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Abstract: To organize trajectory data is a challenging issue for both studies on spatial databases
and spatial data mining in the last decade, especially where there is semantic information involved.
The high-level semantic features of trajectory data exploit human movement interrelated with
geographic context, which is becoming increasingly important in representing and analyzing actual
information contained in movements and further processing. This paper argues for a novel semantic
trajectory model named TOST. It considers both semantic and geographic information of trajectory
data happens along network infrastructure simultaneously. In TOST, a flexible intersection-based
semantic representation is designed to express movement typically constrained by urban road
networks by combining sets of local semantic details along the time axis. A relational schema
based on this model was instantiated against real datasets, which illustrated the effectivity of our
proposed model.
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1. Introduction

In recent years, research on mobility data management has shifted its focus from raw trajectories
to semantic information on movements. As a consequence, related works has extended trajectories
analysis with understanding and representing semantic interpretation or behavioral features of moving
objects. Trajectories are only meaningful when their spatial properties and contextual information
about the movement is considered [1], which is known as the semantic enrichment of trajectory.
Semantic information enriches movement description with background context and behaviorally
significant elements, instead of using a stream of spatiotemporal (x,y,t) points. With integrated semantic
information, researchers and staff can not only reduce the consumption on laborious statistical analyses
and basic spatial processes of raw trajectory data, but also improve means of analyzing trajectories of
moving objects in follow-up data mining.

Basically, semantic trajectories are trajectories that incorporate supplementary information [2],
such as the weather conditions during a trip, the POIs visited by a tourist (museums, hotels), the
activities (shopping, eating), etc. Thus, the primary concern of semantic trajectories is how to
present trajectories with semantic information to specific parts of raw trajectories [3] and facilitate
the understanding of behaviors during movements. In order to achieve this, novel approaches for
modeling trajectories have to go one step further on expressivity. They may enrich a trajectory with
either semantic annotations of specific parts of trajectories, such as moves and stops, or evolution of
the context in which the movement takes place. In other words, a semantic trajectory model must
allow enhancing the expressivity of raw trajectory data by integrating the spatial information with the
semantic expression [4], and supporting complicated queries on trajectories.
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Previous studies have made a major step ahead towards the effective and practical semantic
trajectory model. However, important issues are still open. One of the major concerns is that existing
approaches mainly focus on trajectory annotation, despite the intuitive topological relationships that
may play an import role in real applications. That has significant consequences, especially queries
covering spatio-temporal and semantic information cannot be straightforwardly executed by means of
any single semantic trajectory model. For instance, even a simple query like “determine how many
people turn around their cars inside the South Lushan Road” can lead to extremely complex executions.
And this will be worse when multiple constraints are considered together.

Another important concern is to enhance the expressivity and flexibility in a semantic trajectory
model. The model and framework should be generic enough for showing various patterns and
qualities of movement data. Employing spatial infrastructure, such as the transportation network, for
representing semantic trajectories has bridged the “gulf between and low-level observational data
and high-level conceptual” [5]. It, to some extent, makes people pay more attention on semantics, and
allows efficient indexing structures for moving objects [6]. However, straightforward compressing a
trajectory into a sequence of elements of spatial infrastructure is inflexible and hard to express more
detailed semantic information, such as topological relationships inside a road segment. For a more
comprehensive solution, the integration of Spatio-temporal topological characteristics and contextual
information is desirable.

In this paper, taking the issue described above into consideration, we proposed a novel
intersection-based topological semantic model for trajectories inside Road Networks, called TOST.
This topological semantic trajectory model can: (1) encapsulate raw GPS trajectory data; (2) express
qualitative features of movements between trajectory and road network elements by means of
topological invariants, providing a new research perspective of semantic trajectory modeling; (3)
allow for a comparatively flexible and extensible representation for trajectory analyzing and querying.

The remainder of this paper is organized as follows. Section 2 provides a review of existing
semantic trajectory modeling approaches. Section 3 outlines some basic concepts, for example, detailed
definitions of raw trajectory and road network. Section 4 describes the framework and topological
semantics of the new trajectory model. We present a database instantiation of the proposed model in
Section 5 and discuss our conclusions and future work in Section 6.

2. Related Work

In this section, we provide a survey of semantic trajectories described and analyzed in the
literature. Early studies on trajectory modeling consists in the description of the movement of an
identifiable moving objects [7]. Trajectory data modeling of course has fascinated scholars starting
with existing common spatiotemporal data models (e.g., ST USM [8]; Percetory [9]; spatiotemporal
ODMG [10]), particularly in the field of database, and expressly proposing novel trajectory models
to moving objects (e.g., N. Pelekis, B. Theodoulidis and Y. Theodoridis [11]; H. Hajari and F.
Hakimpour [12]). These studies provides efficient data management and mining techniques on raw
trajectory data, and calls for novel methods and technologies for understanding trajectory data [13].
More recently, a number of trajectory models were proposed to define trajectories from a more
semantic point of view [14]. These works on semantic enrichment of trajectory data can be classified
into two categories: reconstructing trajectories by detecting behavioral features of moving objects and
representing trajectories by correlating them to context data.

Reconstructing trajectories by means of behavioral features focuses on extracting some key
spatial behaviors during the movement and annotates them with high-level semantics [14]. S.
Spaccapietra et al. [15] first proposed stop-and-move model by describing the semantic trajectory
as a chain of stop in which the trajectory temporarily suspends moving for certain time duration.
Yan Z. et al. [16] completed a platform to reconstruct semantic trajectories by computing stops and
moves from raw trajectory data. C. Parent et al. tried to annotate the trajectory with places of interest
(POIs) and activities [17]. V. Bogorny et al. [14] and C. Parent et al. [18] extended the stop-and-move
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framework by employing more semantic elements. C. Renso et al. [19] formalized a semantic-enriched
KDD process for understanding patterns of human behavior. R.H. Güting et al. [20] proposed a generic
trajectory model, called symbolic trajectories, which integrates semantic information in form of a time
dependent label. The main drawback of these models is that understanding of trajectories could be
less persuasive without considering contexts. For example, it is hardly to tell normal detours from
anomaly spatio-temporal patterns without awareness of speed limits of specific road segments as well
as a traffic jam. As a result, recent studies on semantic trajectory becoming simpler on the basis of
associations between trajectories and surrounding contexts.

Correlating trajectories to context data aims at integrating the spatial dimension of human
movement with relevant environmental information, typically referring to transportation networks.
F. Schmid et al. [5] mapped the raw trajectory data to the urban transport network, then
represented the movements by time-stamping along vertices and edges with semantic annotations.
J. Greenfeld et al. [21] presented a matching procedure based on topological relationships between
street segments. Mohammed A. Quddus et al. in references [22–24] introduced their efforts to work
out how to effective perform map-matching. Y. Lou et al. [25] worked to resolve map-matching
for low-sampling-rate GPS trajectories. R. Fileto et al. [26] presented methods to associate to a raw
trajectory with instances described in Linked Open Data (LOD). Wu F. et al. [27] tried to combine
raw trajectory data with surrounding context data, in a more accurate way, by capturing individual
preferences from historical dataset. Xiang L. et al. [28] opened up a way to depict movements as a
sequence of local topologies between trajectory data and regions. H. Issa [2] proposed the spatio-textual
trajectory model for filling the lack of contextual data in symbolic trajectory model. D. Tiesyte et al. [29]
designed an index structure for similarity queries on floating car trajectory data, which replace complex
arcs of tracks with linear edges of network. Also, K. F. Richter et al. [30] proposed to compress the raw
trajectories in an urban environment by using available links of transportation networks.

Actually, it is the related research activities mentioned above that motived us to design a
topological semantic trajectory model in our work for representing movements inside a road network.
Most of previous works take directional and distance relations into account, without considering
topological characteristics between trajectories and contexts. In this paper, we open up a new way
to the semantic trajectory inside road networks, identifying intersection-based topological semantic
description between trajectories and 2 basic road network elements (i.e., node and edge). First, we
define comparatively flexible conceptual data model for topological semantic trajectories. To the best
of the authors’ knowledge, semantic information of topology was first proposed in modeling semantic
trajectories. After that, we construct a new, intersection-based, local topologies representation method.
Finally, we use our model to improve expressivity and the query execution on trajectory data.

3. Basic Concepts

In this section, we show the definitions of raw trajectory, and road network, based on the
definitions in Reference [1]. These definitions will be used in the rest of this paper.

Definition 1 (Raw Trajectory). A raw trajectory T is a sequence of time-stamped location points, denoted as
T = (Pi|i = 1, 2, · · · , n), where Pi is the ith sampling point on spatial positions in geographical space, denoted
as Pi = (Pi_latitude, Pi_longitude, Pi_timestamp) or Pi = (Pi_latitude, Pi_longitude, Pi_altitude, Pi_timestamp).

Definition 2 (Sub-Trajectory). A sub-trajectory SubT is a consecutive subsequence of a raw trajectory T,
denoted as SubT = (Pi|i = k, k + 1, · · · , k + m), where Pi ∈ T, k ≥ 1 and k ≤ n.

A raw trajectory shows a path that a moving object follows on certain space-time. It is a typical
spatial-temporal concept, which describes a consecutive movement of certain object over a period of
time. From the view of space, the position of a moving object may be changing continuously, which
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makes it differing from a static object. From the view of time, traveling from one position to another
takes a finite amount of time [26].

A raw trajectory can be divided into different segments, called sub-trajectories. A sub-trajectory
is, of course, a sequence of time-stamped location points, which means the object remaining in a
particular motion during the interval from the first point of the sub-trajectory to its last point. Once
sub-trajectories are associated with object behaviors with special semantic information or external
annotation (e.g., a POI like a specific street address), we can call them semantic segments in some
literature [31]. Such semantic information is manifold, which can either be behaviors of the moving
object like stopping at some place, or be in form of environment information, such as POIs relevant to
the trace [32]. Then a sequence of these semantic segments is a semantic trajectory.

Since the sub-trajectory can be according to different concerns of investigators, it is possible to
represent spatio-temporal semantic information of a trajectory at multifarious levels of granularity.
For example, one can either reconstruct a trajectory by a set of sub-trajectories labeled as “stops” and
“moves”. if the focus is on basic movement changes of the object itself. Such information can be
inferred by associating with the knowledge base relevant to a concrete situation.

Definition 3 (Sematnic Trajectory). A semantic trajectory is a reorganized trajectory data based on a set of
geographical semantic associations, note as T∗ = (SubT∗i |i = 1, 2, · · · , l), where SubT∗i is the ith sub-trajectory
associated with particular semantic information.

Another set of key concepts for our study is about road network data. Obviously, significant
portions of moving objects in the physical world locate in a constrained space. The variety of the
surrounding environment of a location calls for concrete consideration of semantic understanding of
trajectories [31]. The vast majority of GPS traces available in reality happens inside transportation
networks [5], such as highways and railroads, instead of in a free space. It’s a basic fact of moving
objects that their routes are correlated with or influenced by the surrounding traffic environment.
Therefore, studying on trajectories should not only fixate on trajectory data, but also enable utilization
of environmental information which help to enrich the semantic understanding of moving objects.

Definition 4 (Road Network). A road network is a directed graph G = (N, E) embedded in R2, where N is
the collection of graph nodes corresponding to traffic junctions in the geographic space, and E is the collection of
graph edges that corresponds to road segments between junctions. A node of graph G, denoted by n, is defined
as n = (nid, lat, lon), where nid is the identifier of n, and the latter two attributes describe corresponding
coordinates. A edge of graph G, denoted by e, is defined as e = (eid, nid f irst, nidsecond), where eid is the
identifier of e, nid f irst is the first node identifier of e, nidsecond is the second node identifier of e.

The vast majority of GPS traces available in reality happens inside transportation networks [20],
such as highways and railroads, instead of in a free space. Since the coverage of modern transportation
networks have extended throughout the world, it is difficult to discuss movements without traffic
network structures, especially in the urban areas. A road network describes the geometry and topology
information of roads by a combination of edges and nodes, as in many typical map projects. In addition
to its geometric attributes, each edge in the graph has two significant attributes: the first node and the
second node, and each node has two elementary attributes: the latitude and longitude. It is important
to notice that an edge (i.e., road segment) can be either a unidirectional road or a bidirectional road
and a node can allow either entering an edge or leaving an edge.

Road networks reduce the dimensionality of activity space of moving objects, thus, allow
describing a trajectory by referring elements of the network. This is a popular representation for
compressing a large number of sample points of a raw trajectory. By doing so, a trajectory can
be simplified to a sequence of interconnected edges and nodes, and conveniently associated with
meaningful annotations. In one sense, analyzing trajectory has been converted to spatial network
analysis. However, focusing on depicting the geometry of sub-trajectories by combining network
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elements may not be the right direction. First, the evolving spatial relationships between trajectories
and specific network elements will be ignored, if they are replaced by topological structures between
network elements. For example, it is difficult that express a heading-back inside the same road edge
by existing spatial network analysis methods. Second, sub-trajectories that don’t locate in existing
road network data will be another challenge. Finally, extensibility is also an issue. It’s not effective in
depicting more detailed semantic like “stopping at a certain position”. The proposed trajectory model
need to include both standard and customizable constructs with maximum flexibility that can be easily
tailored to the specific semantics of trajectories in a given application context [3].

It is noteworthy that the model we propose in this paper does not explicitly take into consideration
the uncertainty of the trajectory data, i.e., noise, errors brought by measurement and sampling
processes. The proposed model and related operations are built in assumptions that data have
been appropriately cleaned by state-of-the-art techniques, since these topics are a large area and
several approaches have been proposed, for example, Schussler et al. [33], Kuijpers et al. [34] and
Pelekis et al. [35].

4. A Topological Semantic Model for Trajectories inside Road Networks

The core idea of this paper is to depict implicit topologies between sub-trajectories and network
elements and explicitly integrate them with other semantic information. Figure 1 shows the conceptual
data model for representing topological semantic trajectories inside road networks.

Figure 1. A conceptual data model for topological semantic trajectories inside road networks.
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The model can be divided into two parts: (1) the first part (the non-shaded classes) covers the
information related to: the raw trajectory, the sub-trajectory, the topological semantic trajectory, the
trajectory-element intersection, the road network, and the road network element,(this part is detailed
in Section 4.1); (2) the second part (the shaded classes) includes the topological invariant, the topology
part group, the key-point, and the virtual edge, the behavior (this part is detailed in Section 4.2).

It is noticeable that the model can be used as an organized data representation set for the
knowledge discovery process besides representing topological semantic information with respect to
trajectories. It may benefit the discovery of more meaningful mobility patterns such as the reasons
for an anomaly (e.g., traffic jam), or a more accurate profiling for different kinds of moving objects
based on their semantic similarity. In other words, this model provides a semantic understanding of
trajectories for trajectory data mining from a new perspective.

4.1. Representations for Trajectories inside Road Network

Time-dependent topological semantic information between a trajectory and elements characterize
the movements of the trajectory in the context of a road network. Therefore, it can provide significant
spatio-temporal information for relevant research within the realm of Geographic Information Science
(GIS). From this point of view, the topological semantic trajectory represents the topological semantic
enriched trajectories which are composed of the trajectory-element intersections that generated by
associating sub-trajectories with road network elements. A raw trajectory will be a topological semantic
trajectory only if it is split into sub-trajectories by local topological relationship, which are associated
to a set of topological invariants and behaviors. A topological semantic trajectory is defined according
to Definition 5.

Definition 5 (Topological Semantic Trajectory). A topological semantic trajectory is a reorganized trajectory
data based on a set of sub-trajectories and trajectory-element intersections, note as T∗ = (SubT, TI), where
SubT is a set of sub-trajectories and TI is a set of trajectory-element intersections by sweeping road network
elements along the raw trajectory.

Each topological semantic trajectory has at least one sub-trajectory in its SubT, as well as two
trajectory-element intersections in its TI. Sub-trajectories are the trunks of a topological semantic
trajectory. The duration of a sub-trajectory can be estimated by extracting the temporal information
from its first point to the last point. Trajectory-element intersections are joints linking sub-trajectories
in different directions. As shown in Figure 2a, the topological semantic trajectory can be seen as a
chain of trajectory-element intersections and sub-trajectories. A trajectory-element intersection means
that topological semantic information between trajectory and nodes or edges has changed during the
movement. These changes in semantic are commonly associated with meaningful behaviors, such
as “enter”, “leave”, or “stop”. In our proposed model, a trajectory-element intersection is defined
according to Definition 6.

Definition 6 (Trajectory-element Intersection). A trajectory-element intersection is a junction of a topological
semantic trajectory, denoted by TI = (TPG, TPI, B), where TPG is a group of topological parts, TPG is the
topological invariant corresponding to the topological part group, and B is the behavior of the trajectory-element
intersection.

A trajectory-element intersection has a group of topological parts located in parts of the
trajectory and certain road network elements. The topological part group, as shown in Figure 2c,
describes the physical structure of a trajectory-element intersection which is constructed around a
key point, which differentiates contiguous sub-trajectories coinciding with network elements. A
trajectory-element intersection of the topological semantic trajectory can be either integrated with
the classical “Stop/Move” trajectory model or other specific semantic information. For instance, the
behavior of a trajectory-element intersection can either presents stops and moves or other information
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like transportation means. (The topological group, topological invariant and behavior will be detailed
in Section 4.2.)

In the vast majority of cases, trajectory-element intersections are attached to nodes of a network
(marked with red dots in Figure 2a). Sometimes, however, a trajectory-element intersection may
also appear inside an edge, especially for the first or last intersection (marked with blue dots in
Figure 2a). For a trajectory-element intersection on a node it must have at least two topological
invariants corresponding to different elements respectively. For those trajectory-element intersections
inside an edge, there will be more complex topological semantic information which will be discussed
in Section 4.2.

Figure 2. Trajectory-element intersections during a topological semantic trajectory. (a) A trajectory
divided be intersections; (b) three detailed trajectory-element intersections within a trajectory; (c)
corresponding relations within a trajectory-element intersection.

During a trip, a trajectory-element intersection occurs each time the moving object enters,
leaves or passes an element of road networks. For instance, as shown in Figure 2b that the object
started its motion from edge E1, and entered edge E2 by node N2, then moved along E2 before
left it through node N3, three trajectory-element intersections will be triggered at TI1, TI2 and
TI3 respectively. In other words, a trajectory-element intersection always takes place around a
0-dimensional point in which a local topological relation between the trajectory and an element
changes. One can see that a trajectory-element intersection occurs in a topological semantic trajectory
is a local topological invariant.

With this topological semantic trajectory representation one can easily perform common
spatio-temproal analysis, such as inferring the spatio-temporal relationship between a trajectory
and any specific road node or road segment at a particular period of time. As a common example,
consider a temporal interval ranging from 9 p.m. to 10 p.m., all intersections appeared during this
interval will be involved, and sub-trajectories have spatial relationships with related road nodes and
road segments. Also, it can help to analyze the trajectory at higher level. For instance, consider an
intersection in the middle of an edge. Having this information, one may infer an “invisible” road
segment if it is neither the first nor the last intersection.

4.2. Topological Sematnics Related to Trajectory-element Intersections

Every topological-element intersection has Topological Part Group, Topological Invariants and
Behaviors. The topological part group represents the physical composition of a trajectory-element
intersection that contains related components, for example: node, edge, sub-trajectory. Their
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topological semantic information is determined through N-intersection Matrix of topological
invariants [22], since nodes and edges can be seen as the simplest topological entities. And behavior
has set characteristics that help to understand how and why a moving object is there.

4.2.1. Topological Part Group

Each trajectory-element intersection has a topological part group, since it always consists of several
topological parts. The topological part group of an intersection includes all involved components from
both parts of the trajectory and elements of the road network. The topological part group describes the
location for the trajectory-element intersection, or, in another word, it shows where the moving object
changes its routine.

Generally, a topological part group locates in a node or edge, so road network elements are
essential components of the group. For instance, if a trajectory moves from one edge to another, a
trajectory-element intersection would have a topological part group including these two edges as
well as the node between them. However, sometimes a topological part group may locate in the road
network. For example, a trajectory starts from the outside of the road network structure. A definition
for topological part group is presented in Definition 8.

Definition 7 (Topological Part Group). A topological part group tpg is a tuple (preEs, keyPoint, postEs),
where keyPoint is the core point of the group, preEs is a set of an edge and a sub-trajectory before the keyPoint,
and postEs is a set of an edge and a sub-trajectory after the keyPoint. A keyPoint of a group tpg is defined
as keyPoint = (kpid, eid, loc), where kpid is the identifier of keyPoint, eid is the identifier of an element that
the keyPoint locates in, and loc is keyPoint’s coordinates. A preEs (or postEs) of group tpg is defined as
preEs = (edgeid, stid), where edgeid is the identifier of the related edge of network, stid is the identifier of the
related sub-trajectory.

The concept of topological part group is crucial for establishing the local topologies between a
trajectory and the road network. Each topological part group is a collection of triples including three
components—preEs, keyPoint, postEs—that occur in chronological order. For a trajectory-element
intersection to exist its topological part group must include a keyPoint and at least either one of the
other two. The preEs and posEs contains two basic attributes: the sub-trajectory ID, the edge ID,
and the keyPoint contains three basic attributes: the keyPoint ID, the element ID and the location of
keyPoint. In normal condition, a preEs (or posEs) may be either a subset including a sub-trajectory
and an edge or an empty subset, which means a sub-trajectory (if it exists) be associated with an
edge. Particularly the preEs (or postEs) will be empty while the postEs (or preEs) must exist, if the
intersection occurs at the starting (or ending) point of the whole trajectory. And a keyPoint can locate
in either an edge or a node.

Figure 3 illustrates three typical trajectory-element intersections (i.e., TI1, TI2 and TI3) and their
topological part groups (i.e., TPG1, TPG2 and TPG3). Consider Figure 3a, the object started from the
edge E1, then entered edge E2 by node N1, and finally ended at the edge E2. In Figure 3b, the preEs of
the TPG1 is an empty subset (accordingly, the TI1 locates in the starting point of the whole trajectory)
and the postEs of the TPG3 is an empty subset as shown in Figure 3d (accordingly, the TI3 locates
in the ending point of the whole trajectory). The TI3, however, correspondingly owns a complete
group, i.e., TPG3 in Figure 3c. One can see that there are correlations between local topologies within
trajectory-element intersections and values of its topological part group components, which will be
discussed in detail in Section 4.2.2.
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Figure 3. Topological part groups of trajectory-element intersections. (a) Three typical topological
part groups of trajectory-element intersections; (b) a topological part group at the starting point of the
trajectory; (c) a topological part group at the ending point of the trajectory; (d) a topological part group
at interval of the trajectory.

It is noteworthy that in the case of anomalies, such as missing parts of road data or driving
violations, there may be no corresponding elements in the group (marked as blue line in Figure 2a).
Under these circumstances, the corresponding part of the group contains only a piece of sub-trajectory.

4.2.2. Intersection Topological Invariant

As mentioned above, elements of a road network are referred to edges and nodes, which means
they can be regarded as simple two-dimensional lines and points when discussing local topology in
R2. And because the line and two nodes are interdependent in this net structure, it is inappropriate to
tell the two apart in the topological invariant of the same trajectory-element intersection. Taking all
these into consideration, this article presents the study in focusing on three topological parts from a
topological part group instead of any single network element.

The characteristics of trajectory-element intersections are described by all subsets within
corresponding topological part groups. Therefore, it is crucial to compute relation of each subset before
discussing semantic information of intersection topological invariant. From this perspective, a nested
tuple framework and a collection of tuple operations are designed for modeling the local topology
within a trajectory-element intersection. Let TPGi be the topological part group of a trajectory-element
intersection TIi. Then TPGi can be expressed as a nested tuple (as shown in (1)). Sub-tuples of TPGi
respectively represent different topological parts. For instance, the sub-tuple consisting of subTraj1
and element1 corresponds to the preEs. Three of these sub-tuples describe the intersection topological
invariant together. For the nested tuple, each set describes a unique intersection topological invariant,
and intersections with the same specifications will be considered as topological equivalence. If each
item of these sub-tuples is characterized by either an empty value (∅) or a non-empty value (¬∅),
there may be 22 = 4 patterns described by a sub-tuple. By that analogy, there may be 26 = 64
patterns for the whole topological part group. However, not all of ith patterns practically make
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sense for the trajectory-network scenario in R2. For example, the keyPoint cannot be empty for any
trajectory-element intersection to exist.

TPGi = ((subTraji1, elementi1) , (keyPointi, elementi2) , (subTraji3, elementi3)) (1)

Intuitively, each sub-tuple matches one topological part of a trajectory-element intersection if
it describes a possible invariant conform to reality. The TPGi can be a valid intersection topological
invariant by satisfying the following propositions:

Proposition 1. keyPoint 6= ∅.

Proposition 2. element2 6= ∅.

Proposition 3. If subTraji1 = ∅, then subTraji2 cannot be value of ∅ at the same intersection.

Proposition 4. If subTraji2 = ∅, then subTraji1 cannot be value of ∅ at the same intersection.

These propositions follow from the definition of the trajectory-element intersection, which ensures
the validity of an underlying trajectory-element intersection. Nevertheless, focusing on the value
of empty or non-empty seems insufficient for discussing detailed semantic information in road
network circumstances. Take for example the sub-tuple (keyPoint, elementi2), which will result in
losing information of the specific element if is simply assigned a value of ¬∅. Therefore, it is clear that
the binary properties (∅ and ¬∅) should be extended. Furthermore, there must be a set of calculation
operations to determine the intersection topological invariants.

In this article, object identifiers are introduced instead of the non-empty value ¬∅. Therefore, an
item of a sub-tuple is either empty or an identifier. Since the trajectory-element intersection is defined
in terms of topological invariants, it follows that the topological semantic information between the
trajectory and network elements in R2 is the synthesis of invariants with respect to all topological
parts. This promotes our focus of determining individual invariants to depict topological semantic
information. Given a topological part group, the intersection topological invariant is determined
through the expression (1), such that:

• subTraji1, subTraji2 ∈ {∅, subTrajID} and
• elementi1, elementi3 ∈ {∅, edgeID, nodeID} and
• elementi2 ∈ {edgeID, nodeID} and
• keyPoint ∈ {keyPointID}.

A tuple operation match(_, _) is designed to match sub-tuples with corresponding invariants,
which returns substitutions defined as follows:

• match(∅, _) = ∅
• match(subTrajID, ∅) = subTrajID
• match(subTrajID/keyPointID, edgeID/nodeID) = edgeID/nodeID

where the first parameter denotes a sub-trajectory or the keyPoint, and the second parameter denotes
an element. The match rules can be briefly explained as follows. A sub-tuple will be assigned empty if
the corresponding sub-trajectory is empty; a sub-tuple will be assigned a sub-trajectory identifier if the
corresponding element is empty while its sub-trajectory is non-empty; a sub-tuple will be assigned an
element identifier if both parameters are non-empty.

With the operation match, the original tuple (1) can be converted to tuple (2), which consists of
three matching operations on corresponding sub-tuples from (1) respectively. Each item of (2) describe
the local topological relationship between two parts of the same sub-tuples from (1) in form of a
matching result. For the tuple (2), each item is characterized by one of the three optional values: ∅,
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subTrajID and elementID (i.e., edgeID or nodeID). These three items present all topological parts of
a trajectory-element intersection in turn. If any topological part does not have a sub-trajectory, it is
labeled as ∅ accordingly. Otherwise, it is labeled as a subTrajID or elementID.

TPG′i = (match (subTraji1, elementi1) , match (keyPointi, elementi2) , match (subTraji3, elementi3)) (2)

Obviously, it schematizes trajectory-element intersections based on their topological parts over
temporal logic. As shown in Figure 4, eight patterns are identified qualitatively to cover all cases of
trajectory-element intersections. According to relative positions of intersections and the trajectory, the
eight patterns can be further classified into three types: initial intersection, terminal intersection and
basic intersection.
Initial Intersection. Given a trajectory-element intersection, it is called an initial intersection if the
corresponding keyPoint locates in the starting point of the trajectory (as shown in Figure 4a,b), which
is given through a tuple in the form of (∅, _, _).
Terminal Intersection. Given a trajectory-element intersection, it is called a terminal intersection if
the corresponding keyPoint locates in the terminating point of the trajectory (as shown in Figure 4c,d),
which is given through a tuple in the form of (_, _, ∅).
Basic Intersection. Given a trajectory-element intersection, it is called a basic intersection if the
corresponding keyPoint locates in any position of the trajectory except the starting and terminating
points (as shown in Figure 4e–h), which is given through a tuple in the form of (_, _, _).

Figure 4. Eight tuples and their trajectory-element intersections. White dots denote nodes, red dots
denote keyPoints and arrows denote movement directions. (a) Two initial intersections moving inside
the network; (b) two initial intersections moving outward the network; (c) two terminal intersections
moving inside the network; (d) two terminal intersections moving from outside of the network; (e)
three basic intersections moving inside the network; (f) two basic intersections outward the network;
(g) two basic intersections moving from outside of the network; (h) two basic intersections moving
across the network.

One can obtain from Figure 4 that there exist totally seventeen distinct situations for
trajectory-element intersections when specific elements are considered, which are summarized
in Table 1. According to the table, the eight patterns mentioned above can be easily extended to
seventeen more detailed initiations. In general, for any of these initiations, items (nodeID and edgeID)
indicates the specific element where the keyPoint or sub-trajectories locate in. Take the tuple expression
of (edgeID1, nodeID, edgeID2) as an example, the intersection means that the object moved along an
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edge (identified by edgeID1) before entering another edge (identified by edgeID2) by their mutual
node (identified by nodeID). However, note that certain tuple initiations in Table 1 contain items with
value of identifiers of sub-trajectories. For these situations, though the intersections are still valid, they
imply a kind of special case in which there is no suitable element matching with sub-trajectory. For
instance, the tuple expression of (subTrajID1, edgeID, subTrajID2) means that the object is not moving
in the known road network and its route crosses an edge. The reason for this is manifold, ranging from
the object running abnormally, to the road network missing corresponding road segments.

Table 1. Seventeen situations for trajectory-element intersections.

Pattern Tuple initiation Situation

(∅, element2, element3)
(∅, nodeID, edgeID) start from a node and enter into

an edge
(∅, edgeID, edgeID) start from an edge and move along it

(∅, element2, subTraj2)
(∅, nodeID, subTrajID) start from a node and go off roads
(∅, edgeID, subTrajID) start from an edge and go off roads

(element1, element2, ∅)
(edgeID, nodeID, ∅) move along an edge and end at the

next node
(edgeID, edgeID, ∅) move along an edge and end at it

(subTraj1, element2, ∅)
(subTrajID, nodeID, ∅) move into a node from outside of

network and end at it
(subTrajID, edgeID, ∅) move into an edge from outside of

network and end at it

(element1, element2, element3)
(edgeID1, nodeID, edgeID2) move into the edge2 from edge1 by

a node
(edgeID, nodeID, edgeID) move along an edge and turn back

after reaching a node
(edgeID, edgeID, edgeID) move along an edge and turn back

at a position inside the edge

(element1, element2, subTraj2)
(edgeID, nodeID, subTrajID) move along an edge and leave road

network space at a node
(edgeID, edgeID, subTrajID) move along an edge and leave road

network space at position inside
the edge

(subTraj1, element2, element3)
(subTrajID, nodeID, edgeID) move into an edge from outside of

network at a node and move along
the edge

(subTrajID, edgeID, edgeID) move into an edge from outside of
network at a position inside the edge
and move along it

(subTraj1, element2, subTraj2)
(subTrajID1, nodeID, subTrajID2) pass a node without entering

other elements
(subTrajID1, edgeID, subTrajID2) pass a position inside an edge

without entering other elements

Depending on these settings, one can generate semantic trajectories considering sub-trajectories
for each trajectory-element intersection triggered during the trajectory. For instance, let us consider
the example in Figure 5a, where two real GPS trajectories are presented. The red-dotted line shows
a teacher’s trip (drive to college, work all morning, drive across campus, then leave the campus),
while blue-dotted line depicts a student’s trip (walk to laboratory, go to the dining hall, then walk out
to take subway). These two trajectories are actually the manually processed results, in which noise
was removed, track points were matched to real positions inside the road network and intersections
were labelled (marked as green triangles). Then the teacher’s trajectory can be reorganized around
the eight trajectory-element intersections shown in Figure 5b, and the student’s trajectory can be
reorganized around the twelve trajectory-element intersections shown in Figure 5c. Obviously, any
trajectory should be at least pretreated through three steps before it can be reorganized: noise removing,
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map-matching and spatio-joining. These pretreatments are challenging and time consuming to some
extent, yet they are outside of the scope of this article and will discussed in our future work.

Plenty of information can be parsed in regard to the movement of these two trajectories within
the road network structure. In this example, the teacher changed his mobility pattern for eight
times during the trip (eight trajectory-element intersections), which means it switched from one
road segment to another (or to where there were no roads) eight times. And the student started her
trip from a road segment (i.e., E9) and ended at another road segment (i.e., E18), covering twelve
trajectory-element intersections (starting and ending intersections, nine switching intersections at
nodes, a turning-around intersection inside a road segment). The semantics of these can be further
reasoned once associated with specific address and time information. For instance, the student fifth
intersection (i.e., the turning-around intersection) is to stop at a roadside market for snacks while her
last intersection (i.e., the intersection at ending point) is to wait for the bus.

Furthermore, this kind of semantic trajectories can make a big difference for spatio-temporal
query operations when discussing trajectory movements inside road networks. It is clear that this level
of abstraction, rather than more specific spatio-temporal points, is even closer to human understanding,
and makes operations on trajectory data more implementable. The movements of trajectories can be
interpreted into any of the intersections sequences, and support support the specification of complex
movement patterns in the future extensions, which provides a convenient and easily understood
methodology for query and further analysis that requires basic data-storage and programming skills.

Figure 5. Two real trajectories within the road network. (a) Images of the two trajectory; (b) intersections
sequences of the student’s trajectory; (c) intersections sequences of the teacher’s trajectory.
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4.2.3. Behavior

In this article, a behavior is associated to a sub-trajectory instead of the whole trajectory.
A semantic trajectory will be divided into a set of sub-trajectories by trajectory-element intersections
in our proposed model. Therefore, a trajectory is related to multiple behaviors. Every semantic
sub-trajectory may have behaviors which is an important feature in a semantic trajectory model.
A sub-trajectory behavior explains how and why the object is moving in a certain time and space,
which cannot be parsed by straightforward looking at the trajectory data or conducting a simple query.
It can be a product of a series of complex computations or tagging data from users.

In our proposed model, the sub-trajectory behavior is defined based on the context of the road
network through several trajectory data mining works. Therefore, behaviors within the model
emphasize the characteristics of individual movement relative to network elements, which have close
relation with topological semantics upon trajectory-element intersections as well as specific elements.
Behaviors were classified as simple and compound. Simple behavior refers to own actions merely
pictured by analyzing trajectory data (i.e., the behavior is directly extracted from trajectory data), while
compound behavior refers to actions detected by under conditions of contexts (i.e., behaviors which
consider specific network elements that are associated with trajectories). The major difference between
these two kinds of behaviors is whether the network elements should be considered in semantic
description. For example, low speed traveling is a simple behavior for its typical characteristics can be
obtained by the computation of the spatio-temporal span of raw trajectory data.

Some behaviors can be either simple or compound, depending on the context completeness. Take
a starting action for example, it can be a simple behavior when the object’s initial position is outside
the existing road network structure. It cannot give us more meaningful information except the object’s
own mobility. However, a starting action can also be a compound behavior once nodes and elements
nearby are taken into account.

A sub-trajectory can be associated with multiple behaviors at the same time. For example, an
object may be proceeding at a slow speed while turning around in somewhere of a road segment. In
general, the behaviors are extracted by data mining methods (or defined by users then computed
by proper methods). Note that the model in this article has been developed in view of university.
Therefore, it can serve as a core model that can be further extended and adapted for applications with
more complex contexts. For instance, the sub-trajectory can be further evolved into a more structured
taxonomy, or the behavior can be further refined with more dimensions.

5. Experimenting in an Application Example

In this section, an instantiation of the proposed model is presented in a common application for
mobility: Commercial Vehicles. In general, this kind of application needs to put focus on the movement
of operating vehicles traveling inside a traffic network, which contains both highways and feeder
roads. Therefore, the experimental settings are presented firstly, including the dataset description and
the model instantiation. Then, several intuitive examples are given for illustrating queries based on
topological semantics. The core part of this experiment was implemented in Visual Studio based on
ArcGIS 10.2 and MySQL with an Intel Core Quad CPU i7 3.2GHz machine with 16GB of memory
running Microsoft Windows 10.

5.1. Experimental Setting

Dataset Description. The road network data of Changsha was obtained from OSM
(OpenStreetMap) [36], which covers roads ranging between 111o54’ and 114o15’ longitude and 27o51’
and 28o40’ latitude. And the original OSM data was adjusted by employing the 4.7m pixel resolution
satellite imagery released in 2015 by Google Maps. The network was assumed to hold most of
vehicle movement tracks in Changsha city. Also, lanes and sidewalks were eliminated for the sake of
simplification.
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Figure 6. The image of four trajectories in Changsha (background obtained from
OpenStreetMap (OSM)).

Figure 7. The instantiation for a commercial vehicle trajectory.

The trajectory dataset was collected by GPS recorders on floating cars. The movements captured
in this dataset mainly took place in Changsha city, China on 1st January 2015. And the selected GPS
trajectories were preprocessed based on following conditions: (1) the sampling rate ranged from 10
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to 30 s; (2) the average horizontal dilution of precision (HDOP) was less than 1.25. The motivations
for this kind of preprocess are manifold, ranging from eliminating outliers of trajectory data, to better
reducing redundant sampling points. From the filtered trajectory dataset, only a total of 4 trajectories
were selected from the original dataset (as shown in Figure 6). Although the sample size is not large,
the subjects provide coverage of all types of trajectory-element intersections and are thus useful for
our application example. Then a visual approach based on ArcGIS was applied to manually detect
and mark trajectory-element intersections. Specifically, trajectory-element intersections inside road
edges were carefully extracted.

Model Instantiation. The instantiation was conducted to illustrated the practicability of our
proposed model on expressing topological semantics and performing deeper analyses with respect
to motion happened in road network structures. Usually, this kind of application needs to study the
movement of operating vehicles visiting different road segments—which can be further extended by
introducing specific POIs nearby, such as buildings and parks.

As shown in Figure 7, the model was instantiated on a specific trajectory-element intersection
(which is also marked by a red arrow in Figure 6). The intersection occurred about 10:50 at a specific
position (i.e., the coordinates of its corresponding KeyPoint). In fact, an intersection can also occur
within a time period in which the endTime runs behind the starTime. As one can see, from the
corresponding tuple (e3083, e3083, st36), that the KeyPoint is linked to e3083, which means it took place
in the interior of e3083 instead of a node. And it is not the end of the track for non-null sub-trajectories
in both preEs and postEs. It is easy to see that the car moved along the edge e3083 before it reached
the KeyPoint of this intersection and then left the road network space. The sub-trajectories within
topological part can be further extended with other detailed semantics, such as “stop” and “move”, but
in this example only topological semantics around the trajectory-element intersection are highlighted.

5.2. Semantic Trajectory Queries

In order to demonstrate applicability of the proposed model, several query examples are presented,
which can be answered easier based on topological semantics. Generally, queries related to movements
within a road network may vary as the users focus changes. If a user pays more attention to individual
mobility, there may be queries such as “what time does an object enter (or leave) a road segment” and
“which road dose an object locate in at specific time”. However, if a user focuses on group features,
there may be queries like “extract the common path of several given trajectories”. In addition, queries
can also be information about specific road segment like “are there cars that turned around inside
the road segment e3083”. Note that these kinds of queries could not be easily answered by trajectory
models without the context of the road network. In addition, the detailed foreign key joins in the query
expressions are omitted, since the stress of this paper is the proposed conceptual model rather than the
specific logical model and tables resulting from n×m relationships.

Following are four typical examples that can be answered based on the proposed model.
Q1: Which road segments did the trajectory T1 travel through from 2015-01-01T09:30:00Z to
2015-01-01T10:00:00Z?

To answer this question temporal information of trajectory-element intersections within the
trajectory T1 is necessary. Information about the trajectory identifier with the attribute tid = T1,
the trajectory-element intersection with the attribute startTime between ‘2015-01-01 09:30:00’ and
‘2015-01-01 10:00:00’ and the attribute endTime between ‘2015-01-01 09:30:00’ and ‘2015-01-01 10:00:00’.
The SQL statement could be as follows:

SELECT distinct ve.eid
FROM Trajectory-element Intersection ti JOIN TopologicalSemanticTrajectory tst,

Trajectory-element Intersection ti JOIN TopologicalPartGroup tpg,
TopologicalPartGroup tpg JOIN VirtualEdge ve

WHERE tst.tid = “T1” AND
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ti.startTime between ‘2015-01-01 09:30:00’ and ‘2015-01-01 10:00:00’ AND
ti.endTime between ‘2015-01-01 09:30:00’ and ‘2015-01-01 10:00:00’

Another example could be that one would like to know which road segment a person had made a
turn inside it. Therefore, the question could be:
Q2: Which road segments did the trajectory T1 turn around from 2015-01-01T09:00:00Z to
2015-01-01T10:30:00Z?

To answer this question the temporal and spatial information of trajectory-element intersections
within the trajectory T1 would be used. Information about the trajectory identifier with the attribute tid
= T1, the trajectory-element intersection with the attribute startTime between ‘2015-01-01 09:30:00’ and
‘2015-01-01 10:00:00’ and the attribute endTime between ‘2015-01-01 09:30:00’ and ‘2015-01-01 10:00:00’,
and the SimpleBehavior with the attribute name = internal turning-through. The SQL statement could
be as follows:

SELECT distinct kp.eid
FROM Trajectory-element Intersection ti JOIN TopologicalSemanticTrajectory tst,

Trajectory-element Intersection ti JOIN TopologicalPartGroup tpg,
Trajectory-element Intersection ti JOIN SimpleBehavior sb,
TopologicalPartGroup tpg JOIN KeyPoint kp

WHERE tst.tid = “T1” AND
ti.startTime ‘2015-01-01 09:30:00’ and ‘2015-01-01 10:00:00’ AND
ti.endTime between ‘2015-01-01 09:30:00’ and ‘2015-01-01 10:00:00’ AND
sb.name = “internal turning-around”

For the commercial vehicle application, it might be interesting to find routes or parts of routes
locating outside of the existed road network. Actually, it is important to know these kinds of
mismatches between trajectories and a road network structure, since researchers and staff can detect
possible problem of road network data [37], such as a local topological connectivity error and a road
segment deficiency, or even infer the potential demand for constructing a new road. For this kind of
problem, the question could be:
Q3: Dose the trajectory T1 drive off the existing road?

To answer this question information related to topological parts within each trajectory-element
intersection would be traversed. In our target topological part, like the preEs(or postEs), the attribute
eid = null and the attribute stid <> null. It is noted that there is a “UNION” process on result sets on
both postEs and preES for completeness. The following SQL statement could answer this question:

SELECT pre.stid
FROM Trajectory-element Intersection ti JOIN TopologicalSemanticTrajectory tst,

Trajectory-element Intersection ti JOIN TopologicalPartGroup tpg,
TopologicalPartGroup tpg JOIN preEs pre

WHERE tst.tid = “T1” AND
pre.eid = “null” AND
pre.stid <> “null”

UNION
SELECT pte.stid
FROM Trajectory-element Intersection ti JOIN TopologicalSemanticTrajectory tst,

Trajectory-element Intersection ti JOIN TopologicalPartGroup tpg,
TopologicalPartGroup tpg JOIN preEs pre

WHERE tst.tid = “T1” AND
pte.eid = “null” AND
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pte.stid <> “null”

For some researches it is import to figure out traffic conditions at some specific roads in a certain
period of time. This is a significant change in intelligent traffic systems. Understanding traffic
conditions and even patterns with road networks, we could better analyze the traffic and suggest
the more proper routes for drivers under different conditions. For this kind of problem, the question
could be:
Q4: Are there any trajectory had entered the Xiang-Fu Road between 2015-01-01T06:30:00Z and
2015-01-01T9:30:00Z?

To answer this question different semantic information related to trajectory-element intersections
are necessary. The trajectory-element intersection with the attribute startTime between ‘2015-01-01
09:30:00’ and ‘2015-01-01 10:00:00’ and the attribute endTime between ‘2015-01-01 09:30:00’ and
‘2015-01-01 10:00:00’, the RoadNetworkElement with the attribute name = Xiang-Fu Road, and the
SimpleBehavior with the attribute name = driving-through. The following SQL statement could answer
this question:

SELECT tst.tid
FROM Trajectory-element Intersection ti JOIN TopologicalSemanticTrajectory tst,

Trajectory-element Intersection ti JOIN TopologicalPartGroup tpg,
Trajectory-element Intersection ti JOIN SimpleBehavior sb,
TopologicalPartGroup tpg JOIN VirtualEdge ve,
VirtualEdge ve JOIN RoadNetworkElement rne WHERE ti.startTime ‘2015-01-01 09:30:00’ and

‘2015-01-01 10:00:00’ AND
ti.endTime between ‘2015-01-01 09:30:00’ and ‘2015-01-01 10:00:00’ AND
rne.ename = “Xiang-Fu Road” AND
sb.name = “driving-through”

For more complex questions, such as “do any group of trajectories share the same routes”, there
was no direct answers by SQL statement with this model. It requires the user to employ data mining
methods for analyzing. However, our semantic trajectory model makes it easier or user to apply data
mining algorithms on trajectories. For example: (1) The common route of a group of trajectories can be
captured by focusing on sequences of trajectory-element intersections instead of computation on GPS
sampling points; (2) also, analyses related to the trajectory similarity can be made easier by turning to
a comparison of sequences of trajectory-element intersections.

6. Conclusions

The importance of considering external environmental factors has been realized after a huge
amount of research work on analyzing raw trajectories. To bridge the gap between raw trajectory
data and contextual data, we need to research the trajectories in company with specific contexts.
This is calling for trajectory analytical methods that can analyze the movement of objects (e.g., cars,
pedestrians or animals) under certain space while presenting core features of a trajectory. Thus, we
propose a model, namely TOST, going in the direction of associating trajectory data with one of the
most common contexts, i.e., the road network, to make a raw trajectory meaningful.

We investigated the problem of modeling semantic trajectories inside road networks. Based on
intersection-based topological semantic description, the proposed model is comparatively flexible
for expressing movements inside road networks in a more meaningful way. The contribution of this
paper has been: (1) to encapsulate raw GPS trajectory data in a semantically representation, and (2) to
qualitatively express movements, by topological invariants, for direct support of trajectory semantics.
Eventually, an instantiation of the model is shown. The work reported is, to the best of our knowledge,
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the first one to propose an approach for modeling semantics of moving objects from the perspective of
topological characteristics.

We firmly believe that the proposed model TOST provides the basic concepts for semantic
trajectories with road network space. It can serve as the baseline for researches on space-constrained
semantic trajectories management and semantic trajectory knowledge discovery. Work is still needed to
further study the interaction between our semantic trajectory model and the existing generic trajectory
semantics that have been proposed in the literature. In a near future, we intend to investigate two
related issues to explore trajectory movements based on the model TOST. The first one is to extend
it to model the movement of one object against multi-scale elements. With such an extension, it is
supposed to natively support more advanced analyses. The second point is to further analyze those
sub-trajectories, especially to explore a more-refined sub-trajectory taxonomy.
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