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Abstract: Complex natural disasters often cause people to suffer hardships, and they can cause a
large number of casualties. A population that has been affected by a natural disaster is at high risk
and desperately in need of help. Even with the timely assessment and knowledge of the degree that
natural disasters affect populations, challenges arise during emergency response in the aftermath of
a natural disaster. This paper proposes an approach to assessing the near-real-time intensity of the
affected population using social media data. Because of its fatal impact on the Philippines, Typhoon
Haiyan was selected as a case study. The results show that the normalized affected population index
(NAPI) has a significant ability to indicate the affected population intensity. With the geographic
information of disasters, more accurate and relevant disaster relief information can be extracted from
social media data. The method proposed in this paper will benefit disaster relief operations and
decision-making, which can be executed in a timely manner.
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1. Introduction

Natural disasters are some of the most complex phenomena in the world [1]. The impacts of a
natural disaster on society, the community, and the population are also complex [2,3]. Assessing the
complex effect on a population is a critical part of the emergency response and relief efforts. Because
of their significant impact on infrastructure, natural disasters often lead to a lack of clean water, power
shortages, the demolition of numerous houses, and even a number of casualties [4]. People who live in
post-disaster areas are vulnerable and need appropriate relief and support from emergency responders
(e.g., governmental agencies and non-government organizations). Hence, although the intensity of
the population affected by disasters (i.e., the severity of the disaster’s impact on the population) is a
general concept and without a rigorous definition, it plays a crucial role in implementing proportionate
and timely rescue and relief operations.

However, traditional approaches to assessing the affected population intensity have several
shortcomings related to timeliness and accuracy. For example, census data, which are fundamental
information in traditional methods, are relatively static rather than timely because the data are obtained
by surveying the population at regular intervals (usually years) [5]. Therefore, it is unlikely to represent
the population at the time of a disaster. Moreover, when disaster areas include resorts and tourist
destinations, a large number of non-native people may be affected [6], and census data may not reflect
this segment of the population. Moreover, reliance on remote-sensing-based methods causes delays
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that result from the time-consuming processing of remote sensing products [7]. In contrast, social
media provide timely and active communication and near-real-time firsthand insight during natural
disasters [8].

In addition, social media data have proved to be capable of revealing the disaster-affected
population [9]. First, data derived from social media have been shown to have strong relationships
with the extent of damage from natural disasters [10–13]. Second, combined with other disaster-related
data, such as geographical information and remote sensing images, social media data can enhance
and improve useful information extracted for emergency response [14–17]. Last, but important, smart
mobile devices allow users to report information about disasters (e.g., locations with specific names),
which is likely to be useful for estimating disaster-related information, including the affected area,
damaged infrastructure, affected people, and evacuation zones [18–21].

Aiming to improve the situation awareness in emergency response and relief operations, we
present an approach that uses social media data to assess the affected population intensity in
post-disaster areas. On the basis of our previous research [22,23], the proposed approach leverages the
spatial extent and temporal range of a disaster event to extract and filter actual disaster-related social
media data. Then, a new proxy index is introduced that indicates the affected population intensity.
Afterward, Typhoon Haiyan, which occurred in 2013, is used as a case study to verify the proposed
approach and compare its efficiency with the result of the traditional method and the activity-based
index.

The rest of this paper is organized as follows. The next section provides a general review of
the research on the use of social media data to assess the damage caused by disasters. Section 3
demonstrates the methodology for collecting and preparing social media data and leveraging the
information to assess the affected population intensity. Section 4 presents the result of Typhoon Haiyan
as a case study. This paper also discusses issues and concludes with challenges and future work on
leveraging social media data to assess the intensity of populations affected by natural disasters.

2. Related Work

2.1. Traditional Approaches to Assessing Affected Population

Estimation of the disaster-affected population is a crucial issue in the disaster research literature.
Emergency response with the traditional approach depends primarily on historical data, observational
data, or both. Jaiswal and Wald [24] developed an empirical model to estimate earthquake fatalities
in a country or region using the global mortality rates of earthquakes. Aghamohammadi et al. [25]
proposed a back-propagation neural network for modeling and estimating the severity and distribution
of human loss in earthquakes, and their work was supported by building and population survey
data. Bhatt et al. [26] used multitemporal satellite images, hydrological observations, and gridded
population data to estimate the population affected by a flood. Raza et al. [27] superimposed the flood
extent and gridded population data to count the number of people in the affected population in the
flooded area. Ozcelik et al. [28] proposed a GIS-based methodology to model the population affected
by storm surges. The data in their approach included the gridded population of the world and the
surge profiles obtained by linear regression.

Regardless of whether an empirical approach or an event-based method is used to assess the
affected population, there is a heavy dependence on the underlying population data. Therefore,
the timeliness and accuracy of their estimations are primarily determined by the population data that
they use. Unfortunately, these data are relatively static and time-delayed. As a result, especially for
areas with large population movements and rapid changes, traditional approaches are unlikely to
rapidly assess the affected population. However, social media data can provide timely information
about the disaster situation and population to compensate for the pitfalls of census data, which is
leveraged in our method.
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2.2. Social Media-Based Approach for Disaster Situational Awareness

With the development of location-enabled mobile devices and the prosperity of social networks,
social media provide an additional vital data source for emergency responses [15,29]. Much of the
existing natural disaster research on using social media data have focused on various aspects, such
as damage assessment [11,13,14,30] and event detection [31–35]. However, the application of social
media data to improve the situation awareness of emergency responders is still in an early stage, and
more efforts on this topic are needed [36]. De Albuquerque et al. [15] introduced an approach that
leverages authoritative data to identify disaster-related tweets (firsthand short text messages posted
on Twitter). Using the River Elbe flood in 2013 as a case study, they found that tweets near the severely
flooded area were more associated with firsthand observations, official actions, and infrastructure
damages. However, their research did not apply the content of the tweets. Resch et al. [7] used
the Latent Dirichlet Allocation (LDA) model to extract semantic information and map locations in
which the population was significantly affected. Shan et al. [5] developed a quantitative framework
for disaster damage assessment, and the LDA model was used to extract disaster-related topics for
evaluating the affected population. However, the specific meaning of the topic extracted by the LDA
model is still not very clear and relies extensively on the background knowledge of the researchers.
Fang et al. [37] developed a framework to assess a disaster’s impact through keyword frequency
analysis of impact-related topics by using social media data from the Weibo platform. Their work
showed that the keyword-based method is able to evaluate the impact of the disasters, but the method
does little with the geolocation information contained in these messages. Additional and detailed
research on applying social media to disaster situation awareness can be found in the review by
Imran et al. [8].

Three major issues exist in the discussed research on disaster assessment using social media data.
(1) Most of the studies depend on tweets with accurate geolocations (i.e., latitudes and longitudes),
which are unable to overcome the donut effect caused by a lack of power supply, Internet connections,
and computing abilities in disaster areas [4]. (2) It is difficult for machine learning-based topic models
(e.g., LDA) to assign semantic meaning to an extracted topic, leading to uncertainty in the interpretation
of topics using the proposed LDA-based methods [7,38]. (3) The geographical information contained
in tweets has not always been considered or utilized [7,16,39].

3. A Social Media-Based Approach to Assess the Disaster-Affected Population

Figure 1 depicts the social media-based assessment approach. First, this approach employs
the affected ranges of disasters and a classifier (e.g., support vector machine (SVM)) to extract
disaster-related hashtags from the 1% of Twitter that is in the Internet Archive database. The detailed
procedure of the five steps is introduced in Section 2.1. Afterward, the disaster-related hashtags
resulting from the first step are used in the application of a crawler program to download
disaster-related tweets from Twitter. Then, according to the geolocation of disaster-related tweets and
the locations of their users’ accounts, a geodecoding service (e.g., Google Geocoder API (Application
Programming Interface)) is leveraged to find the location from which the tweets originate, and spatial
analysis is used to remove tweets that are outside the disaster areas. Finally, a self-constructing
gazetteer of the disaster area is used to retrieve the relevant geographical entities from the tweets and
construct the normalized affected population index (NAPI) to estimate the affected population intensity.
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Figure 1. Flowchart of the assessment of the affected population intensity using social media.

3.1. Tweet Collection and Preprocessing

Numerous methods have been proposed for extracting disaster-related tweets. In this study, we
followed the method presented by Murzintcev and Cheng [22] and Shen et al. [23]. Before we acquired
tweets related to disasters, the first and critical step was to retrieve disaster-related hashtags from
social media. This was achieved in five steps:

• Step 1: The tweets and hashtags located in the disaster area were extracted from the Internet
Archive database, which contains 1% of Twitter;

• Step 2: The hashtags that appeared only once were filtered out;
• Step 3: The hashtags that appeared before the disaster warning were filtered out;
• Step 4: Labeled disaster datasets (e.g., CrisisLexT6 [40], CrisisLexT26 [41], AIDR2015Q2 [42]) were

used to build an SVM classification model to filter out the hashtags with less than a 0.5 probability
of being related to disasters;

• Step 5: Expert knowledge can also be used to further improve the accuracy of the obtained
disaster-related hashtags by removing irrelevant ones. However, this step is not always necessary.

After acquiring the disaster-related hashtags, tweets associated with a specific disaster event were
searched from the Twitter platform using these hashtags and grabbed by a crawler program. Although
the used hashtags were obtained from the 1% of Twitter in the Internet Archive database, the Twitter
platform was directly searched for tweets about disasters. In this manner, the method is capable of
gaining more accurate disaster-related information than keyword-based methods.

It is worth noting that the obtained tweets could have been posted from anywhere in the world.
Many tweets are not geotagged or geolocated. Here, to shrink the geographic range of the tweet
sources to the disaster area, we used the location that the users linked with their accounts during
registration. First, we used the Google geocoder API to decode the registered locations of the users
who sent disaster-related tweets. Other methods, such as machine learning algorithms [43], can also
be employed to link the tweets to geographic information. After locating the tweets, we used spatial
analysis with GIS software to remove the tweets outside the disaster areas. Consequently, the relevance
and consistency of the content of the tweet were improved once again.
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3.2. The Proxy Index of the Affected Population Intensity

Various proxy indices that indicate and evaluate disaster-induced damages have been proposed
in previous studies [5,11]. Most of them can be grouped into two types: activity-based and
sentiment-based indices. In general, disaster research regarding activity or sentiment indices has
implied the following hypothesis: The behavior and emotions of people on social media are affected
by natural disasters. Therefore, the activities and sentiment of people’s posts and expressions can
indicate the damage and impact of natural disasters. A typical activity index is the number of posted
tweets per unit period and area, which has been proved to have a significant relationship with the
per-capita economic damage caused by a hurricane [11]. In this paper, we introduce a new proxy index
of the affected population intensity using the geolocation information contained in tweets. As shown
in Figure 1, after extracting the tweets located within the disaster area, we built and employed a
gazetteer that contains the administration zones and other geo-entity names (or both) to calculate
the frequency of the places mentioned in tweets. Because Twitter limits the number of characters in
a tweet (to a maximum of 140 characters at the time of this research), a large number of place name
deformations, abbreviations, and aliases are present in tweets. Therefore, the gazetteer includes the
administration zones and their corresponding formal names, abbreviations, aliases, and deformations
to improve the representativeness. Hence, the normalized affected population index (NAPI)—the
proxy index of a disaster used in this approach—can be described as follows. We denote a place series
by p(i), i = 1, 2, . . . , n, where p(i) represents one of n areas that is affected by a disaster. The series
q(i), i = 1, 2, . . . , n accordingly indicates the frequency of the p(i) mentioned, that is, how many
times p(i) was retrieved in the tweets from the disaster area using the dictionary of locations. Hence,
the NAPI for a place p(l) is calculated by

NAPI(p(l)) =
q(l)

max
1≤i≤n

(q(i))
(1)

For example, 44 tweets mention Antique Province, and Cebu Province is the most frequently
mentioned by tweets (756 times). Hence, the NAPI of Antique Province is 0.582 (44/756).

4. Case Study and Dataset

4.1. Typhoon Haiyan in 2013

From 6 November to 9 November 2013, Typhoon Haiyan, which is also named Yolanda, hit the
Philippines and became one of the strongest and most destructive tropical cyclones in Philippine
history. Before its first landing on Guiuan, Eastern Samar, the wind speed near the center of Typhoon
Haiyan was 215 kph. According to the final report by Philippines’ National Disaster Risk Reduction
and Management Council (NDRRMC), more than 16 million persons were affected in 44 provinces, and
the total number of deaths, injuries, and missing persons were 6300, 28,688, and 1062, respectively [44].

Figure 2 shows the distribution of the affected population intensity, which is the number of people
affected in each region divided by the largest number of people affected, according to the NDRRMC
final report about Typhoon Haiyan. The blue dashed lines indicate the impact range of the cyclone.
The color represents the affected population intensity: the redder the color, the greater the intensity.
It is clear that the administration zones located within the range of the cyclone had a high affected
population intensity. According to the affected population intensity, the natural breaks method was
used to classify the affected areas into five degrees of intensity: very severe, severe, moderate, low, and
very low. As a result, there were 13 administration zones, labeled 1–13, with a higher than moderate
severity of the affected population intensity, and these areas were ranked in descending order by
the actual intensity of the affected population. Among them, zones 1–4 have the largest affected
population intensities.
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Figure 2. The actual affected population intensity by Typhoon Haiyan.

4.2. Datasets

In this paper, we only focus on the Twitter platform because our search results using relevant
hashtags and keywords (e.g., Haiyan, Youlanda, Typhoon Haiyan, Typhoon Yolanda) revealed that
it had much more information about Typhoon Haiyan than another platform. Using the method
proposed by Murzintcev and Cheng [22], we obtained 21 hashtags (Figure 3) associated with Typhoon
Haiyan from the Twitter Internet Archive database. Then, a web crawler program was employed
to grab the original tweets (excluding reposted tweets) and the authors of these tweets containing
these hashtags. The resultant 411,738 tweets from 2013 to 2016 contained the following information:
the identification number of a tweet, the time at which a tweet was posted, the number of times a tweet
was liked, the number of reposts of the tweet, the number of replies to the tweet, the identification
number of the tweet poster, the location registered by the user, and the textual content of a tweet.
Finally, after filtering and geodecoding, 32,048 tweets associated to Typhoon Haiyan from 6 November
to 10 November 2013 in the Philippines were extracted and used in the following analysis and NAPI
calculation. In 32,048 tweets, only 3023 mentions disaster areas.Table 1 list the number of tweets in
each procedure of the proposed method.

In addition to the tweet data, the latest gridded population data [45] of the Philippines (2010) was
used to evaluate the affected population by the traditional assessment method. The tracks and impact
range of the typhoon were identified with the IBTrACS database [46].

Figure 3. Hashtags related to Typhoon Haiyan.
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Table 1. The number (N) of tweets in each procedure.

N of Tweets Related
to Typhoon Haiyan

N of Tweets from
the Philippines

Province N of Tweets Mentioned
the Province

411,738 32,048

Cebu 756
Leyte 510
Samar 304
Iloilo 199
Bohol 188

Eastern Samar 125
Palawan 97

Albay 80
Capiz 68
Aklan 64

Southern Leyte 64
Masbate 53
Romblon 52
Batangas 46

Negros Occidental 45
Antique 44
Biliran 43

Quezon 43
Surigao del Sur 38

Oriental Mindoro 21
Sorsogon 19

Occidental Mindoro 17
Dinagat Islands 16

Marinduque 16
Negros Oriental 16
Northern Samar 16

Guimaras 14
Camarines Sur 12

Misamis Oriental 12
Surigao del Norte 12

Siquijor 11
Agusan del Sur 9

Agusan del Norte 7
Camiguin 6

5. Results

Figure 4 shows the actual affected population intensity and the estimated affected population
intensity resulting from the three methods (NAPI (Figure 4b), activity proxy index (Figure 4c), and
the traditional population-density-based estimation method (Figure 4d)). The values of the proposed
NAPI are calculated by the frequency of mentions in the tweets. The activity proxy index is calculated
using the number of active Twitter users, and the traditional population-density-based estimation
method employs a GIS spatial analysis method according to the gridded population data.

Figure 4b shows the NAPIs in the Philippines after Typhoon Haiyan. The blue dashed line
indicates the impact range of the cyclone. The color is proportional to the NAPI: the redder the color,
the higher the NAPI. In NAPIs of the 13 areas that were actually severely affected have high values,
especially zones 1–3, which have larger NAPIs than the other zones. These values indicate that zones
1–3 had higher affected population intensities than other zones.

Figure 4c shows the distribution of activities after the cyclone when Twitter users’ activities are
used as a proxy index of the affected population intensity. In this paper, the Twitter users activities
are the number of local users associated with Haiyan Typhoon divided by the local population in the
post-disaster area. In Figure 4c, of the 13 severe zones, only zones 1 and 3 show a very high affected
population intensity using the activity proxy index. Moreover, zones 7, 11, 12, and 13 show a lower
activity proxy index than the actual intensity of the affected population.
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(a) (c)

(b)

(d)

Figure 4. The affected population intensity due to Typhoon Haiyan. (a) The distribution of the actual
intensity of the affected population and the estimated distribution of the intensity of the affected
population resulting from (b) the normalized affected population index (NAPI), (c) the activity proxy
index, and (d) the traditional population-density-based method.

The estimated affected population intensity using the traditional method is shown in Figure 4d.
According to disaster system theory, the affected population can be considered as the coupling between
the impact of the cyclone and the population exposed to the cyclone. Therefore, the affected population
intensity can be estimated by the gridded population density and its inverse distance to the center of
the cyclone. Figure 4d shows that zones 1 and 2 have a high affected population intensity. However,
zone 8 presents a much higher estimated intensity than its actual intensity, and zones 4, 5, 7, 9, 11, and
12 have a lower estimated intensity than their actual intensity.

To compare the overall effectiveness of these three methods (NAPI (Figure 4b), the activity
proxy index (Figure 4c), and the traditional population-density-based estimation method (Figure 4d)),
a regression analysis was conducted. Figure 5 shows the results of performing linear regression
between each of the three methods and the actual affected population intensity. All of them have
a significant correlation with the actual affected population intensity. However, the coefficient
of determination between the NAPI (Figure 5a) and the actual intensity is the highest (0.86).
The coefficients of determination from regressing the actual affected population intensity on the
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activity proxy index (Figure 5b) and the traditional population-based method (Figure 4c) are 0.64 and
0.54, respectively. These regression results suggest that the NAPI is more representative of the actual
affected population intensity than the other two methods. Moreover, the obtained regression model
can be used to determine the actual intensity of the affected population.

(a)

(b) (c)

Figure 5. Regression analysis between each of the three methods and the actual affected population.
(a) Relationship between NAPIs and the actual affected population intensity. (b) Relationship between
the activity proxy index and the actual affected population intensity. (c) Relationship between the
affected population intensity estimated by the traditional population-density-based method and the
actual affected population intensity.

6. Discussion

The approach addressed in this paper presents a geographic method and efficient index for
assessing the affected population intensity using social media data. The results of comparing the
proposed NAPI index, the activity proxy index, and the traditional population-density-based method
with the actual affected population intensity show that the NAPI has the greatest ability to assess
the actual affected population intensity. Before computing the NAPI, calculation of the geographical
attributes, including the spatial extent and period of a disaster, plays a critical role in improving the
relevance of the social media data to natural disasters.

The method proposed in this paper can counteract the shortcomings of using census data in
three ways. First, if a tourist posts a geolocated or geotagged tweet or other social media data, we
can identify them as part of the disaster area. In this study, unfortunately, most of the tweets had no
geolocation or geotagged information. Hence, in this case, we could only use the location registered
with the user account to locate tweets. Second, the proposed method can, in fact, extract and use
tweets from users located in other countries. However, to improve the quality and relevance, we
conservatively removed tweets from outside the Philippines. Finally, the NAPI depends on the content
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that people post in their tweets or other social media information. This information then illustrates
the near-real-time and relatively realistic situation as perceived, witnessed, or heard by people in the
disaster area.

However, these results should be considered within the scope and limitations of the present study.
Only Typhoon Haiyan was used to test the approach. Typhoon Haiyan was chosen because it is the
deadliest disaster to have occurred in the Philippines and one of the most destructive disasters in the
world in the most recent decade. Moreover, the people in the Philippines form one of the most active
social media populations in the world, which provides ideal conditions for studies that use social
media data. Typhoon Haiyan has also been frequently chosen as a case study in previous research.
Finally, the NDRRMC provided more detailed surveys on the post-Haiyan affected population than
other disaster events, which enabled the comparison between our results and the actual affected
population intensity.

Although the case study is about a cyclone, its results are representative because it is a typical
world-influential disaster in the age of social media. Additionally, because of the lack of geolocation
and geotagged tweets, we were unable to identify tourists’ tweets in this case. To further deal with this
limitation, additional techniques, such as geoparsing, are potentially useful solutions.

Compared with the research of Middleton, S.E. et al. [18], Yin, Jie, et al. [19], and Avvenuti,
Marco, et al. [21], our research slightly differs in the starting point of the study. First, although the
techniques presented in this article may not be the state-of-the-art, the results show the great capability
and potential of applying simple geographical information that is present in social media. Second, we
preferred the use of existing disaster information (e.g., disaster area, temporal range) as references to
filter related tweets, while other studies developed methods to identify the disaster area and form
situation awareness according to social media data. Third, the aim of our work—the evaluation of an
affected population—is quite a specific problem and important for practical disaster assessment and
relief operations, but this has received little discussion in previous studies. Nevertheless, the methods
and models developed in these previous studies could also be used to our advantage in future works.

Moreover, the information contained in tweets can be leveraged for other emergency response
purposes, as well. The NAPI is only constructed according to the geolocation information in tweets.
Because of the complexity of natural disasters, the entropy-based method is likely to be an efficient
means of evaluating the impact of disasters [47,48]. Furthermore, information about survival needs,
disaster damage, and other data can also be extracted from tweets and provide emergency responders
with useful guidance and support.

7. Conclusions

Assessing the affected population intensity is a critical mission for relief operations. This paper
proposes a new approach and an index (NAPI) to leverage social media data for the assessment.
Combined with geographic information, disaster-related tweets were efficiently extracted from social
media data. The NAPI index, whose R2 (0.86) from the linear regression with the actual affected
population intensity was much higher than those of the activity proxy index and the traditional
method, can accurately project the affected population intensity distribution by utilizing the geolocation
information contained in tweets. Hence, more timely and accurate disaster information can be provided
for emergency response by using near-real-time social media data and the NAPI index. For future work,
more cases of other disasters and regions can be studied to verify this approach further. Furthermore,
other information contained in tweets will be leveraged to provide diverse information to improve
emergency response efforts.
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