of tools 
to evaluate the utility of gridded population data, particularly LandScan.  

The presented results show how well LandScan data correspond to population distribution 
derived from statistical census. Although LandScan algorithms are tailored to match the geographical 
nature and economic conditions of each country and region, the reliability of population distribution 
in Poland differs. For densely populated regions, LS underestimates the number of people, while for 
thinly populated ones it is rather overestimated, which reflects the settlement network, forest and 
agricultural regions location. 

The most important conclusion of our research is the high reliability of LandScan data for 
Poland. The most reliable data amount to 56.9% and form irregular clusters, while highly reliable 
data cover 15.1% and are weakly clustered. Data of definitely insufficient quality cover only 4.2% 
with an evident trend to underestimation, especially in industrial and commercial zones of big cities.  

The analysis of district type and the LS reliability shows that population counts in urban districts 
are characterised by both high percentage of very well and rather weak estimations. At the same time, 
in ‘landed’ districts, the LS reliability negatively corresponds with population density. 

In the future, we will focus on eliminating the shortcomings of the developed methodology for 
assessing the relatedness of population datasets and providing more insights into the comparison 
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between LS and PPG. In particular, we will examine how the population of small villages is estimated 
by LS, and analysing omission errors based on the official Polish gazetteer. Moreover, the proposed 
ADI and DRI indices as well as the thresholds will be used to assess reliability of other global 
population data, and for other countries.  
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