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Abstract: Vertex concavity-convexity detection for spatial objects is a basic algorithm of computer
graphics, as well as the foundation for the implementation of other graphics algorithms. In recent years,
the importance of the vertex concavity-convexity detection algorithm for three-dimensional (3D) spatial
objects has been increasingly highlighted, with the development of 3D modeling, artificial intelligence,
and other graphics technologies. Nonetheless, the currently available vertex concavity-convexity
detection algorithms mostly use two-dimensional (2D) polygons, with limited research on vertex
concavity-convexity detection algorithms for 3D polyhedrons. This study investigates the correlation
between the outer product and the topology of the spatial object based on the unique characteristic
that the outer product operation in the geometric algebra has unified and definitive geometric
implications in space, and with varied dimensionality. Moreover, a multi-dimensional unified
vertex concavity-convexity detection algorithm framework for spatial objects is proposed, and this
framework is capable of detecting vertex concavity-convexity for both 2D simple polygons and 3D
simple polyhedrons.

Keywords: concavity-convexity detection; geometric algebra; outer product; multidimensional unified

1. Introduction

Algorithms for the concavity-convexity detection of vertices of spatial objects are the basis of many
graphics algorithms, including test algorithms [1–5], orientation and convexity-concavity determination
algorithm for simple polygons [6,7], and computer graphics processing [8,9]. The commonly used
vertex concavity-convexity detection algorithms for polygons include the convex hulls [10], angle [11],
left-right-point [12], vector area [13], cross product [14], slope [15], and extremity vertices sequence
methods [16]. Among these, the angle, left-right-point, and vector area methods use the inherent
properties of simple polygons for algorithm design, while the cross product, ray, slope, and extremity
vertices sequence methods tremendously reduce the algorithmic complexity during the identification
of the concavity-convexity of fixed points of simple polygons. Nonetheless, the currently available
studies on vertex concavity-convexity detection mostly concentrate on two-dimensional (2D) polygons,
and studies on the detection of vertex concavity-convexity of three-dimensional (3D) spatial polyhedrons
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are rarely reported. With the rapid development of field, such as 3D modeling and artificial intelligence,
the need for a concavity-convexity detection algorithm for vertices in multi-dimensional conditions is
becoming increasingly important and urgent.

This paper introduces geometric algebra into the vertex concavity-convexity detection of spatial
objects based on the computation principle of the cross product method for determining the vertex
concavity-convexity of a simple polygon. Taking advantage of the fact that the outer product
computation in geometric algebra possesses unified and clear geometric implications among spaces
with different dimensionalities, the limitation that the cross product in the Euclidean space can only
be applied between vectors is eliminated, and a detection method for the vertex concavity-convexity
of simple polygons and polyhedrons that is based on the outer product computation is proposed.
Moreover, on the basis of the proposed detection method, a vertex concavity-convexity detection
algorithm framework for both 2D and 3D objects is proposed that is universal for spaces with various
dimensionalities; therefore, the detection method of vertex concavity-convexity of different dimensional
objects is unified.

The structure of this paper is organized, as follows. Section 2 proposes relative basic theories
and a technology roadmap for this paper. Section 3 presents the main methodology for vertex
concavity-convexity detection on basis of geometric algebra. In Section 4, a simple application is
presented to verify the feasibility of methods that are proposed in this paper. Finally, conclusions and
discussion are drawn, on the basis of the previous sections and some issues for future study.

2. Basic Idea

As the first person to propose geometric algebra, William K. Clifford combines Grassmann algebra
with Hamilton’s quaternion algebra to yield Clifford’s geometric algebra, which is also referred to as
Clifford algebra [17]. Geometric algebra presents higher representation and computation capabilities
when compared with conventional linear algebra. Geometric algebra can directly perform algebraic
operations that are based on the representation of spatial objects, i.e., it deals with a geometric problem in an
algebraic manner [18]. This results in greater intuitiveness and simplicity. Simultaneously, the coordinate
independence and the dimension independence of geometric algebra provide a mathematical basis for the
unified expression and spatial analysis and operation of complex objects in 3D space [19,20]. Hestenes and
Li et al. develop the conformal geometric algebra (CGA) that is based on Clifford geometric algebra, which
further expands the application range of geometric algebra [21,22]. The CGA has been extensively applied
in multiple fields, such as computer geometrics [23,24], computer vision [25–27], and multidimensional
geographical spatial analysis [28–33].

The cross product algorithm is one of the most frequently used methods among the existing
vertex concavity-convexity detection algorithms for 2D polygons. The algorithm uses the directional
characteristics of the cross product result vector to determine the concavity-convexity of a vertex.
However, the cross product in the Euclidean space is only valid among vectors and it cannot be applied
in spaces with other dimensionalities, which limits the applicability of the cross product method,
such that the vertex concavity-convexity detection algorithms that are based on the cross product are
only applicable to plane polygons. For the conformal geometric space, the outer product is a basic
operation for dimensionality expansion. It possesses a unified and clear geometric implication across
spaces with varied dimensionalities and it lays the theoretical foundation for the implementation of
multi-dimensional universal spatial geometric analysis and computation based on the outer product.

The overall framework of this study is illustrated in Figure 1, some concepts relevant to vertex
concavity-convexity of a spatial object are defined based on the conformal expression of an object in
3D space, the correlations among the outer product operation results, the topological space of the
spatial object, and its vertex concavity-convexity using basic concepts in geometric algebra, such as
the outer product operation, dimensionality analysis, and multi-vector structure in the conformal
space, are analyzed and a computation framework for the vertex concavity-convexity detection of
objects in 3D space is proposed. The vertex concavity-convexity detection method that is proposed in
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this paper takes full advantage of the fact that the outer product operation in conformal space has
a uniform and definite geometric meaning in all geometric spaces. The method can be used for the
traditional vertex concavity-convexity detection in a 2D space; however, it can also be applied to vertex
concavity-convexity detection in a 3D space, which indicates that the proposed algorithm possesses
cross-dimensional universality.
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Figure 1. Overall framework.

3. Methodology

3.1. Definitions Relevant to Vertex Concavity-Convexity Detection

The range of the spatial object of interest and relevant concepts should be first clearly defined
prior to carrying out vertex concavity-convexity detection for a spatial object. Herein, the spatial object
includes simple polygons and polyhedrons, which are described in Definitions 1 and 2, respectively.

Definition 1. If there exist n straight lines in the 3D space that are non-overlapping, non-intersecting and
coplanar, among which any pair of adjacent lines is not collinear and no more than two adjacent lines are
concurrent, and then the polygon enclosed by such n straight lines is a simple polygon.

Definition 2. If there exist n planar polygons in the 3D space that are non-overlapping and non-intersecting,
among which any pair of adjacent polygons is non-coplanar and no more than two adjacent polygons share a
common edge, which is always the longest line for both polygons, and then the polyhedron enclosed by such n
polygons is a simple polyhedron.

On the basis of the aforementioned definitions of simple polygons and simple polyhedrons,
Definition 3 defines the interior angle of them.

Definition 3. The interior angle of a simple polygon refers to the intersection angle inside the polygon formed by
two adjacent edges of the simple polygon. The interior angle of a simple polyhedron is defined as the intersection
angle inside the polyhedron that was formed by two adjacent surfaces of the simple polyhedron.

From Definitions 1 and 2, it can be deduced that the interior angle of a simple polygon or
polyhedron must be less than π. The vertex concavity-convexity can then be identified with respect to
the interior angles of simple polygons and simple polyhedrons, which is stated in detail in Definitions
4 and 5.
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Definition 4. If the interior angle formed by two adjacent edges of a simple polygon exceeds π, then the vertex
shared by these two adjacent is a concave point; otherwise, it is a convex point.

Definition 5. If the interior angle that is formed by two adjacent surfaces of a simple polyhedron exceeds π,
then the two vertexes of the edge shared by these two adjacent surfaces are concave points; otherwise, they are
convex points.

3.2. Outer Product Operation

The outer product is one of the basic operations in geometric algebra. The outer product in
conformal space can be expanded to all spaces with various dimensionalities, having a unified and
definitive geometric implication across multiple spaces with varied dimensionalities, unlike the cross
product in Euclidean space that can only be applied between vectors. The definition of the outer
product is presented as Definition 6.

Definition 6. if A〈s〉 and B〈t〉 are any two linear independent blades in CLp,q space (a symbol for a category
system of algebra, in which Cl3,0 denotes Euclidean space, Cl3,1 denotes Homogeneous space, and Cl4,1 denotes
Conformal space) [18], where 〈s〉 and 〈t〉 are their corresponding dimensions, and then the outer product between
them is defined, as follows:

A〈s〉̂ B〈t〉 = (|A||B| sinθ)i〈s+t〉 (1)

where |A| and |B| are modulus operation, θ is an angle between two blades, (|A||B| sinθ) is used for determining
the size of the outer product resulting object, i〈s+t〉 is the dimension space operation of the outer product, and
〈s + t〉 is the dimension of the outer product space. When s + t > p + q, the result of the outer product is zero.

From Formula (1), higher dimensional geometric objects can be directly constructed by the lower
dimensional geometric objects via the outer product. For instance, outer product between two linear
independent one-dimensional vectors results in a 2D vector. The outer product operation satisfies the
inverse commutative law. The result of the outer product calculation has directivity that is reflected in
the symbol of the calculation result. Geometric objects constructed in different outer product order
with the same vectors are equal in size, but opposite in direction. The outer product operation also
satisfies the linear correlation. The result of outer product is equal to zero if the blades involved in the
outer product are linearly correlated.

3.3. CGA Expression for Geometric Objects Based on Outer Product

The points in 3D Euclidean space can be transformed to CGA by the following definition.

Definition 7. if P(x, y, z) is a point in Euclidean space Cl3,0, then the corresponding expression of point CP in
CGA Cl4,1 is as follows:

CP = P+
P2

2
e∞ + e0 = xe1 + ye2 + ze3 +

(
x2 + y2 + z2

)
2

e∞ + e0 (2)

where e1, e2, e3, e0, and e∞ are the five basis vectors in CGA, e0 denotes the origin of reference coordinates with
coefficient 1, and e∞ denotes the infinity point.

In the conformal space, the boundary lines’ geometric information is represented by an outer
product among its two boundary points and an infinity point. Definition of boundary lines’ CGA
expression is explained as follows.

Definition 8. If CP1 and CP2 are two boundary points in CL4,1 space, CL is a boundary line constructed by the
CP1 and CP2, and if boundary line in the CGA space is represented by the GeoSegment〈4〉, where 〈4〉 indicates
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that the boundary line corresponds to the 3D subspace in the conformal space, the conformal expression of the
boundary line is defined, as follows:

GeoSegment〈4〉 : CL = CP1 ∧CP2 ∧ e∞ (3)

Geometric information of boundary surfaces can be represented by outer product among three
composing conformal points and an infinity point in CGA space, as shown in definition 9.

Definition 9. If CF is a boundary surface in CL4,1 space, CP1, CP2 and CP3 are three boundary points of CF.
If GeoPolygon〈4〉 denotes the boundary surface’s CGA expression in conformal space, the 〈4〉 represents the
four-dimensional subspace in the corresponding CGA space, and then the conformal expression of the boundary
surface is defined, as follows:

GeoPolygon〈4〉 : CF = CP1 ∧CP2 ∧CP3 ∧ e∞ (4)

3.4. Correlations between the Outer Product Results and the Spatial Topology of the Geometric Object

Different from the cross product in Euclidean space that can only be applied between vectors,
in the conformal space, the outer product possesses the identical geometric implication among all of
the spaces with varied dimensionalities. Accordingly, the topological properties of the outer product
results in the conformal space can be used to study the determination method for the interior and the
exterior spaces of polygons and the boundary surface orientation of polyhedrons. Theorems 1 and
2 summarize the details.

Theorem 1. Let q be an arbitrary point in the conformal space. Afterwards, P1, P2, . . . , Pn are coplanar points
sequenced counterclockwise, which form the simple polygon A. Point q and Polygon A are coplanar. In the case
that all of the outer product operation results between q and all edges of A are non-zero and the signs of the
coefficients are the same, Point q is located inside Polygon A. If there is a zero in the outer product operation
results between q and all edges of A and the signs of all non-zero coefficients are the same, then Point q is on the
boundary of Polygon A. If the signs of the outer product operation results between q and all edges of A are not the
same, Point q is located outside Polygon A.

Theorem 2. Let q be an arbitrary point in the conformal space and B is an arbitrary simple polyhedron in the
conformal space. q is located inside the polyhedron in the case that the outer product operation results between q
and all boundary surfaces of B are non-zero and the signs of the coefficients are the same. If there is a zero in the
outer product operation results between q and all boundary surfaces of B and the signs of all non-zero coefficients
are the same, Point q is on the boundary surface of the polyhedron. If the signs of the outer product operation
results between q and all boundary surfaces of B are not the same, then q is located outside the polyhedron.

As complex mathematical derivation is involved in proving the correlations between the outer
product result and the topological relationships of spatial objects, as stated in Theorems 1 and 2.
This study focuses on the application of this characteristic to determine the vertex concavity-convexity
of spatial objects; thus, the proofs of the theorems are not presented here. Specific theoretic details have
been well-stated in the relevant literature [19]. Hereafter, the simple polygon illustrated in Figure 2 and
simple polyhedron illustrated in Figure 3 are used as examples for presenting the application cases of
the topological space decision rules of spatial objects in Theorems 1 and 2.

In Figures 2 and 3, Points P5 and P6 are located inside and outside the spatial object, respectively.
According to the outer product results between the two points and the boundaries of the spatial object,
the signs of the resulting coefficients of the cross product are consistent for the outer product between
the point inside the spatial object and the boundary object; for the outer product between the point
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3.5. Interior Space Detection of Spatial Objects Based on the Outer Product

In this paper, a method that is able to rapidly locate the interior space of simple polygons and
simple polyhedrons in a 3D space is developed based on the discovered correlation characteristics
between the sign of the coefficients of the outer product results and the topological space of the
spatial object. Figure 4 shows the algorithm flow. Using the simple polygon that is shown in Figure 5
as an example, the algorithm principle of determining the interior space of spatial objects that is
based on the result of the outer product is demonstrated. The algorithm first searches for the convex
vertex of the spatial object, specifically, to look for the vertex with the highest coordinate value along
the X-axis (e.g., P4 in Figure 5). The one with the highest Y-axis and Z-axis values are searched if
multiple vertices are found with the same X-axis value. The resultant vertex is inevitably a convex



ISPRS Int. J. Geo-Inf. 2020, 9, 25 7 of 13

vertex. Moreover, the outer product between any terminal vertex connecting the convex vertex (P5
in Figure 5) and the boundary object, where the other terminal vertex at Edge L34 of P3 (Figure 5),
OPResult, is computed. Finally, the signs of the coefficients of the outer product between an arbitrary
spatial point and the boundary of the polygon are used as criteria to determine whether it is inside
the polygon. If the sign of the coefficient of the outer product of a spatial point and the polygon
boundary is consistent with that of OPResult, then this spatial point is located within the interior of the
polygon. This method can detect the interior space for both two-dimensional simple polygons and
three-dimensional simple polyhedrons.
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3.6. Multi-Dimensional Unified Concavity-Convexity Detection for Spatial Objects

In this paper, a vertex concavity-convexity detection method for spatial objects based on the outer
product is developed on the basis of the orientation characteristics contained in the outer product in
conformal space and their correlations with the topological space of the spatial object. The simple
polygon that is shown in Figure 6 is used as an example to elaborate the proposed method. The core
algorithm includes the following four steps:

(1) Identification of the interior space of a polygon: Calculate the outer product of any vertex of
the polygon and any boundary object that does not include this vertex, and record the signs of the
coefficients of the outer product result in IdentifyDirect, which is used as the criterion for defining the
interior and exterior space of the polygon. If consistency is found between the signs of coefficients
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of the outer product of another point and IdentifyDirect, this point is located inside the polygon;
otherwise, it is outside the polygon.

(2) Generation of new boundaries relevant to the to-be-detected vertex: Identify all terminal
vertices that are connected to the to-be-detected vertex (Points 8 and 4), and use these identified vertices
to generate several planes (or straight lines) that are not coplanar (or collinear). Subsequently, save
the conformal expressions of all created planes (or lines) into the IdentifyObjects set (e.g., Edge L7_9
created by Points 7 and 9 connected to Point 8, and Edge L3_5 generated by Points 3 and 5 connected to
Point 4, in Figure 6).

(3) Topological analysis of the to-be-detected vertex: For each IObject from the IdentifyObjects
set, the outer product of this IObject and the to-be-detected vertex is calculated to determine whether
or not the signs of coefficients of the outer product are consistent with those saved in IdentifyDirect.
If they are consistent, the to-be-detected vertex is located inside the new boundary (Point 4 in Figure 6).
Otherwise, the to-be-detected vertex is located outside the new boundary (Point 8 in Figure 6).

(4) Concavity-convexity determination: If the to-be-detected vertex is located outside the generated
new boundary, then this vertex is a convex vertex (Point 8 in Figure 6); otherwise, it is a concave vertex
(Point 4 in Figure 6).

The presented vertex concavity-convexity detection method for spatial objects based on the outer
product can be applied to determine the vertex concavity-convexity of both simple polygons and
simple polyhedrons since the outer product in the conformal space has definitive and unified geometric
implications across all spaces with varied dimensionalities; therefore, the multi-dimensional unified
vertex concavity-convexity detection algorithm for objects in 3D space is achieved. Figure 7 presents
the detailed algorithm framework, in which the core steps of the algorithm framework are highlighted
with a bold font.
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Figure 7. Framework of the vertex concavity-convexity detection algorithm for spatial objects based on
the outer product.

4. Case Studies

The detection method for simple polygons was elaborated in the method section. Hence, in the
following case study section, we mainly focus on the vertex concavity-convexity detection of simple
polyhedrons in 3D space.

The simple 3D polyhedron that is shown in Figure 8 is used as an example to verify the proposed
algorithm for multidimensional unified vertex concavity and convexity detection. Points P4 and P16
are the to-be-detected vertices. According to the algorithm framework (Figure 7), the core algorithm to
detect vertex concavity-convexity of a simple polyhedron includes the following four steps:

(1) First, calculate the outer product of the interior space of the simple polyhedron in Figure 8 and
identify the signs of the coefficients of the outer product. Specifically, the extreme point P9 is identified,
and P8 is randomly chosen from vertices connected to P9 as the reference point, and Surface F9_13_14_10
to which P9 belongs is chosen as the reference surface. The outer product of P8 and F9_13_14_10 is
computed and Figure 8 shows the result.

(2) Second, identify the terminal nodes directly connected with the to-be-detected vertex, e.g., P3,
P5, P7, and P16 connected to P4 in Figure 9 and P4, P5, and P14 connected to P16 in Figure 10, and generate
new boundary surfaces F7_3_16, F5_3_7, F3_5_16, F7_5_16, and F4_5_14 according to the topological rules of
the polyhedron.

(3) Third, calculate the outer product of the to-be-detected vertex and the newly generated
boundary surface. Figures 9 and 10 show detailed results.

(4) Finally, determine whether the signs of the coefficients of the outer product of the to-be-detected
vertex are consistent with those of the interior space of the polyhedron, and subsequently determine
the concavity-convexity of the vertex.
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5. Conclusions and Discussion

This study investigates the detection method for the interior space of spatial objects and the
correlations between the vertex concavity-convexity of a spatial object and the outer products, since
the outer product in geometric algebra possesses unified and definitive implications among all spaces
with varied dimensionalities. Subsequently, the algorithm framework for vertex concavity-convexity
detection for spatial objects based on the outer product is proposed, and this framework is capable
of detecting vertex concavity-convexity for both simple polygons and polyhedrons. Therefore, this
multi-dimensional unified vertex concavity-convexity detection algorithm for spatial objects in 3D
space is verified.

The research findings of this paper enrich the algorithms for vertex concavity-convexity
detection for 2D polygons and unify the algorithms for vertex concavity-convexity detection for
2D polygons and 3D polyhedrons. More importantly, the introduction of geometric algebra into vertex
concavity-convexity detection and other relevant topology-based detections allows for us to fully take
advantage of the coordinate independence and dimension independence of geometric algebra in the
calculation of geometric relations of spatial objects and perform in-depth research on other graphics
and topological relations, including detecting convex/concave edges of objects in 3D space. CGA’s
advantage in geometric computation and multidimensional unified will make be a great help for
computer image processing in simplifying calculation complexity and improving calculation efficiency.
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