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Abstract: Remote sensing image captioning involves remote sensing objects and their spatial
relationships. However, it is still difficult to determine the spatial extent of a remote sensing object
and the size of a sample patch. If the patch size is too large, it will include too many remote sensing
objects and their complex spatial relationships. This will increase the computational burden of the
image captioning network and reduce its precision. If the patch size is too small, it often fails to
provide enough environmental and contextual information, which makes the remote sensing object
difficult to describe. To address this problem, we propose a multi-scale semantic long short-term
memory network (MS-LSTM). The remote sensing images are paired into image patches with
different spatial scales. First, the large-scale patches have larger sizes. We use a Visual Geometry
Group (VGG) network to extract the features from the large-scale patches and input them into the
improved MS-LSTM network as the semantic information, which provides a larger receptive field
and more contextual semantic information for small-scale image caption so as to play the role of
global perspective, thereby enabling the accurate identification of small-scale samples with the same
features. Second, a small-scale patch is used to highlight remote sensing objects and simplify their
spatial relations. In addition, the multi-receptive field provides perspectives from local to global.
The experimental results demonstrated that compared with the original long short-term memory
network (LSTM), the MS-LSTM’s Bilingual Evaluation Understudy (BLEU) has been increased by
5.6% to 0.859, thereby reflecting that the MS-LSTM has a more comprehensive receptive field, which
provides more abundant semantic information and enhances the remote sensing image captions.

Keywords: LSTM; multi-scale; remote sensing object; image captioning

1. Introduction

According to Tobler’s first law of geography, everything is related to everything else, but near
things are more related to each other [1]. However, the spatial distance that defines adjacency is a
problem. The Academician Li Xiaowen proposed the concept of spatial temporal proximity as follows:
the concept of “flow” is applied to understand and express distance and adjacency, thereby resulting
in the concept of spatial temporal proximity [2,3].

In remote sensing image captioning [4–9], the above principle shows that the accurate recognition
of remote sensing images often requires the spatial relationships between objects. Especially in the
cases of different objects with the same spectrum, different types of remote sensing object may have
the same spectral, texture and shape features and can only be more accurately interpreted by using
adjacent objects and their spatial relations. However, the traditional object recognition methods [10–12]
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cannot identify the spatial relationships between objects while recognizing remote sensing objects.
Deep neural networks [13,14] can automatically extract and optimize features and have the advantages
of high accuracy and universality. They have been widely used in scene classification [15–20] and
semantic or instance segmentation [21,22]. In recent years, image captioning [23] based on recurrent
neural networks (RNNs) has emerged, and this method can generate natural language descriptions
containing the spatial relationships of remote sensing objects. In particular, the attention-based LSTM
provides a feasible way to realize the comprehensive interpretation of remote sensing objects and their
spatial relationships in remote sensing images [4].

However, when using the LSTM to simultaneously identify remote sensing objects and their
spatial relationships, the problem of the uncertainty of the object neighborhood must be solved.

According to Tobler’s first law of geography [1], to better understand remote sensing objects,
it is often necessary to refer to the related objects in the neighborhood of the objects and the spatial
relationships between them, but there is no uniform scale in this relevant neighborhood. Therefore,
In the deep learning algorithms, in order to effectively overcome limited GPU memory, the semantic
accuracy and computational burden must be balanced. To ensure the effective operation of the
algorithm and better identify remote sensing objects, it is often necessary to segment a fixed-size
sample to carry out network training. However, the adjacent regions as described by the first law of
geography cannot be quantified by using a uniform scale. The current method of segmenting samples
according to a single scale will easily lead to incomplete information of the sample scale and thus
cannot accurately describe the semantics of remote sensing objects.

In addition, there is another problem of the influence of an uncertain scale range on remote
sensing recognition. When recognizing and classifying the samples, professionals who own the domain
knowledge often use visual methods on the original image and dynamically transform the observation
scope to obtain the corresponding semantic information. This process adopts a remote sensing
semantic understanding mechanism that is similar to the global perspective. However, when the
labeled remote objects are extracted based on a fixed and unified scale, their surrounding environment
is often removed, this may lead to some of the objects with same spectral, texture and shape features
having different semantic labels. Thus, we form some samples of “fake conflict” that are semantically
contradictory but substantially reasonable. When the samples of “fake conflict” with inconsistent
semantics are sent to the model for training, logical chaos occurs in the calculation of the model error
and a stable output cannot be learned. Multi-scale research may be a way to conquer the impact of the
samples of “fake conflict”.

The multi-scale concept in this study refers to the relationship between the local and the global,
that is, a small local area and a large area within a certain neighborhood. However, the current
multi-scale research focuses on the multi-scale feature extraction and fusion of the same training
sample image [24–31]. There are few studies on how to consider the semantic analysis of variable
regions in different spatial extents [32–35].

Therefore, the MS-LSTM network, which is a remote sensing image captioning model based on
multi-scale semantics, is proposed: In the MS-LSTM network, the multi-scale concept refers to the
relationship between the local and the global, that is a small local area and a large area within a certain
neighborhood. For restoring the global perspective, a large scene classification input is added to restore
the environment and contextual information of samples so that the multi-scale semantic complement
is performed to realize error monitoring and correction.

In summary, the main contributions of this paper are as follows.

1. We propose the following multi-scale segmentation principles. Large-scale objects focus on
describing the overall nature of the functional area where remote sensing objects are located and
provide the function of the global perspective for remote sensing. Small-scale objects are used
for the semantic interpretation of remote sensing images which requires simple and efficient
generation of image caption sentence. In this way, the samples of two scales are generated in
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pairs, and the multi-receptive field effect between local and global is realized, which realizes the
simplicity, efficiency and accuracy of the image caption sentence.

2. To solve the “fake conflict” problems and fuse large-scale scene information, we innovatively
design a multi-scale LSTM parallel deep neural network. The original LSTM network structure
was modified, and a large-scale semantic memory unit was designed to store the influence
of the large-scale semantic information on the currently generated words. At the output-end
of the MS-LSTM, a multi-layer perceptron is used to fuse the information of the two scales.
The designed parallel network combines the advantages of multi-scale semantic information,
deep neural networks and recurrent networks, constructing a multi-scale remote sensing image
captioning model.

The remainder of this paper is organized as follows: Section 2 discusses related work.
Remote sensing image captioning network based on multi-scale semantics is presented in Section 3.
The experiments and analysis are provided in Section 4. Finally, the conclusion is presented in Section 5.

2. Related Work

Remote image captioning describes a certain number of remote sensing objects and the spatial
relationship between them by natural language. As the correlative objects within a sentence naturally
form a larger-scale remote sensing object, it is necessary to analyze a multi-scale neural network.
The captioning of remote sensing images usually uses Recurrent Neural Networks (RNN), especially the
Long-Short Term Memory (LSTM) which stores information learnt from experience into memory units
and can avoid long-term dependencies through forgetting mechanisms and is suitable for sequence
modeling, therefore, this section will describe the issue according to multi-scale remote sensing, RNN
and remote image captioning.

2.1. Multi-Scale

Currently, the multi-scale research of remote sensing images based on deep learning focuses on
two directions. One is multi-scale feature fusion, which extracts the multi-scale features from a remote
sensing image and fuses them for the recognition and classification of remote sensing objects. The other
is multi-scale patches, which takes different parts of an image to interpret multi-scale remote sensing
images. Multi-scale feature studies often use multi-scale convolution kernels to extract the features
of images in parallel. For example, the sliding window covers only one pixel when the 1 × 1 filter is
applied to each channel, which means it focuses more on continuous spectral characteristics, while the
3 × 3 and 5 × 5 kernels can focus on different potential local spatial structures due to the different size
of receptive fields [26]. Another method is the atrous convolution of an image with a 3 × 3 kernel and
rates of r = 1, 2 and 4 for the target pixel are used for urban land use and land cover classification [27].
It can be seen that higher sampling rates indicate larger fields-of-view (FOVs) compared to the standard
convolution filter that requires more parameters to enlarge the FOV. The atrous filter enlarges the FOV
without increasing the number of parameters to be calculated, and thus saves computational resources.
Additionally, high-level features containing semantic information and low level features containing fine
details are fused together through up-sampling and concatenation [28] so that different layers of feature
are both considered for detection tasks, especially for small object detection. In a similar model [29],
the deep residual network (ResNet) is used as the encoder, and high level features are combined with
corresponding low-level features as the up-sampling stage decoder. In an improved fully convolutional
network (FCN) [30], the multi-scale contexts are obtained and fused for semantic understanding
through a spatial residual inception (SRI) module, which continuously fusing multi-level features.
Some others have proposed the feature fusion pyramid network (FFPN) [31] that strengthens the
reuse of different scales’ features; FFPN can extract the low level locations and high level semantic
information that have important impacts on multi-scale ship detection and the precise location of
densely parked ships. To better exploit the spatial information, for each pixel, multi-scale image
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patches are generated at different spatial scales, which are all centred at the same central spectrum
but with smaller spatial scales. Then, the spectral–spatial features from each scale patch are extracted
through the multi-scale CNNs [32]. A region-based majority voting CNN is proposed in [33]. First,
the images are segmented under multiple resolutions into multiple regions as the basic processing units.
Then within each segmented region, the perceptive fields of the generated point voters were classified
through the multi-scale CNN. In [34], a three-step region-growing segmentation method was proposed
to reduce both under-segmentation and over-segmentation. It uses a feature generation method to
transform the three-dimensional neighborhood features of a point into a two-dimensional feature
image, which is taken as the input of a multi-scale CNN for training and testing tasks. A novel regional
division strategy based on local and non-local decisions [35] was devised to distinguish homogeneous
and heterogeneous regions. Then, for homogeneous regions, a multi-scale CNN architecture with larger
spatial window inputs was constructed to learn the joint spectral spatial features. For heterogeneous
regions, a fine-grained CNN architecture with smaller spatial window inputs was constructed to learn
the hierarchical spectral features.

2.2. RNN Series

As an important branch of the deep learning family, RNNs [36] are widely used for sequence
analysis. In remote sensing images, there are multiple spectral bands, especially in hyperspectral
remote sensing images which contain hundreds of spectral bands, which can be regarded as
a sequence of spectral. Therefore, some RNN related networks are proposed for hyperspectral
image classification [37,38], and have achieved excellent performance in classification job. In further
research, the improved RNN semantic segmentation model not only utilizes spectral features, but also
takes into account spatial features. In particular, a hyperspectral image cube surrounding a central pixel
is considered to be a hyperspectral pixel sequence, and an RNN is used to simulate the dependencies
between different neighborhood pixels [39]. This achieves comprehensive utilization of spectral spatial
information. Also in another image classification method based on spectral spatial information [40],
inspired by the widely used convolutional neural network (CNN), convolutional operators across
spatial domains are incorporated into the network to extract spatial features, which can also get better
results. In recent years, the convolutional end of this method has also improved. By combining the
network of convolutional long short-term memory and 3-D convolutional neural networks, a better
classification effect is obtained [41]. At the same time, the ability of RNN to process time series data
can also be used to process synthetic aperture radar (SAR) images. The two-dimensional image block
is converted into a one-dimensional sequence and then imported into the LSTM to learn the potential
spatial correlation [42], and the feature can be classified in Softmax classifier [43]. In addition, RNN
can also be used in the intelligent interpretation of high resolution remote sensing image. According to
our investigation, the RNN network is mainly combined with the CNN network to perform the task of
remote sensing image captioning. Specifically, it is described in the next section in detail. Recently,
a new strategy for constructing sequential features has been proposed [44]. Different to most studies,
in this study, the spectral characteristics of each pixel of the multi-temporal images are considered as a
continuous feature of the RNN input layer. This strategy constructs the sequence feature by collecting
similar pixels from a single image, and has achieved significant improvements in classification.

2.3. Remote Sensing Image Captioning

Remote sensing image captioning is to understand the given images at a semantic level and
generate comprehensive natural sentences [5]. Image captioning [23,45] is an import task in the field of
computer vision. In recent years, attention-based LSTMs [46] have been proposed, which not only
describes the content of the image, but also obtains a 14× 14 weight matrix of a corresponding image
region when generating word at the current time. Since the image captions and the image features are
simultaneously input into the RNN, a new adaptive attention model that can automatically decide when
to rely on visual signals and when to just rely on the language model is proposed [47]. Although the
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above method has achieved good results in digital images, its application in the field of remote sensing
is still lacking. Remote sensing image captioning is more complicated than natural image description.
Because the remote sensing image of satellite or aircraft has a unique the global perspective, it has no
directionality and lacks the center of focus. All of these factors make natural language descriptions of
remote sensing images more difficult. Despite the above difficulties, researchers have carried out useful
study on remote sensing image captioning. Qu et al. [5] used both visual and textual information of
remote sensing images to generate natural sentences. Shi et al. [6] propose a novel and promising
remote sensing image captioning framework that leverages the techniques of FCN. Both methods use a
CNN to extract image features and to generate the corresponding captions from RNNs or pre-defined
templates. To fully advance the task of remote sensing captioning, after considering the particularity of
remote sensing images, a large-scale aerial image data set of remote sensing images is proposed to better
describe remote sensing images [7]. In addition, Wang et al. [8] proposed a novel method which used
Latent semantic embedding by metric learning for remote sensing image multi-sentence captioning
task. Zhang et al. [9] propose a new model with an attribute attention mechanism for remote sensing
image captioning. At the same time, it is explored whether the attributes extracted from remote sensing
images have an impact on the attention mechanism. This work has greatly facilitated the application
of image captioning in the field of remote sensing. Chen et al. [48] propose an intelligent semantic
understanding method for high-spatial-resolution (HSR) remote sensing images via geospatial relation
captions, which use an attention-based LSTM to implement geospatial relation captioning for HSR
images. Recently, to realize the end-to-end identification of remote sensing objects and their spatial
relationships, a multi-scale remote sensing image interpretation network based on a FCN, a U-Net and
a LSTM is proposed [4]. In addition, Zhang et al. [49] propose a training mechanism of multi-scale
cropping for remote sensing image captioning based on an encoder-decoder model to improve the
generalization of feature representation. Although image captioning has been applied to the semantic
understanding of remote sensing images in recent years, there are still many problems to be solved.
For example, words generated in image captioning cannot correspond to remote sensing objects one
by one, and the description of spatial relationships is relatively weak. In particular, the image region
that the attention weight matrix corresponds to at each moment does not match the remote sensing
object corresponding to the word that generated at the same time step [50]. To better describe remote
sensing images and understand the semantic information in them, further exploration is still needed.

In summary, in the multi-scale image captioning research, most of them focused on extracting
features of different scales from the same image. However, the multi-scale study of variable regions is
relatively weak and needs further exploration.

3. Methodology

Firstly, a multi-scale sample segmentation principle is proposed. On this basis, a multi-scale
semantic remote sensing image captioning network is designed and implemented.

3.1. The Multi-Scale Principle

According to the basic principles of urban planning [51] and the semantic segmentation of remote
sensing images, we proposed the following multi-scale segmentation and matching principles:

1. Static large-scale segmentation principle: A large scale image should be large enough to restore
the global perspective and reconstruct the surrounding environment of remote sensing objects
and important contextual information of remote sensing objects. According to the principle of
urban planning, the city block is the basic unit of an urban space that is composed of networked
urban streets and its enclosed urban construction land, and it possesses certain social significance
due to the organizational effect of its form and function. The block therefore contains the sufficient
and pure semantic information that is needed for functional classification [52]. According to the
basic principle of urban planning, the spatial scale of the block is approximately 150 m × 150 m,
so large-scale patch segmentation uses a static, unified spatial scale. First, it contains the core parts
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of most blocks, which can support the accurate classification of VGG network. Second, it removes
the interference of roads and other buildings around the block, which reduces the difficulty of
network training. The specific operation uses the road network to realize the segmentation of the
block, and then constructs the large-scale sample of 150 m × 150 m based on the geometric center
of the block, which uses ArcGIS as the platform.

2. Dynamic small-scale segmentation principle: A small-scale image should be small enough to be
composed of a central object and its immediately adjacent objects. The image caption is prominent
in the centre remote sensing object, and the spatial relationship is simple, which is convenient for
network training. Therefore, we set the scale of the small patch to approximately 60 m × 60 m.

3. Multi-scale matching principle: Since the two scale samples are extracted separately, it is necessary
to design a matching rule. According to the principle that the geometric space distance between
geographic objects is often not equal to the geospatial distance [2]. This paper proposes the
matching principle of two scale samples based on the inclusion relationship of blocks: Firstly find
the block to which the small-scale image belongs, secondly and then construct a large-scale image
of 150 m × 150 m through the center of the block, finally form a one-to-many mapping relationship.

We propose the above multi-scale segmentation and matching principles for two main reasons:

(a) As a geographical unit with a single function and category, the block has classification stability
for all small-scale objects in the block, while the large-scale image constructed through the
geometric center of small-scale image may have a mismatch with the block semantic type. In fact,
small-scale samples are more semantically consistent with the large-scale samples constructed by
the geometric center of the block. This is what Li Xiaowen said: geometric space distance is often
not equal to geospatial distance [2].

(b) Large-scale images constructed by the geometric center of small-scale images are disturbed by the
surrounding environment, especially when similar small-scale images match large-scale images
of different environments, which increases complexity and leads to an unstable classification of
large-scale VGG Network.

As shown in Figure 1, comparing (b) with (c), G can better match f on spectrum and texture
than F. Comparing (b) with (d), G can better match e than E. Meanwhile, e and f are the same kind of
images, but E and F show great difference in spectrum and texture. These illustrate that large-scale
images constructed by the geometric center may fail to match small-scale feature and also bring
ambiguous large-scale information that would make large-scale VGG network unable to perform
stable classification
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Figure 1. (a) Image e and f are small-scale images. Image E and F are large-scale images constructed by
the geometric center of e and f, respectively. Large-scale image G is the center of the block. H is the
boundary of block; (b) correspond to G in (a); (c) correspond to F, f in (a); (d) correspond to E, e in (a).

For the above two problems, we designed an algorithm based on the multi-scale matching
principle. First, we use the road network to realize the segmentation of the block, so that we can get a
series of blocks which compose B_List. The size of B_List is n, and n is the number of all blocks. Then
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we constructed large-scale images of 150 m × 150 m by the geometric center of each block, and all
the large-scale images compose S_List. The size of S_List is also n, and S_List[i] corresponds to a
large-scale sample constructed with the geometric center of B_List[i], iε[1, n]. We match a corresponding
large-scale image which is denoted as S for one small-scale image which is denoted as s by the following
Algorithm 1:

Algorithm 1 For matching small-scale images with large-scale images

Input: small-scale image s, a series of blocks B_List, a series of large-scale images S_List, the size of B_List n
Output: large-scale image S.
Begin

For i = 1 to n; step = 1; do
If B ∪ s = B_List[i] Then

S = S_List[i]
Return S;

Else
Continue;

End For
End

The above operation utilizes the spatial analysis function provided by ArcGIS to achieve automatic
matching of samples of different scales.

According to the multi-scale segmentation and matching principle that was mentioned above,
the small-scale “fake conflict” samples and normal samples and their corresponding large-scale samples
are shown in Figure 2. The ‘fake conflict’ samples mean that the remote sensing objects in the small-scale
samples have similar spectral, texture, shape and spatial relationship between the objects, but have
different classification information in large scale environment which lead to network training process
conflict. The normal samples mean samples that will not cause above-mentioned problems.
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Figure 2. A pair of “fake conflict” samples and a pair of normal samples. (a–d) are four small-scale
samples; (e–h) are corresponding large-scale samples of (a–d); (a,b) are a pair of ‘fake conflict’ samples;
(c,d) are a pair of normal samples. We demonstrate small scale samples in large scale samples by
drawing red boxes.
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3.2. Multi-scale Image Captioning Network Structure

The proposed network structure adopts two CNNs and a multi-scale LSTM. In the encoding phase,
the CNN is used to extract the remote sensing image features, and the VGG19 network is applied to
the research. The large-scale VGG is used for large-scale scene classification which requires retraining,
and the small-scale VGG adopts the migration learning method only for extracting small-scale image
features, so a well-trained VGG is used. In the decoding stage, an innovative design was implemented
based on the original attention-based LSTM, which integrates the scene semantic information that is
provided by the large-scale VGG network with the small-scale remote sensing image features that are
extracted by the CNN to form a multi-scale LSTM. The network structure is shown in Figure 3.
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Figure 3. Network structure. It shows the overall network structure of the MS-LSTM. In our
network, a small-scale remote sensing image and its corresponding large-scale image are input into
two VGG19 networks respectively to extract two scale semantic information. At the output-end,
a 1024-dimensional large-scale semantic memory unit and a 1024-dimensional small-scale memory
unit are concatenated to form a 2048-dimensional vector, which is input into a MLP. And then the
MLP outputs a 1024-dimensional vector, which is activated by tanh and then updates the hidden layer
information ht through the output gate.

3.3. MS-LSTM

Two scales of features extracted from two VGG networks are input into the MS-LSTM. The specific
design features of the MS-LSTM are shown as follows. At time t0, the semantic information V0 that
is obtained by the large-scale VGG network is added to the original network such that the network
simultaneously incorporates image information from two spatial scales, and the new large-scale
information V0 is derived from the classification results of the VGG19. The network adds a large-scale
semantic memory unit to store the semantic information of the large-scale remote sensing images.
The large-scale semantic information memory unit is updated by using an input gate and a forget
gate. At the output-end, a 1024-dimensional large-scale semantic memory unit and a 1024-dimensional
small-scale memory unit are concatenated to form a 2048-dimensional vector, which is input into
a MLP. And then the MLP outputs a 1024-dimensional vector, which is activated by tanh and then
updates the hidden layer information ht through the output gate. And the effects of the two semantic
scales are combined to obtain a better remote sensing image caption.

The improved network is calculated as follows at time t0.
The initial value of the original memory unit can be computed using:

c0 = f0·c−1 + i0·σh(Wc[h−1, x0] + bc) (1)

The initial value of the large-scale semantic memory unit can be computed using:

C0 = f0·C−1 + i0·σh(WC[h−1, x0] + bC) (2)
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The initial values of the input gate and forget gate can be computed using:

i0 = σ(Wi[h−1, x0] + bi) (3)

f0 = σ
(
W f [h−1, x0] + b f

)
(4)

x0, c−1, h−1 and C−1 can be computed using:

x0 = [w0; attention(v, h−1)] (5)

c−1 = Wc−1 ·v + bc−1 (6)

h−1 = Wh−1 ·v + bh−1 (7)

C−1 = WC−1 ·V0 + bC−1 (8)

where v is the small-scale feature with a dimension of 14 × 14 × 512, V0 is the large-scale semantic
information, and its dimension is the number of large-scale categories. w0 is the initial word embedding
vector with a dimension of 512.

The improved network is calculated as follows at time t:
The values of the input gate and forget gate can be computed using:

it = σ(Wi[ht−1, xt] + bi) (9)

ft = σ
(
W f [ht−1, xt] + b f

)
(10)

where the value of input xt can be computed using:

xt = [wt; attention(v, ht−1)] (11)

In addition, the values of the original memory unit and large-scale semantic memory can be
computed using:

ct = ft·ct−1 + it·σh(Wc[ht−1, xt] + bc) (12)

Ct = ft·Ct−1 + it·σh(WC[ht−1, xt] + bC) (13)

The large-scale semantic memory unit integrates the output V0 from the large-scale VGG
classification network and combines the attention-based image information with the information of
the generated words at the previous moment in each update, thus combining the semantics of the
two scales.

The hidden layer information ht at time t can be computed using:

ht = ot·σh(MLP (ct + Ct)) (14)

where σ is the sigmoid activation function, σh is the tanh activation function, each W is a weight, b is the
bias, ht−1 is the hidden layer information of the previous moment, xt is the current small-scale network
input information, and Ct is the value of the large-scale semantic memory unit at the current time.

The network adds an MLP at the output-end and adds semantic information Ct from the large-scale
semantic memory unit to the input of ht to restore the comprehensive semantic information of samples
and improve the accuracy of the semantic analysis of remote sensing objects. The large scale plays the
role of the global perspective and directly participates in the output of small scale image captioning at
different times t, thus ensuring that each generated word integrates the semantic information of the
two scales. Therefore, the improved network organically combines different scales of remote sensing
image features, which can ensure the scale effect and accuracy of the output multi-scale remote sensing
image captioning.
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4. Experiment and Analysis

4.1. Introduction of Test Areas and Samples

This study involves three areas: (1) the latitude range is 30◦28′41” to 30◦32′29” and the longitude
range is 114◦22′42” to 114◦28′11” in the Wuhan Guanggu area; (2) the latitude range is 30◦14′27” to
30◦17′22” and the longitude range is 120◦9′19” to 120◦6′33” in the Hangzhou Xihu district, Shangcheng
district, Xicheng district and Gongshu district; and (3) the latitude ranges from 34◦43′2” to 34◦48′35”
and the longitude ranges from 113◦ 41′5” to 113◦46′37” in the Huiji district, Guancheng district and
Jinshui district of Zhengzhou. This study aims to optimize the recognition effect of small-scale samples
by using large scale semantic information. Large scale samples contain information on small scale
samples and their surrounding fields. Therefore, in this study, each small-scale sample corresponds to
one large scale sample according to a 1:1 ratio between the small scale and large scale. The two scales
of the samples are selected from three research areas. Each scale has 2814 patches, respectively, and
there are a total of 5628 patches. To validate our proposal, the samples dataset is composed of ‘fake
conflict’ samples and normal samples. There are 1510 ‘fake conflict’ samples and 1304 normal samples
in our dataset. To ensure sufficient samples in the validation set and training set and reasonable results,
1970 of samples were used as the training set and 844 of samples were used as the verification set
for each scale. For each small-scale sample image in the training set, we manually add an image
caption sentence.

4.2. Network Parameters

The networks involved in the experiment include two VGG networks, and an MS-LSTM network
integrating large-scale semantic information. In addition, the original attention-based LSTM is used as
a baseline. The training of the large-scale VGG and MS-LSTM are separate. The large-scale information
input into MS-LSTM is the block scene category of the image, not the feature of it, so we need to train
large-scale VGG in the block scene to strengthen its ability to classify and identify neighborhoods.
When the training of large scale VGG is completed, we use the classification result of large-scale VGG
together with the features extracted by small-scale VGG as the input of MS-LSTM, then we can train
MS-LSTM.

(1) The small-scale image was input into the pre-trained VGG without training, and the Conv5_3
features were extracted. The size of the feature map was 14 × 14 × 512, which was used as a part
of inputs of the two LSTMs.

(2) The large-scale image was input into the large-scale VGG network for scene classification which
requires training. When large-scale VGG training is optimal, the output of the large-scale VGG
network is input into the MS-LSTM network as semantic information. Based on our previous
experimental experience, the learning rate was 0.005, the batch_size was 40, and the number of
iterations was 3000. In addition, the loss function of the large-scale VGG training is the Cross
Entropy Loss, which can be computed using:

loss = −
∑n

i=1
yi log(ŷi) (15)

where n is the batch_size, yi is the ground truth of input, ŷi is the output from network. In the
training phase, we use the multi-scale segmentation principle and matching algorithm to match
large-scale images to small-scale images, and manually label large-scale images, while no manual
labeling is required in the prediction phase.

(3) The number of hidden layer neurons of both LSTM networks was 1024, the embedding dimension
of the word vector was 512, the batch_size was 40, and the number of iterations was 60. The softmax
function was used as the nonlinear activation function. As seen from Figure 4, learning curve
keeps fluctuating without converging when learning rate is 0.01. When learning rate is 0.001 or
0.0001, the learning curves tend to be smooth after 1500 times of iteration. However, the learning
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curve converge faster when learning rate changes into 0.001 than 0.0001. Briefly speaking, it is
inappropriate to set learning rate too high or too low and we choose to set learning rate as 0.001.
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4.3. Analysis of Experimental Results

To study the effect of large-scale information on recognition, the LSTM, MS-LSTM+ Ground
Truth(GT) and MS-LSTM+VGG were used for comparison purposes. The LSTM uses the original
LSTM network and only uses small-scale samples. The MS-LSTM+GT adds large-scale GT as the
large-scale semantic information in the MS-LSTM network to show the role of large-scale semantic
information in extreme cases. The data that are used are the small-scale samples and corresponding
large-scale samples. The MS-LSTM+VGG has the same structure as the MS-LSTM+GT network, but the
large-scale GT is replaced by the large-scale features that are extracted by the VGG as large-scale
semantic information to verify whether the actual large-scale semantic information output by the
VGG19 network can play the role of the global perspective; the data that are used are small-scale
samples and large-scale samples. Since the LSTM network itself has the ability to learn sample image
features, in order to verify the importance of large-scale semantics, the sample set contains ‘fake conflict’
samples and normal samples.

The general overview of the small-scale validation set samples is shown Table 1.

Table 1. Validation set of small-scale samples.

Samples Fake Conflict Samples Normal Samples Total

Number 452 392 844

Among the 844 samples in the validation set, there are 452 ‘fake conflict’ samples and 392
normal samples.

The large-scale samples were classified by using the VGG network, and the results are shown in
Table 2:
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Table 2. VGG classification confusion matrix.

Category Residence Service School Forest Greenland Total Accuary

residence 238 6 5 0 7 256 92.97%
service 7 192 3 2 5 209 91.87%
school 1 9 112 0 9 131 85.50%
forest 0 3 0 110 2 115 95.65%

greenland 2 7 1 5 118 133 88.72%
total 248 217 121 117 141 844

accuacy 95.97% 88.48% 92.56% 94.02% 83.69%

It can be seen from the VGG classification confusion matrix that forest have the best effects with
recall rates exceeding 92%. The residence and service results were followed with recall rates exceeding
90%. The recall rates of greenland and school are low at 88.72% and 85.50%, respectively.

We compared the evaluation indexes of the original LSTM network and the MS-LSTM network,
and the results were shown in Table 3.

Table 3. Metrics of the LSTM and MS-LSTM for the validation set.

Model BLEU_1 BLEU_2 BLEU_3 BLEU_4 METEOR ROUGE_L CIDEr

LSTM 0.80269 0.71196 0.64893 0.60019 0.43378 0.79564 5.17350
MS-LSTM 0.85907 0.77514 0.72409 0.68121 0.48250 0.85400 5.58904

According to the comparison, it can be seen that the scores of the various metrics of the MS-LSTM
network that integrates the large-scale semantic information are all higher than those of the original
LSTM network, but there is little difference. This result shows that if we only use the image captioning
metrics, large-scale semantic information will play a limited role in the MS-LSTM network.

Next, we analyse the output image caption sentences from the network: misrecognition denotes
that the centre object cannot be recognized, while recognition means that the centre object can be
recognized; the analysis results are shown in Table 4:

Table 4. Performances of the 3 networks with the validation set.

Model Recognition Misrecognition Total Recognition Accuracy

LSTM 702 142 844 83.18%
MS-LSTM+GT 842 2 844 99.76%

MS-LSTM+VGG 805 39 844 95.38%

As seen from the above table, 702 samples can be correctly recognized from the captions that are
generated by the original LSTM network, and 142 samples cannot be recognized, thereby resulting in
an 83.18% accuracy rate.

In the captions that are generated by the MS-LSTM+GT network, only 2 samples could not
be recognized, resulting in a 99.76% accuracy rate, which is a 16.58% increase compared to the
original LSTM.

In the captions that are generated by the MS-LSTM+VGG network, 39 samples could not be
recognized, and the accuracy rate is 95.38%, which is slightly lower than that of the MS-LSTM+GT.

To analyse the effect of the network on ‘fake conflict’ samples, we further analyse the results.
The results from the 452 ‘fake conflict’ samples were statistically validated, as shown in the Table 5.
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Table 5. Performances of the 3 networks with respect to the ‘fake conflict’ samples in validation set.

Model Recognition Misrecognition Total Recognition Accuracy

LSTM 324 128 452 71.68%
MS-LSTM+GT 450 2 452 99.56%

MS-LSTM+VGG 413 39 452 91.37%

According to Tables 5 and 6, we can evaluate the performances of the three methods. Using the
original LSTM network, 128 of the 452 ‘fake conflict’ samples could not be recognized and 14 of 392
normal samples could not be recognized. After used the modified MS-LSTM+GT network, 2 of the 452
‘fake conflict’ samples could not be recognized and all normal samples could be recognized. With the
improved MS-LSTM+VGG network, 39 of the 452 conflict samples could not be recognized and all
normal samples could be recognized.

Table 6. Performances of the 3 networks with respect to normal samples in validation set.

Model Recognition Misrecognition Total Recognition Accuracy

LSTM 378 14 392 96.43%
MS-LSTM+GT 392 0 392 100%

MS-LSTM+VGG 392 0 392 100%

The experiments above show that recognition accuracy of the normal samples is relatively
consistent in the original LSTM, MS-LSTM+GT and MS-LSTM+VGG. Meanwhile, the original LSTM
network with the ‘fake conflict’ samples cannot obtain better accuracy. The improved MS-LSTM
network can withstand the impacts of ‘fake conflict’ samples due to the addition of large-scale semantic
information and still maintains the ideal performance. According to the results of the MS-LSTM+VGG
network, the influence of the VGG classification error on large-scale semantic information needs
to be further analysed. We counted 39 samples from the MS-LSTM+VGG network that incorrectly
recognized the “fake conflict” samples of the validation set, and the results by category are shown in
Table 7.

Table 7. Contrast between the VGG accuracy and the MS-LSTM+VGG accuracy.

Category Residence Service School Forest Greenland Total

number of fake conflict samples 85 122 91 77 77 452
Number of misrecognitions 7 8 11 3 10 39

recognition accuracy 91.76% 93.44% 87.91% 96.10% 87.01% 91.37%
VGG accuracy 92.97% 91.87% 85.50% 95.65% 88.72%

It can be found that the classification accuracy of greenland and school is 87.01%, 87.91% while
VGG accuracy of greenland and school is 88.72%, 85.50%. Meanwhile, the VGG has a good classification
effect for categories such as forests, service, and the MS-LSTM+VGG has high recognition accuracy in
those categories. The above results indicate that the quality of the large-scale information will affect
the performance of the network. The better the effect of the VGG is, the more accurate the extraction of
the large-scale information and the better performance of the improved MS-LSTM +VGG network,
and vice versa.

As shown in Figure 5, the LSTM network might misrecognize center objects of small scale
images. Although only one word different from manual caption, the semantic information could be
totally changed. The classic metric BLEU is an index to evaluate the similarity of the whole sentence.
According to Figure 4, the semantic information changes greatly when the central objects are different
while the other parts of the sentence remain unchanged. However, the BLEU_1 index changes by 0.056
in that condition according to Table 3. Therefore, there are some limitations when using BLEU to assess
the recognition of target objects.
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4.4. Impact Analysis of Fake Conflict Samples

In order to further analyse the impact of the ‘fake conflict’ samples on the network, we redesigned
the sample training set and the verification set. First, the samples are divided into two groups, which
are the ‘fake conflict’ samples set and the normal samples set, and samples sets include small-scale
samples and large-scale samples. In the ‘fake conflict’ samples set, there are 1510 small-scale ‘fake
conflict’ samples, of which 1058 are allocated to the training set and 452 are allocated to the verification
set. Small-scale normal samples set is composed of 1304 normal samples, of which 912 are allocated to
the training set and 392 are allocated to the verification set. Certainly, there is one-to-one match between
each large-scale sample and each small-scale sample. The two groups of samples were respectively
input into the original LSTM for training, and the variation of the loss curve with the training times
was obtained, as shown in Figure 6.

As shown in Figure 6, the loss decreases as the number of iterations increases. It can be seen that
the deceleration of the loss of the normal samples is obviously faster than that of the ‘fake conflict’
samples. We conclude that ‘false conflict’ samples will make it difficult to accurately recognize various
features, which retard the network’s convergence.

To further learn the influence of the ‘fake conflict’ samples on the experimental results,
we conducted four contrasting experiments. Two experiments include inputting only the ‘fake
conflict’ samples into the original LSTM and MS-LSTM networks for training. The others include
inputting only the normal samples into the above two networks for their respective training.
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The metrics of the four control experiments were compared, and the results are shown in the
following table. The errors between the two groups of samples in different networks are also calculated
in Table 8.

Table 8. Metrics of the LSTM and MS-LSTM in the validation set when using only the ‘fake conflict’
samples or normal samples.

Sample Set Model BLEU_1 BLEU_2 BLEU_3 BLEU_4 METEOR ROUGE_L CIDEr

‘Fake conflict’
samples

LSTM 0.7605 0.6594 0.5900 0.5338 0.4055 0.7562 4.3598
MS-LSTM 0.8293 0.7262 0.6632 0.6116 0.4540 0.8224 5.5890

Normal
samples

LSTM 0.8566 0.7814 0.7312 0.6949 0.4812 0.8508 6.2104
MS-LSTM 0.8802 0.8145 0.7731 0.7372 0.5124 0.8851 6.8703

As seen in Table 8, it is obviously that metrics of MS-LSTM is better than LSTM no matter in
normal samples or ‘fake conflict’ samples.

The mean absolute errors (MAEs) of the four BLEU_n indexes in the two types of samples
were compared between the two networks. For ‘fake conflict’ samples, the MAE between the
original LSTM network and the MS-LSTM in the four BLEU_n groups is 0.0717. For normal samples,
the MAE between the original LSTM network and MS-LSTM in the four BLEU_n groups is only 0.0352.
The performance of MS-LSTM is better than LSTM in recognition, the improvement is more obvious in
‘fake conflict’ samples.

As seen in Figure 7, all three networks can recognize center objects of small scale samples
that means all network achieve good performance in normal samples. Then, we demonstrate the
performance of three network in ‘fake conflict’ samples in Figure 7.
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We can see from Figure 8 that LSTM fail to recognize center objects of ‘fake conflict’ samples while
MS-LSTM can correctly recognize them which shows the advantage of MS-LSTM in recognition.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 16 of 22 

 

performance of MS-LSTM is better than LSTM in recognition, the improvement is more obvious in 
‘fake conflict’ samples. 

 

 
Figure 7. Demonstration of three networks’ performance on normal samples. (a-d) are four small-
scale samples; (e-h) are corresponding large-scale samples of (a–d); (a) and (b) are a pair of normal 
sample; (c) and (d) are a pair of normal sample. The following sentences are GT caption sentence for 
small scale samples, caption sentence generated by LSTM, caption sentence generated by MS-
LSTM+GT and caption sentence generated by MS-LSTM+VGG as well. 

As seen in Figure 7, all three networks can recognize center objects of small scale samples that 
means all network achieve good performance in normal samples. Then, we demonstrate the 
performance of three network in ‘fake conflict’ samples in Figure 7. 

 
Figure 8. Demonstration of three networks’ performance on ‘fake conflict’ samples. (a-f) are four 
small-scale samples; (g-l) are corresponding large-scale samples of (a-f); (a) and (b) are a pair of ‘fake 
conflict’ sample; (c) and (d) are a pair of ‘fake conflict’ sample; (e) and (f) are a pair of ‘fake conflict’ 
sample. The following sentences are GT caption sentence for small scale samples, caption sentence 
generated by LSTM, caption sentence generated by MS-LSTM+GT and caption sentence generated by 
MS-LSTM+VGG as well. 

Figure 8. Demonstration of three networks’ performance on ‘fake conflict’ samples. (a–f) are four
small-scale samples; (g–l) are corresponding large-scale samples of (a–f); (a,b) are a pair of ‘fake conflict’
sample; (c,d) are a pair of ‘fake conflict’ sample; (e,f) are a pair of ‘fake conflict’ sample. The following
sentences are GT caption sentence for small scale samples, caption sentence generated by LSTM, caption
sentence generated by MS-LSTM+GT and caption sentence generated by MS-LSTM+VGG as well.

In the dataset that was composed entirely of ‘fake conflict’ samples, we trained the LSTM and
MS-LSTM networks separately. The performances of the two networks for the validation set that only
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includes ‘fake conflict’ samples were assessed. The results are shown in Table 9 based on the number
of captions with errors.

Table 9. Performances of the 3 networks only using fake conflict samples.

Model Recognition Misrecognition Total Recognition Accuracy

LSTM 341 111 452 75.44%
MS-LSTM+GT 448 4 452 99.56%

MS-LSTM+VGG 412 40 452 91.15%

It can be seen from the table that 448 small-scale captions generated by MS-LSTM network can be
correctly recognized among the 452 ‘fake conflict’ samples in the validation set, accounting for 99.56%
of the total. Meanwhile, recognition number of MS-LSTM+VGG is 412 and recognition accuracy is
91.15%. However, 341 of the small-scale caption sentences that are generated by the original LSTM
network can be correctly recognized, accounting for 75.44% of the total. Therefore, MS-LSTM+GT and
MS-LSTM+VGG excel in recognize ‘fake conflict’ samples.

To show ‘fake conflict’ samples’ effect on networks’ performance, we compare performances of
two networks only uses ‘fake conflict’ samples or normal samples.

We further compare the quality of original LSTM with our MS-LSTM by training them only uses
fake conflict samples or normal samples respectively. As shown in Table 10 and Figure 9, we can see that
there is no significant difference between MS-LSTM and original LSTM in normal samples. However,
MS-LSTM can recognize 448 of 452 fake conflict samples when original can only recognize 341 of 452
fake conflict samples. So MS-LSTM show great advantage in dealing with fake conflict samples.

Table 10. Validation performance when training in fake conflict samples or normal samples.

Samples Only ‘Fake Conflict’ Samples Only Normal Samples

Total 452 392
LSTM recognition 448 387

MS-LSTM recognition 341 392
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The experimental results are as follows:

(1) The fake conflict samples will interfere with the networks’ training during the learning process.
As a result, it is difficult for the network to accurately identify various features, and it is ultimately
unable to effectively converge.

(2) The MS-LSTM network based on multi-scale semantics can restore the environmental and
contextual information of samples by integrating large-scale semantic information into the LSTM,
and it produces better results.

(3) Comparing the LSTM with the MS-LSTM, we can conclude that the improved network will obtain
better image captioning performance if the accuracy of VGG is higher. Meanwhile, it also verifies
the influence of large-scale semantic information on object recognition.

4.5. Model Comparison and Model Stability Analysis

We added two other remote sensing image captioning models for experimental comparison.
All four models are the LSTM model without the attention [23], the SCA-CNN model [53],
the Attention-based LSTM [46] model and our MS-LSTM model. We performed three sets of
experiments on each of the four models. The data of the three experiments were the entire sample
set, the ‘fake conflict’ samples set and the normal samples set. The experimental results are shown in
Table 11, we denoted the LSTM model without the attention as No-Att, and the Attention-based LSTM
model as LSTM:

Table 11. Results of each model in comparison experiments.

Sample Set Model BLEU_1 BLEU_2 BLEU_3 BLEU_4 METEOR ROUGE_L CIDEr

‘Fake conflict’
samples

No-Att 0.7679 0.6643 0.5924 0.5317 0.3975 0.7532 4.2327
SCA-CNN 0.7705 0.6858 0.6131 0.5335 0.4012 0.7711 4.5674

LSTM 0.7605 0.6594 0.5900 0.5338 0.4055 0.7562 4.3598
MS-LSTM 0.8293 0.7262 0.6632 0.6116 0.4540 0.8224 5.5890

Normal
samples

No-Att 0.8570 0.7803 0.7281 0.6882 0.4819 0.8528 6.1788
SCA-CNN 0.8699 0.8105 0.7583 0.7068 0.5016 0.8665 6.4345

LSTM 0.8566 0.7814 0.7312 0.6949 0.4812 0.8508 6.2104
MS-LSTM 0.8802 0.8145 0.7731 0.7372 0.5124 0.8851 6.8703

All samples No-Att 0.7955 0.7036 0.6423 0.5943 0.4303 0.7885 5.1077
SCA-CNN 0.8102 0.7239 0.6545 0.5841 0.4407 0.8112 5.4706

LSTM 0.8027 0.7120 0.6489 0.6002 0.4338 0.7956 5.1735
MS-LSTM 0.8591 0.7751 0.7241 0.6812 0.4825 0.8540 5.5890

In order to compare the efficiency of the models, we also recorded the time spent on 60 iterations
of the four models. The results are shown in Table 12:

Table 12. Comparison of training time of each model.

Model Training Time

No-Att 24.5 min/60 iteration
SCA-CNN 26.1 min/60 iteration

LSTM 24.6 min/60 iteration
MS-LSTM 25.5 min/60 iteration

Comparing the other three models with our MS-LSTM network, we can find that the Bleu index of
the MS-LSTM network are higher than the other three models, especially on the ‘fake conflict’ samples,
our model’s Bleu index is the most improved. At the same time, by comparing the training time of
each model, it can be seen that the training time of our model has not increased significantly, indicating
that our network has no additional burden
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Then, in order to verify the stability of our MS-LSTM network, we randomly allocate the total
samples to the training and validation sets in the same proportions as the previous experiments, and
performed 10 independent Monte Carlo runs. We compared the Bleu_1, Bleu_2, Bleu_3 and Bleu_4
of the 10 experiments, where the trend is shown below (Figure 10). In the 10 experiments, the mean
values of the Bleu_1, Bleu_2, Bleu_3 and Bleu_4 were 0.85609, 0.77091, 0.71764, 0.67160, respectively,
and the standard deviations were 0.00220, 0.00382, 0.00495, and 0.00647, respectively, which proved
the stability and reliability of the experimental results.
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Figure 10. Bleu trend of the 10 experiments. It can be seen from the figure that in these experiments, the
variation amplitudes of Bleu_1, Bleu_2, Bleu_3 and Bleu_4 are subtle, which can prove the randomness
of the data distribution and the robustness of the algorithm.

5. Conclusions

In this paper, a multi-scale semantic long-short term memory network (the MS-LSTM) was
proposed for solving the problem that the single-scale patch cannot achieve high efficiency and
comprehensively and accurately caption images. We improved the original LSTM network by adding
a large-scale semantic memory unit to store the impact of large-scale semantic information on currently
generated words. At the output of the MS-LSTM, a multi-layer perceptron is used to fuse the two scales
of information, which effectively resolves the impacts of the ‘fake conflict’ samples on the training
process of the original LSTM. Relative to the original LSTM, the MS-LSTM abstracts and generalizes
the semantic information of large-scale scenes by using the VGG network and then inputs it into the
LSTM, which is more efficient and accurate than directly inputting the original large-scale image.
The improved parallel network provides a global perspective for original LSTM network and also
organically combines the advantages of multi-scale semantic information, deep neural networks and
recurrent networks.

Our future work will focus on the following directions.

(1) The proposed work lacks universality and does not quantitatively analyses the choice of the
spatial scale for remote sensing. We will analyse the consistency of the multi-scale region and
multi-scale semantics and establish a quantitative spatial scale segmentation model.

(2) Exploring the combination mode of recurrent neural network and the extreme learning
machines [54,55]. LSTM needs a large number of samples and iterations to finish the
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training, the speed of convergence is sensitive to hyperparameters. Extreme learning machines,
by contrast, have good generalization and extreme fast learning [56,57], and achieves the ability
of semi-supervised and unsupervised learning [58]. Besides, in recent years, the extreme learning
machines are also applied in remote sensing for the Spectral–Spatial Classification of Hyperspectral
Imagery [59–61]. Therefore, our future work will focus on involving the extreme learning machines
into remote sensing image captioning to achieve higher efficiency and stronger generalization.
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