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Abstract: Ecosystem services are the benefits obtained from an ecosystem that have great significance
in sustainable development. Urbanization has triggered significant changes on urban spatial patterns,
which have had a great impact on the ecosystem services. However, studies on the spatiotemporally
varying relationship between urban spatial patterns and ecosystem services are lacking. Taking as a
case study, the Nansihu Lake Basin in China, this study aimed to explore the spatiotemporally varying
relationship between urban spatial patterns and ecosystem services. Urban spatial patterns were
derived by integrating remote sensing and spatial metrics. Ecosystem service values were calculated
using ecosystem service models. The spatiotemporally varying impact of urban spatial patterns on
ecosystem services was quantified using the Geographically Weighted Regression (GWR) model.
The findings indicate that urban spatial patterns and ecosystem services have dramatically varied
with the urbanization process. The estimated parameters indicate that urban spatial patterns have
significant impacts on ecosystem services. The GWR revealed a spatiotemporally varying correlation
and improved the explanatory ability in comparison with the Ordinary Least Squares (OLS) model.
The investigation of the impact of urban spatial patterns on ecosystem services can provide more
practical support for effective urban planning and ecosystem management.

Keywords: ecosystem services; urban spatial patterns; spatiotemporally varying relationship;
geographically weighted regression; Nansihu Lake Basin; sustainable development

1. Introduction

Ecosystem services refer to life-supporting products and services, directly or indirectly obtained
from the structure, process, and function of ecosystems that form and maintain environmental
conditions and utility for human survival and development [1]. Ecosystem services are mainly
composed of four types, namely, supporting, provisioning, regulating, and cultural services that form
the basis for regional ecological security and sustainable development, as well as being the key to
human well-being. It has been reported that nearly two thirds of global ecosystem services have been
damaged as a result of human activity [2]. Recent decades have witnessed dramatic urbanization
around the world; this trend is expected to be one of the vital issues of global change in the future,
with urban land expected to increase from 0.65 million km2 in 2000 to 1.86 million km2 in 2030 [3]. The
urbanization process has a profound impact on land use by transforming non-urban land into urban
land. Although urbanization can improve society and benefit economic development, changes in land
use caused by urbanization dramatically affect ecosystem services on a global scale by influencing
the interactions between the hydrosphere, atmosphere, and biosphere [4,5]. This is crucial for urban
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planning and sustainable development because land use changes have irreversible and long-term
effects. In addition, the increasing populations that accompany urbanization require a greater supply
of ecosystem services [6].

Under such circumstances, effectively evaluating the impact of land use changes on ecosystem
services has become a matter of global concern, and it is urgently required to provide support for
policy making that could mitigate its negative effects on the ecology and promote regional sustainable
development [7]. Since the implementation of the Millennium Ecosystem Assessment (MEA) project
in 2001, an increasing number of studies have been conducted that demonstrate that urbanization
induced land use change is becoming a significant contributor of variation in ecosystem services [6,8].
Variations in land use structures directly influence ecosystem service dynamics, while variations in land
use patterns indirectly influence them through changing ecological processes [9]. However, previous
studies have only focused on investigating the relationship between ecosystem services and land use
structure [10,11]. How ecosystem services respond to changes in land use patterns has not been fully
characterized, and the quantitative relationship between land use patterns and ecosystem services is
poorly understood. To assess how changes in spatial patterns affect ecosystem services, exploring the
relationship between ecosystem services and spatial patterns is important.

Previous studies have analyzed entire study areas to investigate the impact of land use changes on
ecosystem services, ignoring the existing spatial heterogeneities [12,13]. However, significant spatial
dependence is normally involved in the relationship between land use and ecosystem services
because complex ecosystems components are correlated and affected by energy, material, and
information flow [6,14]. A large number of studies found that urbanization is negatively correlated
with ecosystem services. However, certain scholars have noted that ecosystem services are enhanced
during urbanization. Zhou et al. (2018) found that urban expansion had a positive impact on ecosystem
services values in the Beijing-Tianjin-Hebei region during the period of 1996–2014 [15]. Buyantuyev
and Wu (2009) demonstrated that net primary productivity (NPP) increased in Phoenix, United States,
during the urbanization process [16]. The cited studies indicate that the impact of urban land use
changes on ecosystem services significantly varies over space, which can be due to the fact that changes
in urban land and ecosystem services are highly related to local environmental and socioeconomic
conditions. Global impact only reflects average conditions and might consequently ignore local-specific
impacts. If we overlooked the spatial heterogeneity that can induce errors in statistical analysis of the
impacts of related factors on ecosystem services, uncertainty in decisions regarding the management
of ecosystem services might increase [17]. In addition, investigating the relationship between spatial
patterns of urban land and changes in ecosystem services for single temporal data overlooks the
fact that the direction and magnitude of the impact could shift along with the urbanization process.
Therefore, the impact on ecosystem services cannot be fully investigated, which could hinder effective
urban planning.

Adopting the Nansihu Lake Basin (NLB), China as study area, this research aims to examine
the relationship between urban spatial patterns and ecosystem services in rapid urbanization regions
through the integration of multi-temporal remote sensing images, spatial metrics, InVEST model [18],
and the Geographically Weighted Regression (GWR) model. The specific study objectives are
(1) to characterize the dynamics of urban spatial patterns from 1995 to 2015 in the NLB; (2) to
reveal the spatiotemporal distribution of ecosystem services values from 1995 to 2015; and (3)
to investigate the impact of urban spatial patterns on ecosystem services with consideration of
spatiotemporal heterogeneities.

2. Materials and Methods

2.1. Study area and Data Sources

As shown in Figure 1, Nansihu Lake (116◦34′-117◦21′E, 34◦27′-35◦20′N) is located at the junction
of 4 provinces (Shandong, Anhui, Henan, Jiangsu) in eastern China. It is the largest freshwater lake in
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northern China. The total area of the Nansihu Lake Basin (NLB) is 28,364 km2. It has a semi-humid
monsoon continental climate, with an average annual temperature of 14.2 ◦C, an average annual
precipitation of 750 mm, and an annual potential evapotranspiration of 942 mm [19]. The NLB is
not only a main impounded lake for the South-to-North Water Diversion Project in China [20], but
also an important natural reservoir in eastern China. The main land use types include built-up
land, agricultural land, forest, grassland, and water body. Since the 1980s, the NLB has undergone
significant urbanization and rapid socio-economic development. Between 1995 and 2015, the rate of
urban population grew from 57.5% to 87.2% in the NLB. Meanwhile, gross domestic product (GDP)
rose from 120 billion to 1540 billion yuan. The NLB’s rapid urbanization has resulted in the serious
degradation of ecosystem services, put pressure on the environment, and increased competition for
land resources. The NLB faces difficulties in achieving regional sustainable development, needing
to balance urbanization and ecosystem services. Thus, it is crucial to analyze the spatiotemporal
heterogeneity of urban spatial patterns and ecosystem services, and their relationship in the NLB. The
analysis result could contribute to realizing the "win-win" goal of socioeconomic development and
ecology protection in the NLB.
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We used remote sensing data as well as meteorological, socioeconomic, geographic ancillary, and
statistical data in this study. Specifically, (1) Landsat TM images for 1995, 2005, and Landsat OLI images
for 2015 under clear sky conditions, obtained from the Geospatial Data Cloud (http://www.gscloud.cn).
Detailed information of the remote sensing data is provided in Table 1. To avoid the negative
effects on remote sensing classification, atmospheric correction and radiometric normalization were
carried out. (2) Considering the significance of ecosystem services and data availability for the
basin, we chose 4 types of ecosystem services, namely, water yield, soil conservation, carbon storage,
and crop production. Meteorological data (annual average precipitation, monthly precipitation
and temperature) from 56 meteorological stations in and around the basin were collected from the
National Meteorological Information Center (http://data.cma.cn). The meteorological data were further
interpolated into 30 m resolution images using the Inverse Distance Weighted (IDW) method [21].
(3) Digital Elevation Model (DEM) data with a resolution of 30 m were collected from the United States
Geological Survey (http://www.usgs.gov). (4) Soil property data were collected from the China Soil
Map-Based Harmonized World Soil Database (v1.1) (http://westdc.westgis.ac.cn). (5) Normalized
Difference Vegetation Index (NDVI) data for 1995 were collected from the GIMMS-NDVI dataset. NDVI
data, for 2005 and 2015 were derived from MOD13A1 (http://modis.gsfc.nasa.gov/data/). (6) Statistical
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crop production data were collected from the China County Statistical Yearbook [22–24]. All spatial
data were projected to the Universal Transverse Mercator (UTM) coordinate system.

Table 1. List of Landsat images.

Year Path Row Acquisition Date

1995

121 35 26 March 1995
121 36 11 April 1995
122 35 17 March 1995
122 36 04 May 1995
123 35 09 April 1995
123 36 11 May 1995

2005

121 35 24 May 2005
121 36 24 May 2005
122 35 13 April 2005
122 36 13 April 2005
123 35 04 April 2005
123 36 04 April 2005

2015

121 35 25 September 2015
121 36 25 September 2015
122 35 02 October 2015
122 36 02 October 2015
123 35 09 October 2015
123 36 09 October 2015

2.2. Urban Spatial Pattern Analysis

Given the current situation of the NLB and the spectral characteristics of Landsat images, 6 land
use categories were identified, namely, agricultural land, built-up land, forest, grassland, waterbody,
and bare land. The Maximum Likelihood Classifier (MLC), which is one of the most widely used
classification methods, was applied to conduct supervised classification of the Landsat images.
Signatures obtained from 500 training sample points were developed for each time point according to
a field survey data acquired in 1995 and 2005, and Google Earth acquired in 2015. After classification, a
commonly used 3 × 3 majority filter was further applied to improve the classified results by removing
salt and pepper effects.

For each land use map, 500 reference points were produced using stratified random sampling to
evaluate the accuracy of the classification. A confusion matrix was developed, and overall accuracies
and the Kappa statistic were calculated based on the error matrix.

To reveal the dynamics of the urban spatial pattern in the NLB, several spatial metrics at class
level were computed using Fragstats 4.2 [25]. Based on the research objective and previous studies,
four spatial metrics were selected: percentage of landscape (PLAND), patch density (PD), edge density
(ED), and mean shape index (SHAPE_MN). These metrics can effectively quantify the composition,
fragmentation, and irregularity of the urban spatial pattern in the NLB [26].

PLAND is used to quantify the percentage of built-up land for each statistical sample. It is
positively related to the degree of urbanization. PD is a simple metric reflecting the number of built-up
land patches per spatial unit, which can provide information on the fragmentation of built-up land. ED
represents the density of all edge segments of built-up land. ED increases when patch shapes become
more complex. SHAPE_MN measures the irregularity of built-up land patches. When a landscape is
composed of a single square patch SHAPE_MN=1. The increase in SHAPE_MN value implies that the
landscape shape becomes more irregular [25].

In this study, the calculation of spatial metrics was initially conducted for the entire area to gain a
general overall understanding of the spatial patterns of built-up land over the whole study area. The
NLB was further divided into multiple grids for localizing the dynamics of urban spatial patterns
and exploring their impacts on ecosystem services. Based on the local condition and the commonly
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used grid sizes in previous stduies, a preliminary test with grid sizes of 2 km, 5 km, 8 km, and 10 km
was implemented to analyze the scale effects on spatial analysis. The grid size of 5 km was finally
chosen based on considerations of information retention and redundancy, and computing efficiency. A
finer grid size could result in only a few patches or no patch existing in certain grids, which produces
redundancy in analysis. A coarser grid size could omit detailed information regarding the spatial
pattern and ecosystem services. A grid size of 5 km enabled us to detect the heterogeneity and improve
the computing efficiency of finer scales. The selected landscape metrics for each grid were further
calculated to reveal the spatiotemporal patterns of urban land on the local level. After obtaining the
multiple temporal spatial metrics values, change ratio of the metrics values were computed according
to Equation (1):

MCk
i =

Mk
i,t+n −Mk

i,t

Mk
i,t

, (1)

where Mk
i,t+n and Mk

i,t represent the value of spatial metric k in year t + n and t, respectively. MCk
i is

the change ratio of spatial metric k for grid i.

2.3. Quantification of Ecosystem Services

Four types of ecosystem services were selected and estimated in this study: water yield, soil
conservation, carbon storage and crop production. These ecosystem services were selected with
consideration of the following criteria: (1) ecosystem services play a key role in achieving sustainable
development in the NLB; (2) ecosystem services are strongly relevant to human well-being and are
affected by urbanization in the study area [6,10]; (3) models for calculating ecosystem services are
available and the data required to run the model is available. Ecosystem service values were calculated
using land use data derived from Landsat images, soil property data, meteorological data, DEM data,
statistical crop production data and NDVI data.

Water yield is defined as the amount of water from the different parts of a landscape in the InVEST
model. Annual water yield (Yx) for pixel x can be quantified according to the water balance principle
using the following equation:

Yx =
(
1−

AETx

Px

)
× px, (2)

where px denotes the average annual precipitation for pixel x, and AETx represents the actual annual
evapotranspiration for pixel x.

Soil erosion is considered as one of the important drivers of land degradation and the loss of
limited cropland. Therefore, the Revised Universal Soil Loss Equation (RUSLE) was adopted to
estimate the capacity of soil conservation for each pixel, which can be calculated using Equation (3):

SCx = Apx −Arx, (3)

where SCx is the amount of soil conservation at pixel x, Apx and Arx represent the amount of potential
and the actual soil loss, respectively. Apx and Arx can be expressed as follows:

Apx = Rx ×Kx × Lx × Sx, (4)

Arx = Rx ×Kx × Lx × Sx ×Cx × Px, (5)

where Rx is the rainfall erosion index for pixel x, Kx represents the soil erosion factor for pixel
x, Lx indicates the slope length factor, Sx denotes the slope for pixel x, Cx and Px represent the
cover-management factor and the support practices factor, respectively. Cx and Px are assigned 1, if
there is no vegetation or support practice for pixel x. In this study, Cx and Px shown in Table 2 were
determined according to the relevant literature [27].
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Table 2. Cover-management factor (C) and support practice factor (P) values.

Land Use Type C P

Agricultural land 0.3 0.4
Forest 0.003 0.2

Grassland 0.01 0.2
Waterbody 0.003 0.2

Built-up land 0.001 0.001
Bare land 0.01 0.2

The total amount of carbon storage in the NLB was quantified on the basis of the 4 types of
carbon density (aboveground mass carbon density, belowground mass carbon density, soil organic
mass carbon density and dead organic mass carbon density) and the land use maps. In this study,
carbon storage Ctotal

x,y,p for pixel x with land use category p can be expressed as follows:

Ctotal
x,p = ASx ×

(
CDabove

p + CDbelow
p + CDsoil

p + CDdead
p

)
, (6)

where ASx represents the area of pixel x and CDabove
p , CDbelow

p , CDsoil
p , and CDdead

p indicate the carbon
density of the different carbon pools for land use category p, respectively. The carbon density values
were obtained according to previous studies and are presented in Table 3. It was assumed that carbon
storage for built-up land is negligible and it was set to zero based on the study by Sun & Li (2017) [27].

Table 3. Carbon density values in the Nansihu Lake Basin (NLB) (Mg/hm2).

Land Use Type Aboveground
Carbon Density

Belowground
Carbon Density

Soil Organic
Carbon Density

Dead Organic
Carbon Density

Agricultural land 5.7 0.7 92.6 0
Forest 42.4 10.8 120.8 7.8

Grassland 0.7 2.8 111.1 0
Waterbody 0 0 0 0

Built-up land 0 0 0 0
Bare land 0.1 0 9.6 0

Because a significant linear relationship exists between crop production and the NDVI value for
agricultural land type [28], in this study, the county level statistical data on crop production were
allocated to each grid of agricultural land by using the NDVI value. The maximum value of the NDVI
in agricultural land that reflects the best growth status was derived, and crop production for each pixel
was estimated as follows:

Cropx,i =
NDVIx,i

NDVIsum,i
×Cropc,i, (7)

where Cropx,i is the crop production for agricultural land pixel x in county i. NDVIx,i and NDVIsum,i
represent the maximum NDVI value for pixel x and the overall NDVI value for agricultural land in
county i, respectively. Cropc,i is the overall crop production value in county i, which was obtained from
the statistical yearbook [22–24].

2.4. Regression Analysis

Understanding how the urban spatial pattern has contributed to ecosystem services is crucial for
effective urban planning and ecosystem management. Spatial regression analysis has been widely used
to explore the correlation between dependent and explanatory variables. For comparison purposes, the
Ordinary Least Squares (OLS) regression and GWR models were applied to examine the relationship
between ecosystem services and urban spatial patterns in this study. OLS is a type of linear least
squares method for estimating the unknown parameters in a linear regression model. OLS chooses the
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parameters of a linear function of a set of explanatory variables by the principle of least squares. It can
be expressed by Equation (8) [29]:

y = α0 +
∑

k

αkxk + ε, (8)

where y represents the dependent variable, α0 indicates the intercept value, αk represents the coefficient
for the k th explanatory variable xk, and ε denotes the random error term. Using all data samples to fit
one model, OLS is a global regression model. Parameters including α0 and αk remain fixed in space.

However, the relationship between urbanization and ecosystem services may vary spatially
because of the study area’s local context. Differences in urban spatial patterns could result in variations
in ecosystem services. OLS only globally estimates the average relationship for all samples when
analyzing phenomena that have spatial variation. Spatial nonstationarity cannot be incorporated into
an OLS model [30].

Rather than estimating a single global parameter, the GWR model generates a set of local
parameters to reflect the spatial nonstationarity of the model at different locations. The parameters
can be applied to achieve a better insight into the relationship between dependent and explanatory
variables by examining the spatially varying relationships.

The GWR model can be expressed as follows [31]:

yi = a0(µi, vi) +
∑

k

ak(µi, vi)xik + εi, (9)

where yi is the dependent variable of the sample unit i, (µi, vi) indicates the spatial coordinates of the
sample unit i, a0(µi, vi) is the intercept value for sample unit i, ak(µi, vi) denotes the local coefficient
estimate for explanatory variable xik, and εi represents the error term for sample unit i. In Equation (9),
the estimates for the parameters are spatially nonstationary.

Parameters for sample unit i in the GWR model can be derived by weighting all samples around
sample unit i with respect to distance, which is calculated in terms of the Euclidean distance [32]. The
samples closer to sample unit i have a stronger impact on the estimation of the local parameter, and are
assigned larger weights than for distant samples. The Gaussian distance decay function is applied to
set the weights:

wi j = exp (
d2

i j

h2 ), (10)

where wi j represents the weight of sample unit j for its neighborhood sample unit i, di j is the Euclidean
distance between sample unit i and unit j, h corresponds to the kernel bandwidth. Weight equals one
when the distance between sample unit i and unit j is zero. Weight rapidly approaches 0 when kernel
bandwidth h is smaller than distance di j.

Two kernel types in the GWR model are widely used to compute weights: the fixed and the
adaptive kernel type. In this study, the fixed kernel type was selected because the density of the sample
units is uniform. In addition, parameters estimated from the GWR model are also sensitive to the
kernel bandwidth. Three methods can be used to determine kernel bandwidth: Bandwidth Parameter
(BP), corrected Akaike Information Criterion (AICc), and Cross Validation (CV) [32]. BP can be used
when the kernel bandwidth is known. Otherwise, the AICc and CV methods should be used to identify
the optimal kernel bandwidth. In this study, the kernel bandwidth is not provided. Therefore, the
identification of the bandwidth was based on the AICc method because of its potential to minimize the
AICc value.

The explanatory abilities of the OLS and GWR models were compared and analyzed using three
statistical indicators. Adjusted R2 and AICc measure a model’s degree of goodness of fit [30]. The
larger that the adjusted R2 is, the stronger the ability of the explanatory variable to explain the variances
of the dependent variables. Additionally, a smaller AICc value means that the model results are closer
to the actual values. Moran’s I value was further calculated for the residuals of OLS and GWR models
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to quantify the models’ capacity to support the variables spatial autocorrelation. Moran’s I value,
range from -1 to 1, it is widely used to represent the degree of spatial autocorrelation. An absolute
value of Moran’s I closer to 1 suggests the existence of significant spatial autocorrelation. An absolute
value of Moran’s I closer to 0 implies perfect spatial randomness.

3. Results

3.1. Change in Urban Spatial Patterns

Remote sensing images during the period of from 1995 to 2015 were classified into six land use
types using Environment for Visualizing Images software (ENVI, version 5.1). The overall accuracies
of the classified data were 88%, 92%, and 90%, with corresponding Kappa statistics of 0.87, 0.91, and
0.88 for 1995, 2005, and 2015, respectively, which implies that classification was adequate. Figure 2
shows the distribution of land use from 1995 to 2015 in the NLB. Forest land and grassland were
mainly located in the eastern part of the basin. Growth in built-up land was mainly observed around
the existing city core as well as on the suburban areas. Area statistics data for each land use type are
presented in Table 4. Agricultural land was the predominant land use type in the NLB during the
study period, followed by built-up land and waterbody. Built-up land expanded at a rapid pace, with
the area increasing from 3990.47 km2 in 1995 to 5463.27 km2 in 2015. This expansion suggests that the
NLB has experienced rapid urbanization over the period. Conversely, substantial pressure caused by
the rapid increase of built-up land on other land use types was reflected by the decrease in agricultural
land, forest, grassland, and bare land. Among these land use types, agricultural land and grassland
experienced the highest decreases: 801.92 km2 and 363.32 km2, respectively. Furthermore, it is found
that the growth rate of urban land between 1995 and 2005 is smaller than that between 2005 and 2015.
Over the period 1995-2005, built-up land expansion was mainly constrained by relatively low economic
level and insufficient infrastructure in the NLB. During the period 2005-2015, rapid industrialization
and urbanization resulted in the rising demand for built-up land, thus much agricultural land has
been converted into built-up land, and the extent of the city core continued to increase. On the other
hand, because of the deepening urbanization and flexible population mobility policy, an increase in
in-migration and natural population has led to rapid population growth in the city. As a result, the
conflict between limited land resource and rapid urban sprawl became more apparent.

Table 4. Land use statistics in the NLB for 1995, 2005, and 2015.

Agricultural
Land Forest Grassland Waterbody Built-Up

Land Bare Land

1995
Area
(km2) 20,475.94 753.14 1408.04 1609.50 3990.47 127.35

Percent
(%) 72.19 2.66 4.96 5.67 14.07 0.45

2005
Area
(km2) 20,373.68 676.34 1371.51 1537.32 4288.39 117.20

Percent
(%) 71.83 2.38 4.84 5.42 15.12 0.41

2015
Area
(km2) 19,674.02 437.05 1044.72 1670.12 5463.27 75.26

Percent
(%) 69.36 1.54 3.68 5.89 19.26 0.27
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As a result of the rapid urbanization in the NLB, land use change has triggered a remarkable
variation in urban spatial patterns. Landscape metrics can provide a detailed insight into the impacts
of urbanization on landscape fragmentation and complexity [33]. In this study, landscape patterns of
built-up land were quantified based on the four selected metrics: PLAND, PD, ED, SHAPE_MN. Table 5
presents the spatial metrics values of built up land for 1995, 2005 and 2015 in the NLB. The increase in
ED and SHAPE_MN indicate the increasing complexity of urban patches. The change ratio of spatial
metrics values at local scale were further calculated according to Equation 1. As shown in Figure 3, the
spatial pattern of built-up land in the NLB varied spatiotemporally during the urbanization process.

Table 5. Spatial metrics values of built-up land for 1995, 2005, and 2015.

Year PLAND PD ED SHAPE_MN

1995 14.0738 0.6182 13.3492 1.1715
2005 15.1244 0.6003 13.7626 1.1904
2015 19.2576 0.5907 15.0949 1.2254

The PLAND value increased from 14.0738 to 19.2576, which is in accordance with statistical data
shown in Table 4. The spatial pattern of variation in PLAND indicates that the allocation of new
built-up land included both growth around the existing city core and the generation of new built-up
land patches. Since the implementation of market-oriented reform in China, cities have experienced
significant urbanization. Compared with the period 1995–2005, the annual rate of growth in PLAND
was greater over the period 2005–2015, which indicates NLB experienced rapid urban growth process
with the accelerating speed over the study period. The economy of NLB was moving into the fast
lane. Rapid development required more built-up land and industrial workers than ever before, which
also led to relatively high urbanization speed. In addition, because of limited land resources in the
city core, the hotspot of urban growth moved from the city core to urban fringes and the neighboring
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rural areas. PD can be used to measure how fragmented the spatial pattern of built-up land is. At the
global level, PD decreased from 0.6182 to 0.5907, which indicates that the number of urban patches
declined during the period under analysis. This can be attributed to the fact that some isolated urban
patches are connected to generate a larger patch due to urban expansion. As shown in Figure 3, PD
dramatically increased in urban fringes and rural areas, and decreased in the city cores. The increase
in PD can be mainly attributed to the conversion from non-built-up land into built-up land, which
made the landscape more fragmented. ED value increased from 13.3492 to 15.0949 between 1995 and
2015. In detail, the rate of change from 2005 to 2015 is much greater than the rate of change between
1995 and 2005. This can be explained by the fact that the development cores grew together to form
more irregular patches over the period 2005–2015. The noticeable increase in ED implies diffuse urban
sprawl development pattern in the NLB. Although ED variation in the city core was not obvious,
urban fringes experienced significant increases in ED, which indicates that patch shapes became more
irregular. This outcome could be attributed to the fact that existing built-up patches merged and
generated larger but more regular patches in the city core, while a dispersal of new urban development
made the built-up land pattern more irregular. Along with the rapid urbanization, a more complicated
urban landscape formed, as indicated by the increase in SHAPE_MN.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 10 of 21 
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3.2. Dynamics of Ecosystem Services

Quantity statistics for ecosystem services in the NLB are presented in Table 6. Results reveal that
the amount of the four ecosystem services decreased by 9.70%, 4.01%, 7.51%, and 9.67%, respectively
from 1995 to 2015. Due to the more significant built-up land expansion and spatial pattern change over
the period 2005–2015, the decrease rates of water yield, carbon storage, and crop production over the
period 2002–2015 is greater than those over the 1995–2005. Compared with the other three ecosystem
services, the different trend of change in soil conservation can be partly due to the climate factor,
for example the precipitation factor. The precipitation is negatively related to the soil conservation
value [34]. As shown in Figure 4, dramatic spatial variations of the selected ecosystem services could
be observed in the NLB.
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Table 6. Ecosystem services values in the NLB from 1995 to 2015.

Ecosystem Services 1995 2005 2015 1995–2015
Change Ratio (%)

Water Yield (m3) 14,680,789.29 14,055,285.79 13,256,121.71 9.70
Soil Conservation (tons) 3,102,891.63 2,991,353.39 2,978,579.24 4.01

Carbon Storage (tons) 51,980,021.35 51,637,304.90 48,075,172.51 7.51
Crop Production (tons) 3,796,203.80 3,642,626.29 3,429,217.75 9.67
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Water yield decreased from 14,680,789.29 m3 to 13,256,121.71 m3 during the study period.
Regarding spatial variation in water yield changes, the city core had the higher value because
evapotranspiration of lower vegetation coverage increased water yield there. The highest reduction
occurred in the western region.

The total value of soil conservation decreased from 3,102,891.63 tons to 2,978,579.24 tons. With
regards to the spatial distribution of changes in soil conservation, the eastern area performed better
than the other areas. A continuous area in the western part of the NLB also experienced considerable
degradation, which can be explained by the fact that the western part experienced a rapid urbanization
process. Agricultural and vegetation land were converted into built-up land. Significant increase in
soil conservation was observed in the eastern part of the NLB.

During the rapid urbanization process, the total carbon storage in the NLB decreased from
51,980,021.35 tons in 1995 to 48,075,172.51 tons in 2015. As shown in Figure 4, the increase in carbon
storage values was mainly located in the rural area, which is covered by agricultural land, forest and
grassland with higher carbon density. By contrast, major reductions in carbon storage were mainly
observed in the city core and significant growing built-up areas. The reduction in total carbon storage
value can be explained by the reduction in agricultural land, forest, and grass land as well as the
growth in built-up land. The decrease in total carbon storage indicates that the carbon sequestration
regulating service decreased.

During the urbanization process, agricultural land was converted into built-up land. Degradation
in agricultural land led to a direct decrease in crop production in the NLB. Crop production decreased
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from 3,796,203.80 tons in 1995 to 3,429,217.75 tons in 2015. In the new urban expansion area, agricultural
land was transformed into built-up land, so crop production reduced by 100%.

3.3. Relationship between Urban Spatial Patterns and Ecosystem Services

To investigate the relationship between urban spatial patterns and ecosystem services, the OLS
and GWR models were used. The OLS model could only produce a global coefficient for the study
area, while coefficients produced by the GWR model varied over space. The adjusted R2 and AICc
values of these two models are presented in Tables 7 and 8. As indicated by the lower R2 and higher
AICc values, the OLS model was poorly fitted in all cases for different time points. The adjusted R2 for
the GWR model ranged from 0.914 to 0.509, which implies that the impacts of urban spatial patterns
on ecosystem services are better explained with the GWR model, given the higher goodness of fit.
Moreover, AICc values generated by the GWR model were smaller than those generated by the OLS
model, suggesting that the GWR model helps to better explain the impacts of urban spatial patterns on
ecosystem services.

Table 7. Comparison of R2 between the Geographically Weighted Regression (GWR) and Ordinary
Least Squares (OLS) models.

Year Spatial
Metrics

Water Yield Soil Conservation Carbon Storage Crop Production

GWR OLS GWR OLS GWR OLS GWR OLS

1995

PLAND 0.909 0.418 0.736 0.178 0.782 0.209 0.665 0.182
PD 0.879 0.264 0.731 0.162 0.762 0.147 0.674 0.196
ED 0.900 0.293 0.758 0.196 0.773 0.164 0.641 0.171

SHAPE_MN 0.567 0.127 0.582 0.027 0.519 0.080 0.613 0.100

2005

PLAND 0.914 0.405 0.725 0.169 0.783 0.176 0.678 0.126
PD 0.881 0.211 0.717 0.153 0.757 0.152 0.686 0.139
ED 0.895 0.227 0.752 0.160 0.756 0.134 0.644 0.110

SHAPE_MN 0.591 0.134 0.581 0.078 0.523 0.108 0.510 0.094

2015

PLAND 0.906 0.369 0.737 0.164 0.832 0.204 0.701 0.195
PD 0.805 0.192 0.688 0.033 0.748 0.085 0.675 0.174
ED 0.807 0.106 0.731 0.158 0.726 0.127 0.623 0.183

SHAPE_MN 0.509 0.115 0.546 0.080 0.671 0.075 0.529 0.105

Table 8. Comparison of the Akaike Information Criterion (AICc) between GWR and OLS models.

Year Spatial
Metrics

Water Yield Soil Conservation Carbon Storage Crop Production

GWR OLS GWR OLS GWR OLS GWR OLS

1995

PLAND 11259 13953 8714 10090 9576 11092 21898 22950
PD 11614 13736 8746 10182 9671 11114 21871 22986
ED 11319 13466 8588 10119 9572 11108 21973 22963

SHAPE_MN 12865 13697 9599 10186 10663 11025 22559 22854

2005

PLAND 11363 13094 8670 10257 9542 11069 21797 22890
PD 11777 13516 8715 10192 9680 11181 21775 22931
ED 11564 13370 8530 9845 9625 11047 21899 22957

SHAPE_MN 12983 13815 9503 10824 10629 11238 22486 22974

2015

PLAND 11331 13555 8644 10019 9466 11032 21699 22893
PD 12268 13925 8826 10068 9955 11313 21794 22905
ED 12247 13804 8618 9998 10095 11312 21984 22857

SHAPE_MN 13081 13790 9382 10073 10895 11304 22486 22854
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Furthermore, Table 9 shows Moran’s I values for the residuals of these two models. Significant
positive spatial autocorrelation was revealed as shown by the Moran’s I values generated by the OLS
model ranging from 0.505 to 0.763. Furthermore, the lower Moran’s I values generated by the GWR
model when compared against those generated by the OLS model, indicate the GWR model is more
reliable for explaining the spatial autocorrelation of the variables under investigation.

Table 9. Comparison of Moran’s I between GWR and OLS models.

Year Spatial
Metrics

Water Yield Soil Conservation Carbon Storage Crop Production

GWR OLS GWR OLS GWR OLS GWR OLS

1995

PLAND −0.054 0.585 −0.075 0.536 −0.064 0.632 −0.033 0.505
PD 0.012 0.716 −0.058 0.572 0.016 0.626 0.028 0.550
ED 0.001 0.702 −0.063 0.547 −0.018 0.634 0.018 0.523

SHAPE_MN 0.046 0.713 0.046 0.581 0.044 0.551 0.038 0.508

2005

PLAND −0.047 0.624 −0.082 0.571 −0.055 0.612 −0.009 0.526
PD 0.025 0.719 −0.020 0.523 0.031 0.587 0.030 0.522
ED 0.019 0.703 −0.037 0.544 0.034 0.610 0.024 0.549

SHAPE_MN 0.042 0.655 0.048 0.590 0.069 0.596 0.025 0.537

2015

PLAND −0.022 0.763 −0.080 0.564 −0.020 0.630 −0.002 0.567
PD 0.048 0.674 −0.009 0.578 0.044 0.587 0.038 0.548
ED 0.073 0.664 −0.019 0.549 0.037 0.596 0.048 0.513

SHAPE_MN 0.038 0.654 0.035 0.582 0.044 0.578 0.038 0.533

The spatial distribution of coefficients shown in Figures 5–8 suggest that the relationship between
the four spatial metrics and selected ecosystem service types changed with the variation of spatial
position. Both the positive and negative impacts of urban spatial patterns on ecosystem services
were observed.

The adjusted R2 values of the correlation between PLAND and the four ecosystem services indicate
that PLAND had a significant impact on the changes in ecosystem services. Figure 5 shows a clear
spatial distribution of the coefficients between the PLAND of built-up land and the four ecosystem
services. Similarly, significant positive correlations between PLAND and water yield were found
in most of the study area. In addition, negative correlation between PLAND and soil conservation
was detected in the eastern area of the NLB, suggesting that the increase in the built-up land resulted
in a reduction of the soil conservation. The area with a positive correlation increased during the
urbanization process. A negative effect on the carbon storage value was observed in the NLB, which
indicates that urban expansion caused the reduction in carbon storage. Additionally, Figure 5 implies
that urban expansion had a negative impact on crop production in a large part of the study area,
although positive coefficients were found in the eastern area of the NLB. PLAND could explain more
than 65% of the variation in ecosystem services in the NLB as evidenced by Table 7.
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and ecosystem services.

Furthermore, the spatio-temporally varying impacts of PD on ecosystem services was revealed.
As shown in Table 7, water yield and PD exhibited high correlation. PD explained 87.9% 88.1%, and
80.5% of the variations in water yield value for 1995, 2005, and 2015, respectively. Both positive and
negative correlations were found in the results estimated with the GWR model. Figure 6 presents a
clear cluster in the correlations. More significant positive impact was observed in the city core and
fringe areas while lower correlation was observed in the rural areas.
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ecosystem services.

Figure 7 shows the effects of ED on ecosystem services. A stronger positive impact of ED on
carbon storage was observed in the city core, while negative and weaker effects were found in the
rural areas. This result implies that ED had more significant impact on carbon storage in an urbanized
area than in a rural area. The correlation between ED and soil conservation exhibited a relatively high
R2 value. ED significantly influenced soil conservation, and the impact of ED on soil conservation
varied spatiotemporally.
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Figure 7. Spatial distributions of correlation coefficients between edge density (ED) and
ecosystem services.

Figure 8 presents maps of the coefficients from the GWR model for the relationship between
SHAPE_MN and ecosystem services. SHAPE_MN had a significant negative correlation with crop
production in most of the NLB, which suggests that higher crop production is related to a lower
SHAPE_MN value. A negative correlation between SHAPE_MN and carbon storage was observed in
most of the study area and correlation varied spatiotemporally. In summary, more than 50% of the
spatial variation in ecosystem services could be explained by SHAPE_MN.
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4. Discussion

4.1. Impacts of Urban Spatial Patterns on Ecosystem Services

Previous urban planning strategies in China only focused on land management in urban
construction and farmland protection, and ignored sustainable ecosystem management. Without
considering the ecological effects of urban spatial pattern changes, much agricultural land was
transformed into built-up land in rapid development areas. Currently, emphasis of land use planning
has changed from farmland protection to ecosystem management. Against this background, quantifying
ecosystem services and their relationship with related factors is becoming more crucial and practical.
This study describes a method to investigate the relationship between urban spatial patterns and
ecosystem services during a dramatic urbanization process. Many studies have demonstrated that
urbanization causes a reduction in ecosystem services [3,35]. Our findings suggest that ecosystem
services decreased in response to urbanization. This outcome is consistent with findings described in
other studies that also concluded that urbanization and ecosystem services are significantly correlated.
For example, Zhang et al. (2018) highlighted that growth in population caused substantial reduction in
in the supply of ecosystem services associated with the urbanization in Wuhan, China [35]. Sun et al.
(2018) suggested that the transformation from vegetation land into built-up land is an important factor
in the decline of ecosystem services for the Atlanta metropolitan area, United States [36]. Urbanization
causes the expansion of built-up land, making the spatial pattern more irregular and fragmented [33].
Unlike socioeconomic variables (e.g., GDP and population) and land use structure indicators used in
previous studies, we analyzed the effect of urban spatial patterns on ecosystem services.
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Moreover, results revealed by the GWR model show that the changes in the supply of the ecosystem
services evaluated in the NLB could be explained by urbanization induced spatial pattern changes
with a relatively high goodness of fit. Therefore, optimizing urban spatial patterns is regarded as
another effective way to realize sustainable ecosystem development besides limiting urban expansion.
By considering the actual local situation, and the spatiotemporally varying impact of urban spatial
patterns, it is possible to develop appropriate ecosystem management measures and development
policies to avoid the negative effects of urban spatial pattern changes on ecosystem services as well as
to promote regional sustainable development.

4.2. Methodological Implication

Selecting a suitable model is of substantial importance for revealing the relationship between
urban spatial patterns and ecosystem services. Numerous studies have explored the global relationship
by using traditional regression models [37,38]. Our research extended these efforts by examining the
spatiotemporally varying impacts of urban spatial patterns rather than the global average impact. The
OLS model analyzes the study area as a whole and reveals a global average relationship. In contrast,
the use of the GWR model enables spatial variability of results to be presented and analyzed. This
approach facilitated more precise identification of urban spatial pattern impact on ecosystem services
change in the NLB. The GWR model enabled the analysis of each variable’s behavior at the local level
revealing the spatial variability among them. Detailed information on the varying impacts of urban
spatial patterns on ecosystem services for different locations of the study area was revealed by the GWR
model. This approach can be useful to develop more suitable and effective planning policies to avoid
the negative ecological effects of variation in urban spatial patterns according to the local situation.
In addition, the temporally varying impact of urban spatial patterns on ecosystem services has been
neglected in traditional analyses. To fill this research gap, the temporal dimension was incorporated
into this study. The results enabled us to analyze how the relationships temporally change along with
the urbanization process.

4.3. Outlook

It has been widely accepted in previous studies that the spatial scale is a crucial problem in
geography and ecology research [39]. Both the landscape pattern and ecosystem services values are
scale dependent. A different grid size could result in a different relationship between independent
and dependent variables. Although a preliminary test was carried out in this study to choose the
optimal grid size, the scale effect of spatial patterns on ecosystem services should be fully investigated
by comparing different grid sizes. Additionally, only four ecosystem services were considered in this
study due to difficulties in data acquisition. These four services could only reveal part of the changes.
Ecosystem services are more complex than the services selected in this investigation. Including more
ecosystem service types in future studies could provide more comprehensive information.

5. Conclusions

Scientifically examining the relationships between urban spatial patterns and ecosystem services
is important for effective urban planning and sustainable development. The NLB experienced rapid
urbanization between 1995 and 2015, which not only resulted in significant change in urban spatial
patterns, but also affected ecosystem services in numerous ways. Therefore, we sought to explain to
what extent the urban spatial patterns induced by urbanization are related to changes in ecosystem
services in the NLB by using remote sensing, spatial pattern analysis, and the GWR model. Urban
spatial patterns were quantified using four spatial metrics: PLAND, PD, ED, and SHAPE_MN,
with ecosystem services being represented by water yield, soil conservation, carbon storage and
crop production.

We found that water yield, soil conservation, carbon storage and crop production in the NLB
declined by 9.70%, 4.01%, 7.51%, and 9.67%, respectively, during urbanization in the period of 1995–2015.
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Both urban spatial patterns and ecosystem services exhibited obvious spatial variability. The areas
showing the highest deterioration in the selected ecosystem services were mainly found in the city core,
which corresponds to urban growth. Moreover, urban spatial patterns and ecosystem services were
significantly correlated, which indicates that urban spatial patterns can significantly affect ecosystem
services. More importantly, the GWR model revealed the spatial nonstationary relationship between
urban spatial patterns and ecosystem services.

In addition, the GWR model was demonstrated to be more effective in examining the relationships
between ecosystem services and urban spatial patterns than the OLS model, as evidenced by the
larger adjusted R2, smaller AICc and absolute Moran’s I value. Moreover, the estimated parameters
generated by the GWR model indicate that the impact of urban spatial patterns on ecosystem services
varies spatiotemporally. Therefore, to realize sustainable development in the NLB, there is a need to
develop effective policies for different locations and different phases of the urbanization process.
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