

ISPRS Int. J. Geo-Inf. 2019, 8, 348; doi:10.3390/ijgi8080348 www.mdpi.com/journal/ijgi

Review

Performance Testing on Marker Clustering and
Heatmap Visualization Techniques: A Comparative
Study on JavaScript Mapping Libraries
Rostislav Netek *, Jan Brus and Ondrej Tomecka

Department of Geoinformatics, Palacký University in Olomouc, 17. listopadu 50, 771 46 Olomouc,
Czech Republic
* Correspondence: rostislav.netek@upol.cz; Tel.: +420-585-63-4584

Received: 10 June 2019; Accepted: 30 July 2019; Published: 1 August 2019

Abstract: We are now generating exponentially more data from more sources than a few years ago.
Big data, an already familiar term, has been generally defined as a massive volume of structured,
semi-structured, and/or unstructured data, which may not be effectively managed and processed
using traditional databases and software techniques. It could be problematic to visualize easily and
quickly a large amount of data via an Internet platform. From this perspective, the main aim of the
paper is to test point data visualization possibilities of selected JavaScript Mapping Libraries to
measure their performance and ability to cope with a big amount of data. Nine datasets containing
10,000 to 3,000,000 points were generated from the Nature Conservation Database. Five libraries for
marker clustering and two libraries for heatmap visualization were analyzed. Loading time and the
ability to visualize large data sets were compared for each dataset and each library. The best-
evaluated library was a Mapbox GL JS (Graphics Library JavaScript) with the highest overall
performance. Some of the tested libraries were not able to handle the desired amount of data. In
general, an amount of less than 100,000 points was indicated as the threshold for implementation
without a noticeable slowdown in performance. Their usage can be a limiting factor for point data
visualization in such a dynamic environment as we live nowadays.

Keywords: big data; clustering; heatmaps; testing; web

1. Introduction

Big data has become a very common subject in technical, academic, and scientific publications
in recent years. There is still no accurate and generally accepted definition of the term. As a popular
buzzword and objective topic of research, there are several approaches and perspectives on Big data
and several ways of interpreting it that differ according to different fields of study, including
geographical information science (GISci). As both GISci and Big data are based on visualizations,
combining the fields has potential. In general, Big data can be considered bulky structured or
unstructured datasets that cannot be easily stored, managed, or analyzed using conventional
methods in a reasonable amount of time [1]. Today, several technologies used for Big data processing
already exist and are being continually improved. Most of these technologies are generally available
as a cheap solution. Many of them also have open source code, typically represented by the Apache
Hadoop framework, which is the most widely used technology in Big data for GISci [2]. It combines
commonly-available hardware with open source software, and its development is supported by
several large companies such as Google, Amazon, Microsoft, Facebook, and Twitter [3], which are
looking at options for the (future) development of internet Big data tasks.

ISPRS Int. J. Geo-Inf. 2019, 8, 348 2 of 16

The aim of this paper is to analyze Big data paradigms in GISci, specifically with regard to
visualization possibilities on the web platform. Currently, most web mapping libraries are based on
JavaScript technology [4]. The paper; therefore, compares popular JavaScript mapping libraries such
as Leaflet and OpenLayers. The article specifies, verifies, and compares the options in cartographic
visualization both theoretically and practically. Several pilot studies on real data describe specific
methods, technologies, and procedures for Big data with a spatial aspect. The main results of the
article are comparative testing and analysis of loading and performance.

The main research questions were:

• To find out optimal workflow and technology required for visualizing a large amount of point
spatial data on an Internet platform?

• Are there limits of point data visualization?
• Is there any limiting threshold for implementation without a noticeable slowdown in

performance?

2. Big Data and Geographical Information Science

Big data is a term describing very large data sets that are difficult to store, manage, share,
analyze, and visualize using common tools. The huge increase in the amount of data in the past few
decades has been a result of decreasing costs in computing and information technology. Technologies
and the possibilities to process Big data are growing with the rise in popularity of Big data. The term
“Big data” was firstly mentioned by NASA (National Aeronautics and Space Administration)
scientists at the eighth IEEE (Institute of Electrical and Electronics Engineers) Visualization
Conference in 1997 in relation to data visualization, referring to data so large that it exceeded memory
capacity [5]. Big data was originally characterized by the so-called “3V”, which was first used by
Gartner analyst Doug Laney [6]. The first research report on these characteristics was developed in
2000 and then released in February 2001 under the name 3D Data Management—Controlling Data
Volume, Velocity, and Variety. According to Laney [6], it is volume, velocity, and variety:

• Volume—the size of the data or number of records that the dataset contains.
• Velocity—represents how fast data are generated and processed. Unstructured data grows faster

than structured data and generates about 90% of all data. Therefore, choosing different ways of
processing Big data is necessary.

• Variety—Big data differs in structure and formats and includes semi-structured (e.g., documents
in CSV (Comma-separated values), XML (Extensible Markup Language) or JSON (JavaScript
Object Notation) formats) or totally unstructured (e.g., multimedia) available data. These basic
characteristics were later expanded by some authors and companies. According to [2,3,6], Big
data has five dimensions (5V): volume, velocity, variety, value, and veracity, which expresses
the uncertainty in data. Low veracity corresponds to the changed uncertainty and the large-scale
missing values of Big data. Sometimes, along with the growing size of datasets, the uncertainty
of data itself often changes sharply, which makes the traditional processing tools unavailable.
One of the possible ways to cope with uncertainty is via visualization techniques [7].

Microsoft has extended the original characteristics by two more dimensions: variability (which,
in contrast to diversity, expresses the number of variables in the dataset) and visibility [8]. Other
characteristics are often added. Some authors supplement the value that data represent to a company
(value), validity period (validity), temporary period of necessary data storage (volatility), etc. [9].
Today, there are many technologies that are being continually improved to process such data. Most
of these technologies are inexpensive data processing solutions, and many have open source code.
An example is the Apache Hadoop framework, which is one of the most widely used technologies
combining common hardware with open source software [8].

In 2010, Teradata’s Chief Technology Officer Stephen Brobst predicted that social networks
would not be the largest source of unstructured data within three to five years but would be data
captured from sensors and sensor networks [10]. Typically, a large source of 2D spatial data is
represented by spatial data and satellite/aerial imagery. On 1 January 2015, there were 5,532,454

ISPRS Int. J. Geo-Inf. 2019, 8, 348 3 of 16

Landsat images of 4.134 PB in total [11] in the USGS (United States Geological Survey) archive. NASA
receives approximately 5 TB per day of remote sensing data [12]. Another extensive source is 3D data
obtained using LIDAR (Light Detection And Ranging) technology for object detection and distance
measurement using laser radiation. A user can therefore easily obtain millions of points in a selected
area of interest. These spot clouds can then be used to create 3D models of scanned objects, such as
digital elevation models. Sharing, analyzing, and visualizing spatial dynamic information is the
fundamental purpose of GISci and web cartography. As digital transformation relocates from
desktop platforms to the internet environment, new technologies in field of Web cartography and
WebGIS (Web Geographic Information System) are rapidly emerging [4]. Mobile technologies, social
networks, real-time technologies, and sensor networks provide an enormous amount of spatial data.
However, the results of any spatial analysis cannot be interpreted and discussed without visualizing
data. While numerous articles focus on Big data distribution and processing rather than visualization
[13], our paper focuses only on implementing interactive map outputs.

3. Spatial Data Formats for Point Data

The paper is focused on point data visualization by JavaScript libraries visualization via an
Internet platform. Our research concentrated on 2D point data. The libraries tested during our
research were primarily developed for visualizing 2D spatial data. 3D data in the form of point clouds
(e.g., LIDAR, photogrammetry, etc.), which can also be considered as Big data, were not examined.

A common database solution such as NoSQL (Non Structured Query Language), distributed, or
cloud storage was; therefore, not applied. Several spatial-friendly formats are compatible with
JavaScript for interactive web map applications, for example, GeoJSON, TopoJSON, XML, GML
(Geography Markup Language), KML (Keyhole Markup Language), CSV, etc. We mainly applied
GeoJSON, which is currently the most supported format for web visualizations.

GeoJSON is an interoperable geospatial format based on the JSON data format. It defines several
types of JSON objects and how they are combined to represent geographic features (point, line,
polygon, multipoint, multiline, multipolygon), their properties and spatial scope. The JSON
(JavaScript Object Notation) format was originally designed to pass data between the server side and
client side of a web application. JSON has become a widespread data format, and libraries for its use
exist in all programming languages. The use of JSON in applications is very straightforward, as JSON
can be easily mapped to objects of the given language [9].

GeoJSON uses the WGS84 (World Geodetic System 1984) coordinate system and decimal
degrees. GeoJSON is widely used in web services for its small volume and simplicity. It is less
processing-intensive, which is especially useful for web browsers [14]. Currently, GeoJSON is
considered the de-facto standard and is quite popular for web mapping solutions. Another format
derived from JSON is TopoJSON. The main goal is to minimize data flow between the web server
and client. Therefore, TopoJSON is based on topology.

4. Visualization Methods

Conventional cartographical methods for point layers are not suitable for visualizing Big data
because of the extreme amount of data. Standardized representations of point features with icons
(map pins) will cover an entire map area, making each feature impossible to identify, and the map
background (basemap) will be fully covered, which prevents orientation and movement over the
map. For these reasons, more sophisticated methods applied especially to Big data were introduced.
Our study uses marker clustering and heatmaps. Another method is spatial binning.

4.1. Marker Clustering

Marker clustering represents a visualization technique where individual points on a web map
are grouped into clusters according to a specific algorithm based on the radius of clusters. Grouped
points are then represented on a map by a “new” symbol, with the number of points included in the
cluster. The created clusters can be modified with a set of symbols according to the number of points

ISPRS Int. J. Geo-Inf. 2019, 8, 348 4 of 16

they contain (e.g., color, size). Marker clustering is a dynamic method strictly dependent on changes
at each zoom level (map scale). When zooming in, the clusters then shrink, and individual points are
displayed. Clustering eliminates overlapping points and makes the web map clearer. More technical
details are available at https://developers.google.com/maps/documentation/javascript/marker-
clustering.

4.2. Heatmaps

Heatmaps are one of the most popular methods for visualizing extensive point datasets. This
method makes it easy to continuously visualize and analyze large data sets and identify clusters [15].
However, it cannot be determined whether these clusters are statistically significant [16]). Points are
represented as a color gradient depicting the area and strength of each point’s influence [17]. In the
case of overlaps, the effects of these points are cumulative.

5. Research Design and Data

The main goal of the paper is to find and set the limits of JavaScript libraries for point data
visualization via an Internet platform from the point of its quantity, size, and number of records. For
this reason, we do not consider the conventional Big data storage approaches. We want to visualize
the point data by rendering directly in the browser to find limitations and benefits. This different
strategy requires different data and visualization methods than common Big data-oriented database
(such as MongoDB (Mongo Database), NoSQL, etc.) described in many scientific and popular papers.
The minor goal of the paper is to define the situation when point data can be considered as Big data
and especially when technical limits occur. We can also define the restrictions on the side of the
mapping library (e.g., when the data are no longer displayed).

Several data sets are suitable for Big data processing technologies. Open data, contracted data,
data retrieved using publicly available APIs, or methods such as data mining or web crawling may
be encountered. As a primary data source for our study, data concerning nature conservation was
selected. This data was exported from the NDOP (Nálezová databáze ochrany přírody - Nature
Conservation Database of the Czech Republic) provided by the Landscape and Nature Protection
Agency of the Czech Republic (AOPK).

The Nature Conservation Database is a national source of data that records species diversity in
the Czech Republic. It summarizes all the available data on the distribution of species in the Czech
Republic. The database is general and interdisciplinary, focusing on plants, animals, mushrooms, and
lichens. The database is continuously updated using the NDOP application (available at
ndop.nature.cz [18]), which is used for data editing. The data discovery filter (FiND) allows the
available data to be viewed under license agreements. The Nature Conservation Database currently
contains over 22 million findings.

The database not only contains data about flora and fauna in the wild, but also information about
specimens from collections and herbaria and published or unpublished records of the occurrence of
a species in the Czech Republic. The database is not limited to a group, and data is collected on all
kinds of species. It primarily concentrates on endangered species, although the database also contains
many records of common species. Data are provided for research purposes under contract in SHP
(Shapefile) and CSV format [18]. Records contain an ID, the taxonomy, author of the finding,
localization, date of the finding, abundance of the taxonomy, coordinates of the point in the S-JTSK
coordinate system (local coordinate system used in the Czech and Slovak Republics; EPSG:5514) and
notes.

In total, nine data samples with a different number of records (Table 1) were created for testing
purposes. These data sets were exported from the Nature Conservation Database. All thematic
attributes (taxonomy, etc.) except coordinates were removed, as they were irrelevant to the testing.
Finally, a GeoJSON sample with 10,000, 25,000, 50,000, 100,000, 250,000, 500,000, 1,000,000, 1,500,000,
and 3,127,866 points/records of specimens were generated (Table 1). Since PruneCluster does not
support GeoJSON, the same samples were also generated as JSON data. Testing was primarily
focused on loading and rendering speed. Loading the entire web map was tested ten times for each

ISPRS Int. J. Geo-Inf. 2019, 8, 348 5 of 16

data sample. The arithmetic mean and median were calculated from the measured values. The
obtained results are described in Tables 2–8 (all values are in milliseconds). All web applications with
samples for clustering and heatmap creation are available at
http://geoinformatics.upol.cz/app/bigdata (see Figure 1).

Table 1. Number of records and sizes of datasets.

 10,000 25,000 50,000 100,000 250,000 500,000 1 mil 1.5 mil ~3 mil
JSON 240 kB 600 kB 1.2 MB 2.4 MB 6 MB 12 MB 24 MB 36 MB 75 MB

GeoJSON 1.2 MB 2.9 MB 5.8 MB 11.6 MB 28.9 MB 58 MB 116 MB 173.7 MB 362.1 MB

Figure 1. Web application provides all samples for clustering (5 × 9) and heatmaps (2 × 9).

6. Testing and Results

Five diverse JavaScript libraries were tested as a comparable study to visualize data via a web
platform. Libraries tested for the clustering visualization method were Leaflet.markercluster,
OpenLayers, Supercluster, MapBox GL JS (Graphics Library JavaScript), and PruneCluster. Libraries
tested for the heatmap method were Leaflet and OpenLayers. Comparison of the JavaScript libraries
was conducted on a common PC with the following specifications: Intel® Core™ i5-6200U (2.30 GHz),
8 GB RAM, NVIDIA GeForce 210, 22” monitor with resolution 1920 × 937 px. Google Chrome version
65.0.3325.181 was deployed as the browser. Google Chrome’s built-in developer tools (performance
tab) were used to measure map rendering time (loading time). These tools allow page processing to
be accurately tracked from initial loading through to scripting and full loading (see Figure 2). Testing
was performed on a local web server Apache HTTP (Hypertext Transfer Protocol) Server 2.4.29

ISPRS Int. J. Geo-Inf. 2019, 8, 348 6 of 16

Figure 2. Google Console (developer tools) was used for testing and measuring.

6.1. Marker Clustering

6.1.1. Leaflet.markercluster (v1.4.1)

The first tested JavaScript library was the Leaflet.markercluster plugin for Leaflet (see Figure 3).
Leaflet is one of the most well-known open source solutions under the FreeBSD (Berkeley Software
Distribution) license. Created by Vladimir Agafonkin, it is essentially a JavaScript library for
interactive web maps [19]. The first version 0.1 was released in 2011, and currently Leaflet is available
in version 1.3.1. By default, it is designed to contain only basic functionality (as opposed to, for
example, OpenLayers) and could be enhanced by additional plugins. Leaflet works on all major
desktop and mobile platforms and uses HTML5 (Hypertext Markup Language) and CSS3 (Cascading
Style Sheets) for functionality. The Leaflet.markercluster plugin was released in 2012, and the current
version is 1.3.0 from January 2018, created by Dave Leaver [19].

Testing shows that the solution provided by the Leaflet.markercluster plugin is the slowest one.
The 10,000-point sample achieved a comparable time (1,572 ms) with OpenLayers (1,388 ms).
However, from 50,000 points onwards, rendering time (11,612 ms) rapidly increased, and increased
latency was seen between redrawing levels, especially when moving from larger levels to lower
levels. A possible reason may have been the use of re-draw animation at the expense of speed. The
limit for this library was a 100,000-point data set drawn at 47,154 ms on average. For larger datasets,
testing could not be completed because the browser froze or crashed. See Table 2 for complete results.

Table 2. Results of testing Leaflet.markercluster library (values in milliseconds).

 Points in Database
10,000 25,000 50,000 100,000 250,000 500,000 1 mil 1.5 mil ~3 mil

#1 1,549 3,439 12,701 47,252 N/A N/A N/A N/A N/A
#2 1,677 3,373 11,167 46,872 N/A N/A N/A N/A N/A
#3 1,576 3,371 11,056 46,966 N/A N/A N/A N/A N/A
#4 1,564 3,501 11,093 46,914 N/A N/A N/A N/A N/A
#5 1,590 3,326 11,176 48,109 N/A N/A N/A N/A N/A
#6 1,582 3,399 12,419 47,442 N/A N/A N/A N/A N/A
#7 1,531 3,457 11,810 46,161 N/A N/A N/A N/A N/A
#8 1,560 3,467 11,093 47,323 N/A N/A N/A N/A N/A
#9 1,521 3,367 12,380 46,666 N/A N/A N/A N/A N/A
#10 1,567 3,334 11,230 47,838 N/A N/A N/A N/A N/A

Average 1,572 3,404.4 11,612.5 47,154.3 N/A N/A N/A N/A N/A
Median 1,565.5 3,386 11,203 47,109 N/A N/A N/A N/A N/A

ISPRS Int. J. Geo-Inf. 2019, 8, 348 7 of 16

Figure 3. Map output of Leaflet.markercluster—testing on 10,000 and 50,000 of points.

6.1.2. OpenLayers (v4.6.4)

The second tested library was OpenLayers (see Figure 4). The OpenLayers project is a direct
competition to the Leaflet project, with similar characteristics—it is open source and licensed under
the FreeBSD license. The first version was developed by MetaCarta and released in 2006 [20].
OpenLayers natively supports point clustering, and no other plugins need be used. However, some
additional plugins are available and expand native clustering behavior, for example, for animated
transitions between zoom levels, similar to Leaflet (OL-ext, OL3-AnimatedCluster). Clustering in
OpenLayers achieves good results. When testing on a 250,000-point dataset, the average plot time
was 8,061 ms. When tested on a 500,000-point dataset, the plot time increased by three times (average
24,455 ms). The OpenLayers library could not plot datasets larger than 500,000, and all attempts
ended with the browser crashing or freezing. See Table 3 for complete results.

Table 3. Results of testing OpenLayers library (values in milliseconds).

 Points in Database
10,000 25,000 50,000 100,000 250,000 500,000 1 mil 1.5 mil ~3 mil

#1 1,447 1,810 2,521 4,616 8,283 24,926 N/A N/A N/A
#2 1,458 2,046 2,749 4,543 8,149 24,160 N/A N/A N/A
#3 1,262 1,941 2,507 4,532 8,303 24,392 N/A N/A N/A
#4 1,419 1,857 2,561 4,696 8,147 25,013 N/A N/A N/A
#5 1,299 1,948 2,738 4,326 8,024 23,883 N/A N/A N/A
#6 1,360 2,045 2,757 4,526 8,241 24,127 N/A N/A N/A
#7 1,435 1,961 2,734 4,381 8,000 24,115 N/A N/A N/A
#8 1,514 1,914 2,564 4,191 7,953 24,586 N/A N/A N/A
#9 1,416 2,081 2,615 4,362 7,919 24,463 N/A N/A N/A

#10 1,266 1,942 2,415 4,333 8,061 24,885 N/A N/A N/A
Average 1,388 1,954.5 2,616.1 4,450.6 8,108 24,455 N/A N/A N/A
Median 1,417.5 1,945 2,589.5 4,453.5 8,104 24,427.5 N/A N/A N/A

ISPRS Int. J. Geo-Inf. 2019, 8, 348 8 of 16

Figure 4. Map output of OpenLayers—testing on 10,000 and 50,000 of points.

6.1.3. Supercluster (v5.0.0)

The third tested library was Supercluster (see Figure 5). Its author is Vladimir Agafonkin, the
same author as the Leaflet library. Supercluster is a standalone library that can be used in
combination with any other JavaScript library for creating web maps. In this case, its speed was tested
in conjunction with the Leaflet and OpenLayers libraries without significant difference. This
clustering library uses a “hierarchical greedy clustering” method [21]. Creating a cluster begins by
selecting a point from the dataset. All points within the selected radius are merged and a new cluster
is created. Creating another cluster begins by selecting a point that is not a part of any cluster. This
method is also employed by the previously mentioned Leaflet.markercluster plugin for Leaflet. In
Supercluster; however, this method was expanded to include a spatial index, processing points only
once into a special data structure that is then available for immediate use in later queries and larger
datasets [21].

A sample of 1.5 million points was rendered by the Supercluster library in 23,911 ms
(OpenLayers could only render half the points in approximately the same time in 24,455 ms).
Supercluster rendered the map in 71,776 ms without any problems, even when the entire datasets
with more than 3 million points were used. See Table 4 for complete results. The transitions between
zoom levels were quick, but definitely did not achieve the fluency of the Mapbox GL JS library.

Table 4. Results of testing Supercluster library (values in milliseconds).

 Points in Database
10,000 25,000 50,000 100,000 250,000 500,000 1 mil 1.5 mil ~3 mil

#1 958 1,150 1,514 2,483 5,401 12,461 23,680 35,957 72,563
#2 952 1,152 1,499 2,527 5,283 12,554 23,632 36,255 72,097
#3 991 1,153 1,464 2,497 5,389 12,207 24,165 36,685 71,360
#4 768 1,103 1,587 2,533 5,271 12,365 23,670 36,377 71,120
#5 853 1,179 1,538 2,537 5,327 12,239 23,707 35,103 72,442
#6 828 1,189 1,475 2,525 5,242 12,555 24,632 36,333 71,465
#7 810 1,166 1,492 2,480 5,228 12,525 23,821 36,203 72,291
#8 782 1,129 1,484 2,568 5,281 12,402 24,418 35,639 71,576
#9 995 1,096 1,552 2,597 5,331 12,443 22,971 35,750 71,238

#10 819 1,165 1,446 2,503 5,253 12,459 24,419 36,339 71,613
Average 875.6 1,148.2 1,505.1 2,525 5,300.6 12,421 23,911.5 36,064.1 71,776.5
Median 840.5 1,152.5 1,495.5 2,526 5,282 12,451 23,821 36,203 71,613

ISPRS Int. J. Geo-Inf. 2019, 8, 348 9 of 16

Figure 5. Map output of Supercluster—testing on 10,000 and 50,000 of points.

6.1.4 Mapbox GL JS (v0.44.1)

Mapbox GL JS library (see Figure 6) uses the Supercluster library mentioned above for
clustering, though for rendering it uses WebGL technology based on GPUs. It would be expected that
the Mapbox GL JS library achieves similar results to the Supercluster library in combination with the
Leaflet library.

However, this solution was worse than the Supercluster library when combined with the Leaflet
library up to 100,000 points. The difference decreased with the use of larger data sets. When tested
with a sample of 250,000 points, the plot rate was comparable with only 168 ms difference. When
sample with 500,000 records was used, the Mapbox GL JS library was 4,330 ms faster than
Supercluster. The entire dataset could be rendered on average in 34,224 ms (compared to 71,775 ms
achieved by Supercluster with Leaflet). See Table 5 for complete results. This library was definitely
the smoothest, and the re-drawing of zoom levels was immediate, even when the entire dataset was
drawn.

Table 5. Results of testing Mapbox GL JS (Graphics Library JavaScript) (values in milliseconds).

 Points in Database
10,000 25,000 50,000 100,000 250,000 500,000 1 mil 1.5 mil ~3 mil

#1 3,083 3,378 3,393 4,035 5,505 8,019 13,007 17,665 33,964
#2 2,850 3,267 3,390 3,942 5,484 8,180 12,906 17,889 34,378
#3 2,786 3,120 3,302 4,106 5,397 8,140 12,958 17,404 33,835
#4 2,824 3,332 3,301 4,073 5,474 8,175 12,768 17,678 34,097
#5 3,087 3,055 3,450 4,114 5,475 8,157 13,457 17,704 34,677
#6 3,029 3,194 3,473 4,078 5,462 8,045 13,011 17,811 34,459
#7 2,875 3,149 3,501 4,017 5,520 8,025 13,121 17,460 34,719
#8 2,970 3,292 3,345 4,010 5,397 8,152 13,029 17,486 33,449
#9 2,895 3,123 3,411 4,041 5,464 8,059 13,010 17,220 34,469
#10 3,036 3,345 3,402 3,973 5,506 7,961 13,410 17,668 34,201

Average 2,943.5 3,225.5 3,396.8 4,038.9 5,468.4 8,091.3 13,067.7 17,598.5 34,224.8
Median 2,932.5 3,230.5 3,397.5 4,038 5,474.5 8,099.5 13,011 17,665 34,224.8

ISPRS Int. J. Geo-Inf. 2019, 8, 348 10 of 16

Figure 6. Map output of Mapbox GL JS (Graphics Library JavaScript)—testing on 10,000 and 50,000

of points.

6.1.5. PruneCluster (v2.1.0)

The latest tested solution is called PruneCluster (see Figure 7), a project by Norwegian
organization SINTEF (Stiftelsen for industriell og teknisk forskning). Technically, it is another plugin
for Leaflet. The authors are Antoine Pultier and Aslak Wegner Eide, and it provides an effective
solution for clustering points in web mapping applications [22]. The authors developed a new
algorithm for clustering and updating points in real time. They were inspired by algorithms for
detecting collisions between two objects. According to testing by the authors [22], the algorithm
demonstrated significant improvement over other available solutions. This makes the library suitable
for visualizing large datasets, even in real time. Its advantages include the option to categorize
individual points and display their representation in the cluster (SINTEF, 2018). The PruneCluster
library does not support GeoJSON and was; therefore, tested with JSON data. The data in this format
has a partially different structure, but a significantly smaller size (72.1 MB compared to 362.1 MB for
the entire dataset). PruneCluster; therefore, cannot be directly compared to other tested libraries.
However, it uses a different algorithm for clustering, and it was included in testing.

PruneCluster reached the lowest times of all the tested libraries. Half a million points were
loaded in 3,202 ms. The entire dataset was drawn on average in 23,111 ms. It can be assumed from
the test results that by using the GeoJSON format, the Mapbox GL JS library would probably provide
the fastest rendering time (23,111 ms vs. 34,224 ms). See Table 6 for complete results. As with
Leaflet.markercluster, the PruneCluster library uses animations between zoom level. When smaller
data samples were used, the re-draw response was acceptable, but larger samples (250,000 points or
more) adversely affected the animation’s loading time.

Table 6. Results of testing PruneCluster library (values in milliseconds).

 Points in Database
10,000 25,000 50,000 100,000 250,000 500,000 1 mil 1.5 mil ~3 mil

#1 794 879 945 1,169 1,891 3,319 7,998 14,923 23,425
#2 769 817 920 1,198 1,864 3,213 7,284 13,759 22,273
#3 761 827 920 1,192 1,952 3,175 7,553 14,746 23,107
#4 764 847 936 1,265 1,880 3,096 7,615 14,929 22,625
#5 761 804 935 1,136 1,967 3,153 7,352 13,858 22,850
#6 763 809 931 1,196 1,836 3,214 7,307 14,480 22,753
#7 787 850 978 1,260 1,931 3,187 7,658 14,443 22,978
#8 765 856 932 1,153 1,897 3,240 7,736 13,497 23,747
#9 775 804 973 1,116 1,904 3,202 7,541 14,596 23,872

ISPRS Int. J. Geo-Inf. 2019, 8, 348 11 of 16

#10 769 835 935 1,174 1,934 3,230 7,731 14,506 23,489
Average 766.8 832.8 940.5 1,185.9 1,902.6 3,202.9 7,544.6 14,373.7 23,111.9
Median 764.5 831 935 1,183 1,897.5 3,207.5 7,584 14,493 23,042.5

Figure 7. Map output of PruneCluster—testing on 10,000 and 50,000 of points.

6.2. Heatmap

Ježek et al. [23] compared the rendering time of heatmaps with four JavaScript solutions: Google
Maps API, Leaflet.heat plugin for Leaflet, ArcGIS online, and WebGLayer (the University of West
Bohemia’s own developed WebGL solution). The latter solution achieved much lower rendering
times than the previous: 100 ms for a 1,492,475-point dataset. Because of their general availability,
two libraries were tested for heatmap rendering in this study. The first was the Leaflet.heat plugin
(version 0.2.0 for the Leaflet library based on the simpleheat.js library). The second was OpenLayers,
which supports creating heatmaps natively. For both tested libraries, a heatmap was rendered to an
HTML canvas. A radius parameter could be set for any heatmap [17]. According to Ježek et al. [23],
these parameters affect the resulting rendering and loading times of the heatmap while rendering on
the GPU. Heitzel et al. [24] confirm that algorithms executed on a GPU “allow the data size for
analyzing complex simulations to be significantly reduced when certain datasets are generated only
for the purpose of visual analysis” [24]. However, not only the number of points but also the screen
size affected rendering time. We also created a testing cycle for different monitors (22″/1920 × 937 px
vs. 13.3″/1280 × 657 px). The generating time was around 180 ms faster on average on the smaller
display.

6.2.1. Leaflet.heat (v0.2.0)

Leaflet.heat (see Figure 8) is a lightweight heatmap plugin for Leaflet. It uses a “simpleheat”
algorithm combined with clustering points to form a performance grid. Simpleheat is a super-tiny
JavaScript library for drawing heatmaps on a canvas focusing on simplicity and performance [25]
and was developed by Vladimir Agafonkin. According to [25], it creates an object given a canvas
reference according to an [x, y, value] data format. Users can set the point radius, blur radius and
gradient colors. When rendering, simpleheat draws a raster output with an optional minimum point
opacity. With additional testing, we verified that the change of radius or blur only fluctuates in
milliseconds—it is not a significant parameter.

It was able to render all test samples. Compared to the OpenLayers library, Leaflet.heat rendered
ten times more points in a comparable time: on average 1,217 ms for 100,000 points using Leaflet.heat
vs. 1,276 ms for 10,000 points using OpenLayers. The entire datasets with more than 3,000,000 points
were rendered on average in 16,313 ms. See Table 7 for complete results.

ISPRS Int. J. Geo-Inf. 2019, 8, 348 12 of 16

Table 7. Results of testing Leaflet.heat library (values in milliseconds).

 Points in Database
10,000 25,000 50,000 100,000 250,000 500,000 1 mil 1.5 mil ~3 mil

#1 825 900 1,104 1,350 1,821 3,432 5,417 8,672 18,456
#2 856 902 1,049 1,252 1,819 3,206 5,631 8,861 16,260
#3 946 892 1,037 1,194 1,832 3,330 5,555 8,146 15,937
#4 901 925 1,153 1,191 1,822 3,032 5,524 8,052 15,614
#5 808 952 1,032 1,143 1,794 3,216 5,550 8,740 15,865
#6 793 887 1,068 1,189 1,860 3,088 5,754 8,501 16,136
#7 885 957 1,004 1,190 1,837 3,171 5,947 8,062 16,225
#8 867 875 1,012 1,221 1,795 3,109 5,682 7,966 16,432
#9 986 793 985 1,225 1,842 3,121 5,607 8,578 16,304
#10 746 952 1,052 1,223 1,775 3,256 5,545 8,241 15,908

Average 861.3 903.5 1,049.6 1,217.8 1,819.7 3,196.1 5,621.2 8,381.9 16,313.7
Median 861.5 901 1,043 1,207.5 1,821.5 3,188.5 5,581 8,371 16,180.5

.

Figure 8. Map output of Leaflet.heat—testing on 10,000 and 50,000 of points.

6.2.2. OpenLayers (v4.6.4)

OpenLayers provides native heatmap functionality by default (see Figure 9). It is also rendered
on a canvas, but provides more options: opacity, visibility, extent (the layer is not rendered outside a
defined extent), zIndex, min/max resolution, gradient, radius, blur, shadow, weight (the feature
attribute used for the weight or a function to return a weight from a feature), and render mode (vector
or image format of output). In this case, only render mode could determine the rendering time.
Surprisingly, the fluctuation was only 260 ms for a 10,000 dataset during an additional test cycle. A
raster format was used for performance testing in order to compare with the previous example. With
additional testing, we verified that the change of radius or blur only fluctuates in milliseconds—it is
not a significant parameter.

The OpenLayers library rendered a maximum of 250,000 points as a heatmap in 10,846 ms on
average. With larger data samples, the map did not work, and all other tests resulted in the web
browser freezing or crashing. Even when using the smallest test sample of 10,000 points, user
interactivity of the web application deteriorated, and map manipulation was not smooth. See Table
8 for complete results.

Table 8. Results of testing OpenLayers library (values in milliseconds).

ISPRS Int. J. Geo-Inf. 2019, 8, 348 13 of 16

 Points in Database
10,000 25,000 50,000 100,000 250,000 500,000 1 mil 1.5 mil ~3 mil

1. 1,256 1,977 3,289 4,763 11,358 N/A N/A N/A N/A
2. 1,413 1,759 2,995 4,686 11,258 N/A N/A N/A N/A
3. 1,143 1,811 2,910 5,109 10,025 N/A N/A N/A N/A
4. 1,266 1,861 2,888 4,931 11,002 N/A N/A N/A N/A
5. 1,438 1,982 3,152 4,936 10,416 N/A N/A N/A N/A
6. 1,328 1,753 3,155 4,825 11,029 N/A N/A N/A N/A
7. 1,474 1,826 2,939 5,184 10,146 N/A N/A N/A N/A
8. 1,160 1,686 2,883 5,038 11,154 N/A N/A N/A N/A
9. 1,154 1,845 3,017 5,072 10,889 N/A N/A N/A N/A
10. 1,128 1,878 2,889 4,925 11,188 N/A N/A N/A N/A

Average 1,276 1,837.8 3,011.7 4,946.9 10,846.5 N/A N/A N/A N/A
Median 1,261 1,835.5 2,967 4,933.5 11,015.5 N/A N/A N/A N/A

Figure 9. Map output of OpenLayers heatmap—testing on 10,000 and 50,000 of points.

6.3. Vector Tiles

Another option for visualization is to display the whole dataset using a vector tile concept. Entire
large data sets could be effectively displayed, including interactivity and accessibility to attributes.
Vector tiles can be generated from JSON, GeoJSON, CSV, or Geobuf formats using various software,
such as tippecanoe, MapTiler, or ArcGIS Pro. The output is an MBTiles (MapBox Tiles) file that
contains the resulting vector tiles. Technically, it is an SQLite (Structured Query Lite) database for
storing vector or raster tiles. Vector tiles can also be exported separately for each zoom level. By
setting the parameters, the maximum/minimum zoom levels or level of generalization can be
affected. As a result, individual vector tiles in Protocol (buffer binary format) will be generated. For
visualization purposes, vector tiles can then be uploaded to storage provided by Mapbox and
visualized using the JavaScript library Mapbox GL JS. Another means of hosting the resulting vector
tile is to use TileServer to run your own server.

7. Conclusions

The aim of the article was to specify, test, and compare the possibilities of visualizing Big data
in JavaScript mapping libraries. Nine datasets containing 10,000 to 3,000,000 points were generated
from the Nature Conservation Database. Five libraries for marker clustering and two libraries for
heatmap visualization was analyzed, and quantitative limit was set. Loading time and the ability to
visualize large data sets were compared for each dataset and each library. Testing was conducted on

ISPRS Int. J. Geo-Inf. 2019, 8, 348 14 of 16

a common PC configuration (2.30 GHz, 8 GB RAM, 22” monitor) on a local Apache HTTP Server. All
testing studies were conducted using the Google Chrome web browser.

The Leaflet.markercluster and OpenLayers solutions were evaluated as unsuitable. The
Leaflet.markercluster library rendered a maximum of 100,000 points in 47 s. Larger samples were not
possible to render. This was the slowest library in the comparison. The OpenLayers solution rendered
a maximum of 250,000 points in 24.5 s using the clustering method and only 250,000 points in
approximately 11 s using the heatmap method. It supports clustering natively and could render a
maximum of 500,000 points. Testing on other samples was not successful. Combined with Leaflet,
the Supercluster library was already able to render the entire dataset of more than 3,000,000 points in
approximately 7 s. Redrawing when changing levels was quick, but not as smooth as with Mapbox
GL JS. Mapbox GL JS was the smoothest of all samples because of WebGL technology used with GPU
rendering. The benefits of Mapbox GL JS were also corroborated by testing heatmap rendering and
loading times, rendering using WebGL being almost immediate. The final library tested for clustering
was the PruneCluster library. It does not support GeoJSON; therefore, it was tested with JSON
samples. The entire export was done in approximately 23 s. When GeoJSON data was used, rendering
time increased significantly because of the dependency on file size (GeoJSON 362.1 MB; JSON 75.1
MB).

The Leaflet.heat library and native OpenLayers library were compared for loading heatmaps.
The former rendered a heatmap of the entire dataset in approximately 16 s. The OpenLayers library
could not render a sample of more than 250,000 points, which was rendered in approximately 10 s.
Even with the smallest sample, OpenLayers demonstrated an increased response. All web
applications with samples for clustering and heatmap creation are available on
http://geoinformatics.upol.cz/app/bigdata. Rendering such large data sets can also be accelerated by
using vector tiles, even when combined with the marker clustering method.

The diverse results in point rendering has two explanations. The first is the “cluster points
matrix” computing algorithm. While some libraries re-compute the matrix randomly, other libraries
use sophisticated algorithms such as k-means, greedy clustering [21], or detecting collisions [22]. For
example, a matrix calculated with PruneCluster approaches a regular grid. The second reason is the
overall performance of the core library. Mapbox GL JS provides best results, because it is based on
different technology and is a live project. The best-evaluated libraries were observed on “fresh”
versions—they benefitted from community developments and updates—while the worst evaluated
library Leaflet.markercluster was based on a solution more than a year old. Future research will
certainly include diverse algorithms. In our study, the most recent (major) version of libraries
available at the beginning of 2019 was implemented. Future updates may cause differences in loading
time. Technically, updates available for core libraries (Leaflet, OpenLayers, Mapbox GL JS) and
updates for the heatmap/clustering method should be separated, the most fundamental aspect being
compatibility between them. In our pre-testing, different minor versions of the core library did not
affect loading time. The different major version required a different clustering library version, but
even then it did not significantly affect loading time (Leaflet.markercluster on 50,000 points in v1.0,
v0.7, and v0.5 = a loading difference of approximately 150 to 200 ms; PruneCluster on 50,000 points
in v2.1.0 and v1.0.0 = a loading difference of approximately 100 ms). This means that not all versions
of clustering library are compatible with the Leaflet core library and vice versa. Since a new major
library version such as Leaflet or OpenLayers is not released every few weeks or months but years,
the results of this paper may be relevant for some time, especially until a new version with an
essential change in the source code is released.

Author Contributions: R.N. conceived the outline of the article and is the first author of the article. He is
responsible for the main concept, and he conceived and designed the experiments. J.B. is the co-author of
Sections 2–4. He also helped with the data evaluation. O.T. performed the testing.

Funding: This research was funded by Czech Science Foundation, grant number 18-05432S. The APC was
funded by Czech Science Foundation.

ISPRS Int. J. Geo-Inf. 2019, 8, 348 15 of 16

Acknowledgments: This paper was supported by the project “Spatial Synthesis Based in Advanced
Geocomputation Methods” (reg. num. 18-05432S) of Czech Science Foundation.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Chen, M.; Mao, S.; Liu, Y. Big Data: A Survey. Mob. Netw. Appl. 2014, 19, 171–209. doi:10.1007/s11036-013-
0489-0.

2. Karimi, H.A, Ed. Big Data: Techniques and Technologies in Geoinformatics; CRC Press, Taylor & Francis Group:
Boca Raton, FL, USA, 2017; ISBN 9781138073197.

3. Balusamy, B.; Varma, V.T.S.; Grandhi, S.M.Y. Challenges in Big Data Analytics. In Big Data Analytics: Tools
and Technology for Effective Planning; Somani, A., Deka, G.C., Eds.; CRC Press: Boca Raton, FL, USA, 2018;
pp. 38–53; ISBN 978-1-138-03239-2.

4. Netek, R. Advanced GIS application for real-time crisis management support via internet platform. In
Proceedings of the SGEM2016 Conference, Albena, Bulgaria, 28 June–6 July 2016; Book 2; Volume 3, pp.
27–34; ISBN 978-619-7105-60-5; ISSN 1314-2704.

5. Cox, M.; Ellsworth, D. Application-Controlled Demand Paging for Out-of-Core Visualization. In
Proceedings of the 8th conference on Visualization ’97, Phoenix, AZ, USA, 18–24 October 1997; IEEE
Computer Society Press: Los Alamitos, CA, USA, 1997; ISBN 1-58113-011-2.

6. Laney, D. Deja VVVu: Others Claiming Gartner’s Construct for Big Data. 2012. Available online:
http://blogs.gartner.com/doug-laney/deja-vvvue-others-claiming-gartners-volume-velocity-variety-
construct-for-big-data/ (accessed on 5 February 2019).

7. Brus, J.; Voženílek, V.; Popelka, S. An assessment of quantitative uncertainty visualization methods for
interpolated meteorological data. In Proceedings of the International Conference on Computational Science
and Its Applications, Ho Chi Minh City, Vietnam, 4–27 June 2013; Springer: Berlin/Heidelberg, Germany,
2013; pp. 166–178.

8. Elbattah, M.; Roushdy, M.; Aref, M.; Salem, A.M. Large-Scale Entity Clustering Based on Structural
Similarities within Knowledge Graphs. In Big Data Analytics: Tools and Technology for Effective Planning;
Somani, A., Deka, G.C., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 312–332; ISBN 978-1-138-03239-2.

9. Dumbill, E. Big Data Now: 2012 Edition; O’Reilly Media: Sebastopol, CA, USA, 2012; pp. 3–17.. ISBN 978-1-
449-35671-2. Available online: http://www.oreilly.com/data/free/files/big-data-now-2012.pdf (accessed on
5 February 2019).

10. Croitoru, A.; Crooks, A.; Radzikowski, J.; Stefanidis, A.; Vatsavai, R.R.; Wayant, N. Geoinformatics and
Social Media: New Big Data Challenge. In Big Data: Techniques and Technologies in Geoinformatics; Karimi,
H.A., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 207–228; ISBN 978-1-4665-
8651-2.

11. Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.;
Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote
Sensing of Environment. Remote Sens. Environ. 2016, 185, 271–283.

12. Vatsavai, R.R.; Ganguly, A.; Chandola, V.; Stefanidis, A.; Klasky, A.; Shekhar, S. Spatiotemporal Data
Mining in the Era of Big Spatial Data: Algorithms and Applications. In Proceedings of the 1st ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial Data—BigSpatial ’12, Redondo
Beach, CA, USA, 6 November 2012; ACM Press: New York, NY, USA, 2012; pp. 1–10; ISBN 9781450316927;
doi:10.1145/2447481.2447482.

13. Růžička, J.; Orčík, L.; Růžičková, K.; Kisztner, J. Processing LIDAR Data with Apache Hadoop. In The Rise
of Big Spatial Data; Ivan, I., Singleton, A., Horák, J., Inspektor, T., Eds.; Springer: Cham, Switzerland, 2017;
pp. 351–358; ISBN 978-3-319-45122-0; ISSN 1863-2246.

14. Netek, R. INTERCONNECTION OF RICH INTERNET APPLICATION AND CLOUD COMPUTING FOR
WEB MAP SOLUTIONS. In Proceedings of the 13th SGEM GeoConference on Informatics, Geoinformatics
and Remote Sensing, Albena, Bulgaria, 16–22 June 2013; Volume 1, pp. 753–760; ISBN 978-954-91818-9-0;
ISSN 1314-2704.

15. Kuhfled, W.F. Heat Maps: Graphically Displaying Big Data and Small Tables; SAS Institute Inc., Cary, North
Carolina, USA: 2017. Available online: https://support.sas.com/resources/papers/proceedings17/SAS0312-
2017.pdf (accessed on 5 February 2019).

ISPRS Int. J. Geo-Inf. 2019, 8, 348 16 of 16

16. Brovelli, M.A.; Oxoli, D.; Zurbarán, M. Sensing Slow Mobility and Interesting Locations for Lombardy
Region (Italy): A Case Study Using Pointwise Geolocated Open Data. ISPRS Int. Arch. Photogramm. Remote
Sens. Spatial Inf. Sci. 2016, XLI-B2, 603–607.

17. Netek, R.; Pour, T.; Slezáková, R. Implementation of Heat Maps in Geographical Information System—
Exploratory Study on Traffic Accident. Open Geosci. 2018, 10, 367–384. doi:10.1515/geo-2018-0029.

18. Portal AOPK. Available online: http://portal.nature.cz/ (accessed on 5 February 2019).
19. Leaflet—A JavaScript Library for Interactive Maps. Available online: http://leafletjs.com/ (accessed on 5

February 2019).
20. OpenLayers—Welcome. Available online: http://openlayers.org/ (accessed on 5 February 2019).
21. Agafonkin, V. Clustering Millions of Points on a Map with Supercluster. 2016. The Official Mapbox Blog.

Available online: https://blog.mapbox.com/clustering-millions-of-points-on-a-map-with-supercluster-
272046ec5c97 (accessed on 5 February 2019).

22. PruneCluster. Available online: https://github.com/SINTEF-9012/PruneCluster (accessed on 5 February
2019).

23. Ježek, J.; Jedlička, K.; Mildorf, T.; Kellar, J.; Bera, D. Design and Evaluation of WebGL-Based Heat Map
Visualization for Big Point Data. In The Rise of Big Spatial Data; Ivan, I., Singleton, A., Horák, J., Inspektor,
T., Eds.; Springer: Cham, Switzerland, 2017; pp. 13–26; ISBN 978-3-319-45122-0; ISSN 1863-2246.

24. Heitzler, M.; Lam, J.C.; Hackl, J.; Adey, B.T.; Hurni, L. GPU-accelerated rendering methods to visually
analyze large-scale disaster simulation data. J. Geovis. Spat. Anal. 2017, 1, 3. doi:10.1007/s41651-017-0004-4.

25. Leaflet.heat. Available online: https://github.com/Leaflet/Leaflet.heat (accessed on 30 June 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

