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Abstract: Hydropower dam displacement is influenced by various factors (dam ageing, reservoir
water level, air, water, and concrete temperature), which cause complex nonlinear behaviour that is
difficult to predict. Object deformation monitoring is a task of geodetic and civil engineers who use
different instruments and methods for measurements. Only geodetic methods have been used for the
object movement analysis in this research. Although the whole object is affected by the influencing
factors, different parts of the object react differently. Hence, one model cannot describe behaviour of
every part of the object precisely. In this research, a localised approach is presented—two individual
models are developed for every point strategically placed on the object: one model for the analysis
and prediction in the direction of the X axis and the other for the Y axis. Additionally, the prediction
of horizontal dam movement is not performed directly from measured values of influencing factors,
but from predicted values obtained by machine learning and statistical methods. The results of this
research show that it is possible to perform accurate short-term time series dam movement prediction
by using machine learning and statistical methods and that the only limiting factor for improving
prediction length is accurate weather forecast.

Keywords: structural health monitoring; dam deformation; precise surveying; time series prediction;
machine learning; artificial neural networks; spatial interpolation; ARIMA

1. Introduction

The dams are very important for production of electric energy, water supply, and irrigation.
However, at the same time they pose a great danger for the area situated downstream. To prevent
any hazardous influence of the dam, it is important to perform constant monitoring. Lombardi [1]
formulated the objectives of dam monitoring by posing four questions:

1. Does the dam behave as expected/predicted?
2. Does the dam behave as in the past?
3. Is there any trend which could impair dam’s safety in the future?
4. Was any anomaly detected in the behaviour of the dam?

Although Lombardi specified that these questions are intended for dam monitoring, they could
also apply to any other large infrastructural object. Many authors from various professions use different
methods and approaches to answer these questions, but they all have the same goal—to get precise
and reliable information about the object’s behaviour and health.
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The main goal of this research is to develop an approach that can provide accurate assessment of
the current state of a dam and better understand the relationship between influencing factors and the
dam movement. The secondary goal is to use this knowledge to make accurate short-term time series
prediction of dam displacements based on predicted values of influencing factors.

Accurate prediction of object movement would notably increase object safety and the object
maintenance would be much easier. Object monitoring has been and remains in the focus of scientific
research, while instruments and technologies are changing over the time. Our main focus is on
analysing and prediction horizontal dam movement by machine learning and statistical methods.
Horizontal dam movement prediction is conducted by applying two approaches:

• Every influencing factor is predicted independently and predicted values are used for short-term
dam movement prediction.

• Influencing factors are predicted considering their interconnectedness and then short-term dam
movement prediction is performed.

Therefore, this research is a synthesis of two complementary study areas: structural health
monitoring (SHM) and time series prediction (TSP). Considerable amounts of research on SHM related
to infrastructure objects and natural phenomena (tunnels, bridges, dams, big buildings, landslides,
soil and rock masses) has been conducted in recent years. The main focus is on the analysis and
prediction of dam movement. Conventional geodetic measurements still play major role in dam
stability monitoring. However, recent studies show that researchers are increasingly using Global
Navigation Satellite System (GNSS) and remote sensing methods, as the gap in accuracy between these
methods and conventional geodetic measurements is steadily decreasing. GNSS and remote sensing
methods are now able to achieve accuracy, which satisfies strict demands of dam monitoring.

Yigit, Alcayb and Ceylanb (2015) evaluate the horizontal movements of the Ermenek Dam
(Turkey) based on periodic conventional geodetic measurements during the first filling of the reservoir.
Dam displacements are correlated to water level in reservoir and seasonal temperature changes.
Their analysis reveals that the periodicity and linear trend in the time series are related to seasonal
concrete temperature fluctuations increasing linearly with reservoir level. Measured deformations
by geodetic methods are in line with the predicted deformation obtained by the Finite Element
Method (FEM) analysis [2]. Xiao et al. (2019) investigate performance of GNSS measurements in
South-to-North Water Diversion Project in China. GNSS measurements meet temporal and accuracy
requirements for deformation monitoring. The study reveals high correlation between the water level
in the reservoir and the deformation of the dam surface [3]. Due to a lack of specific models describing
the behaviour of earthen dam, Dardanelli and Pipitone (2017) tested several hydraulic models and
FEM. To additionally support their research, GNSS measurements over 2 years (2011–2013) are also
performed. The best prediction results are obtained by the PoliMi model and the deterministic model
(difference between measured and observed data are in a range of a few millimetres). By comparing
data obtained by GNSS and traditional geodetic measurements, it is evident that satellite survey has
great potential for SHM [4]. Teng et al. (2011) propose permanent scatterer application and quasi
permanent scatterer time-series Interferometric Synthetic Aperture Radar (InSAR) images for dam
monitoring. The results of their proposed dam monitoring approach, by using time-series SAR images,
are in line with those obtained by conventional methods. In conclusion, authors emphasised that
the proposed approach does not require field work, as coverage of SAR images allows deformation
monitoring on a large scale and due to density of observation number of observed points is much higher
compared to conventional methods [5]. SAR images are employed in study at Svartevatn earth-rockfill
dam (Norway) by Voege, Frauenfelder and Larsen (2012). By using SAR images dam displacements and
mean ground velocity are calculated. Their results show that historic SAR data can be used to monitor
deformations of the dam with a resolution comparable to conventional geodetic measurements [6].
Dardanelli et al. (2014) developed continuous GNSS system for earth-dam deformations monitoring in
Sicily (Italy). Their research reveals that accuracy of post-processed GNSS measurements is comparable
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to conventional geodetic methods. Also, correlation between changes of reservoir surface, obtained by
remote sensing methods, with obtained GNSS displacements was calculated in this study and results
showed weak positive correlation between tested variables [7]. Levelling, GPS measurements and SAR
images are used to evaluate stability of the Darbandikhan dam (Iraq) after high magnitude earthquake
in research conducted by Al-Husseinawi et al. (2018). Their research concludes that SAR images of the
post-seismic dam deformation are useful to inform maintenance plans, but terrestrial surveys are still
essential in the case of large-gradient deformation during earthquakes [8].

Although, conventional dam deformation methods have very high accuracy, they are time
consuming, labour intensive, and have high costs. On the other hand, GNSS measurements offer
continuous monitoring of the dam, while remote sensing methods allow deformation monitoring on a
large scale and higher density of observation points compared to conventional methods and GNSS.
To take advantage of all of these methods, experts usually use integrated approach to obtain best
possible monitoring results.

Statistical methods are traditionally used for dam stability analysis and prediction. Application of
machine learning methods is also one of the common approaches in SHM. Among machine learning
methods, the application of artificial neural networks (ANNs) has the leading role in dam deformation
analysis and dam movement prediction. ANNs and statistical methods are used independently or
jointly—either to complement each other or for comparison purposes.

Bui et al. (2016) propose application of swarm optimised neural fuzzy inference system (SONFIS)
for modelling and forecasting of the horizontal displacement of hydropower dams. Time series
monitoring data (horizontal displacement, air temperature, upstream reservoir water level and dam
aging) of the Hoa Binh hydropower dam (Vietnam) are selected as a case study. SONFIS model
outperforms support vector regression, multilayer perceptron neural networks, Gaussian processes,
and Random forests that use the same data for model fitting and testing [9]. In the same case study,
the multi regression model (MLR), SARIMA model and the back-propagation neural network (BPNN)
merging models are tested for dam movement prediction by Zou et al. (2017). Authors conclude
that SARIMA model and the SARIMA–BPNN merging model have great potential applications in the
field of dam deformation analysis and prediction [10]. Liu et al. (2018) developed a self-diagnosis
system for dam safety diagnosis. Their system is based on the gray model-genetic algorithm-BPNN
model and can realise online fault diagnosis better than the traditional single models [11]. Application
of an extreme learning machine (ELM), feedforward neural network with a single layer of hidden
nodes with the weights connecting inputs to hidden nodes are randomly assigned, is proposed for
displacement prediction of gravity dams by Kang et al. (2017). Proposed model is compared to BPNN,
MLR and stepwise regression models and the results show that proposed model has better accuracy
and requires less time for model fitting [12].

Time series prediction (TSP) provides a wide span of applications in engineering, energy production
and management, tourism and stock exchange. Similarly to SHM, statistical methods and machine
learning methods are commonly used in TSP. Autoregressive integrated moving average (ARIMA)
with or without seasonal component (SARIMA) is very popular among researchers. Due to climate
changes, there are numerous studies dealing with meteorological and hydrological prediction and one
of the most popular methods is ARIMA. It is rather common to use different types of ANNs for TSP,
especially recurrent dynamic networks with feedback connections such as: nonlinear autoregressive
neural networks (NAR) and nonlinear autoregressive neural networks with exogenous inputs (NARX).

In research conducted by Murat et al. (2018), meteorological time series data from different
climatic zones are used for fitting Box-Jenkins and Holt-Winters SARIMA, ARIMA with external
regressors in the form of Fourier terms and the time series regression. The results show that chosen
models cannot predict the exact air temperature and precipitation but they can give information that
helps environmental planning and decision-making [13]. Chawsheen and Broom (2017) use SARIMA
model for monthly mean temperature prediction in Erbil (IRAQ). The selected model is validated by
predicting the mean temperature from January 2014 to November 2015 and the estimated forecast mean
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temperature is identical or very close to the actual temperature data. Authors conclude that proposed
model could be also applied to accurately determine the need for electricity and water in the Kurdistan
Region of Iraq [14]. In research conducted by Rizkina, Adytia and Subasita (2019), NAR networks
and tidal harmonic analysis are used for sea level prediction in Semarang (India). NAR networks
show better results compared to tide harmonic analysis, which is standard method for seal level
prediction [15]. Cadenas et al. (2016) compare performance of univariate ARIMA and multivariate
NARX model for short term wind speed prediction. The results show that multivariate NARX model
gives more accurate results when compared to ARIMA model. Although, NARX model outperformed
ARIMA model, authors point out that even univariate ARIMA model can give reasonable one step
ahead wind speed prediction [16]. Hamzic et al. (2016) compared NAR networks and Feed Forward
Back Propagation neural networks for short-term water level prediction in reservoir. The results
showed that neural networks can provide quality water level prediction even if only water level data is
used. The main weakness of univariate time series water level prediction is slow adjustment to sudden
water level changes. [17].

Unlike standard daily surveying measurements, which can be performed by using standard
geodetic equipment, dam monitoring demands very precise instruments and special conditions should
be met to achieve the required accuracy and reliability of measurements. To obtain desired results it is
necessary to [18–20]:

• Establish special control geodetic network whose accuracy is better than standard geodetic
networks (e.g., state geodetic network). These control networks are used for displacement
and deformation measurements. However, it is not enough just to determine the existence of
displacements. It is also necessary to determine how reliable these measurements are. Special
geodetic networks cover not only complete deformation area but also area where no deformations
are expected (stable ground). Moreover, network shape should be carefully determined because
only geometrically stable and reliable network enables high accuracy and reliability needed for
deformation analysis.

• Use the best available instruments and measuring techniques. Instruments and other equipment
are regularly inspected and rectified in authorised institutions to confirm their operational
correctness. Modern instruments used for deformation monitoring are not only very precise and
fast but also designed in such a way that occurrence of any type of error is minimised (automatic
aiming and saving measurements directly in programs for data processing).

• Repeat every measurement in order to ensure reliability of results. Angle measurements are
performed in two faces of total station to reduce systematic errors and distances are measured
with every angle measurement.

• Measure atmospheric parameters (air temperature, air pressure and humidity) and use them later
for measurement corrections. Earth shape and refraction is also considered when preparing data
for processing.

Even with all precautions taken and above procedures followed, some errors do occur in
measurements. These errors are removed with special statistic tests and only valid measurements are
used for deformation analysis.

Dam monitoring by using precise geodetic surveying is very accurate but also time-consuming
method for dam stability analysis. It gives global picture of the object’s health and is very highly
regarded among the professionals. This method requires group of experts, using special instruments
and methods. Hence it is usually performed only twice a year. The first annual monitoring series is
conducted when the dam accumulates all the cold, which is at the end of winter and early spring,
and second annual monitoring series is conducted when the dam accumulates all the heat which is at
the end of summer and early autumn.

The main issue with modelling current state of the dam and dam movement prediction is
general lack of dam monitoring data obtained by precise geodetic surveying and unfavourable data
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distribution—all measurements are performed at approximately the same time of the season and under
similar conditions. Accordingly, there are no satisfactory quantities of dam monitoring data by precise
surveying which may be used for detailed analysis and research. Although it is possible to automatise
this process, it is very rarely implemented in practice due to high costs of needed instruments and
equipment. Often less accurate methods are used for dam monitoring especially if they can be easily
automated or performed quickly.

To overcome these above mentioned issues for the purpose of this research a total of 20 series
of distance and angular measurements by precise robotic total station is conducted in period from
15 January 2015 to 7 April 2017 (approximately one measurement every 41 days). Of 20 measurement
series, 18 were used for model fitting and two were used for external validation.

All geodetic measurements were carried out by using precise robotic total station in combination
with Terrestrial Positioning System Control software and GNSS/LPS/LS based Online Control and
Alarm System (GOCA) software was used for measurement processing [21,22]. All temperature
measurements, water inflow/outflow and water level measurements are preprocessed and visualised
by MS Excel. ANN training and ARIMA model fitting and prediction has been performed by MATLAB
2018. Time series data of influencing factors and measured dam displacements of the Jablanica
hydropower dam were selected as a case study.

Even all data regarding dam monitoring were collected by carefully following regulations and
procedures, some false readings and missing data still appear. Thus, the first step was “cleaning” the
data from false readings and supplementing the missing data. The second step was to find optimal
ANNs structures and ARIMA models for short-term prediction of influencing factors. In the third
step, correlation between dam movements and influencing factors is determined by using localised
approach—individual models are developed for every point strategically placed on the object. The final
step was to perform short-term dam movement prediction by using predicted values of influencing
factors. Predicted values are compared to the observed displacement to validate the proposed model.

The results prove it is possible to perform very accurate short-term dam movement prediction by
using predicted values of influencing factors. Although, dam movement is complex and nonlinear,
the results show that there is a strong linear correlation between influencing factors and dam movement
in the direction of river flow for all object points distanced from dam foundations.

2. Materials and Methods

2.1. The Case Study

The dam in Jablanica is an arch-gravity concrete dam 85 m high with the crest length of 210 m.
It was built on the river Neretva in 1955 approximately five kilometres north from the centre of
Jablanica (Bosnia and Herzegovina). After the construction, it was the largest waterpower object in the
former Socialist Federal Republic of Yugoslavia [23]. A network for physical and geodetic monitoring
is installed on the dam in order to inspect a current state of dam’s health. The dam is equipped
with sensors that measure: air temperature, water temperature, concrete temperature, displacements
between dam blocks, dam blocks inclination, uplift water pressure and pressure of underground water.
These sensors collect data in the form of time series.

Time series data is any data that is observed sequentially over time. The goal of time series
prediction is to estimate future values based on present and historical data, or stated mathematically [24]:

∼
y(t + ∆t) = f(y(t− 1), y(t− 2), y(t− 3), . . . , y(t− n)), (1)

where
∼
y is the predicted value of a time series y, t is the current moment in time, ∆t defines how far in

future is predicted and n is the total number of samples.
A geodetic network consisting of 11 reference points was used as a base for geodetic monitoring of

the dam displacements and 34 object points were monitored. Two object points, geodetic pillars J10 and
J11, are installed on top of the dam crest, while the remaining 32 points are installed on the downstream
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side of the dam body. The main function of points J10 and J11 is not dam deformation monitoring
but to improve connection between upstream and downstream reference points, i.e., to enhance the
quality of control geodetic network for dam monitoring. Object point JP84 is incorrectly installed and
cannot be observed from any reference point, hence it is not included in the research. Reference points
network and object points network used for dam monitoring are shown in Figures 1 and 2.
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Figure 2. Disposition of object points on downstream side of dam body.

Each geodetic pillar has special stainless steel plate installed on top of it, so a tribrach is directly
fastened on the pillar. Hence, there is no instrumental centring error. Horizontal directions, zenith
angles and distances are observed from each reference point toward all reference and object points
that can be observed. Three sets of observations in two faces are performed from each reference point
and atmospheric data are recorded for every set of measurements so measurement corrections can
be applied in the post processing. Air temperature and pressure are measured on site while data
regarding air humidity is taken from the web weather services.

All observations are performed by precise robotic total station Sokkia NET05 (0.8 mm + 1 ppm
distance measurement accuracy, 0.5” angle measurement accuracy). Leica GPR121 professional prism
was used for observations on geodetic pillars and Sokkia Mini102 prisms with custom made holders
are installed on the dam body.
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Coordinate system for the dam monitoring is defined as follows:

• X axis passes through the geometric centre of the dam and the positive direction of X axis
is upstream,

• Y axis is perpendicular on X axis and positive direction is towards left coast of the river Neretva,
• H axis-height.

Dam movement is influenced by various factors and the most common factors are presented in
Figure 3. Factors which are difficult to model (e.g., earthquakes), factors with insignificant influence
(e.g., ice pressure) and factors that do not influence horizontal dam movements (dam weight,
uplift pressure) are not considered. The main focus in this research is on four factors that are
the main cause for horizontal dam movement: water level, air temperature, water temperature and
concrete temperature. Dam ageing is not considered as an important factor since dam movement
prediction is performed for a very short time period and the value of this impact factor would be
insignificant in this particular case.
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2.2. Dam Displacement Data

Dam monitoring with the use of geodetic methods started in 1954 (the initial monitoring series
also known as “0” monitoring series) and is usually performed only twice a year. The main problem
with geodetic measurements from 1954 to 2015 is that all measurements were performed with no
regard to influencing factors, i.e., during these measurements, values of influencing factors were
not measured simultaneously to geodetic measurements. Since 2012, the dam monitoring has been
performed with the use of precise geodetic surveying by robotic total station and every measurement
is accompanied by the appropriate atmospheric data (air temperature, humidity and air pressure) so
every measurement can be corrected in accordance with these factors. Automatization of geodetic
measurements improved speed of data collecting and also eliminated the majority of human errors
from measurements (e.g., wrong data entry or reflector aiming error). Corrected measurements are
processed by using GOCA software.

GOCA is a multi-sensor system which applies GNSS/GPS, terrestrial sensors (e.g., total stations,
spirit levelling and hydrostatic levelling instruments) and local sensors for deformation monitoring and
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analysis. As a result, GOCA provides displacements, velocities, and accelerations in a three-dimensional
coordinate system [21].

A certain number of measurements needs to be known in order to solve a mathematical model
(to obtain coordinates of stable and object points). If more than necessary measurements are added for
a solution (redundancy), a discrepancy in the model will occur. To eliminate these discrepancies it
is necessary to adjust the mathematical model. Gauss and Legendre (1806) introduced least squares
method to remove discrepancies as follows:

vTPv = min, (2)

where v is n-dimensional residual vector (vT is transposed residual vector) and P is weight matrix
proportional to inverse variance-covariance matrix of measured variables. This method is used in
geodesy to connect measurements and unknown parameters and can be stated by the following equation:

f
(
x̂, l̂

)
= 0, (3)

where x̂ is n-dimensional vector of adjusted parameters, l̂ is n-dimensional vector of adjusted
measurements and zero value on the right side of the equation indicates that there is no more
discrepancies in the model.

After the adjustment of measurements, Gauss-Markov model is usually used for geodetic data
analysis. This model represents a combination of deterministic and corresponding stochastic model:

l + ε = AxT, and (4)

E
(
εεT

)
= σ2

0Ql, (5)

where l is n dimensional vector of measurements, ε is vector of real errors, A is the first design
matrix (A = ∂f

∂x ), xT is vector of real values of unknown parameters, E is expected value, σ2
0 is variance

factor and Ql is cofactor matrix (Ql = P−1). For non-linear dependencies, vector l includes differences
between observed and computed values of measurements and xT includes the improvements of
parameter values with respect to a priori values of parameters.

Deformation analysis by GOCA consists of three steps [22]:

1. Initialisation—free network adjustment in order to remove errors from measurements using
Baarda’s iterative data snooping procedure. Only one error can be removed in every iteration
and this process is repeated until all the errors from measurements are removed.

2. Network adjustment based on refined measurements. Geodetic reference frame consisting of
stable geodetic points, is defined in this step and then final adjustment is performed to determine
object points coordinates.

3. Deformation analysis—reference points stability testing and object points movement testing.

The data obtained by precise tachymetry measurements have very high accuracy and mean point
error of object points never exceeds 0.5 millimetres. It is important to note, that all measurements are
performed quickly so values of influencing factors cannot change significantly from the beginning to
the end of measurements.

It is often the case that some object points cannot be monitored due to different obstacles (grown tree
branch, heavy traffic) or equipment limitations (strong illumination, dirt on the monitoring prisms,
tilting terrain). In that case, dam displacements cannot be calculated based on direct observations,
but can be interpolated using ANNs prediction [25]. In this research, dam displacements for object
point JP24 were interpolated using ANNs prediction for 3 series with missing data (0.48% dam
displacement data).

Three types of ANNs (Cascade forward backpropagation, Feed forward backpropagation and
Layer recurrent backpropagation) and a voting system with four functions (MIN, MAX, “Mean of
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closest 2” and “Mean of 3”) were used for the interpolation of missing dam displacements using
prediction. Flow chart of proposed model is shown in Figure 4.
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The missing data interpolation approach combines spatial and temporal aspects of the data
and uses it for its benefits to achieve good results using ANN prediction. It also provides the best
results in cases when missing data have a long monitoring history and in cases when there are many
neighbouring points near the point with the missing data. Another benefit of this approach is that it
can handle missing data at the end of the data intervals. However, the shortcomings of this approach
become apparent when a combination of small number of monitoring series and small number of
neighbours of the missing object points appears [25].

2.3. Water Level Data

Water level in the reservoir is influenced by various factors, such as: inflow, upstream rainfall,
discharge of water from reservoir, evaporation and water seepage. We used daily measurements of
water level, water inflow, water consumption for the production of electric energy and water discharge
over the spillway from 1 January 1998 to 7 April 2017 for ARIMA and ANNs prediction. Since ANNs
work better with smaller values, all measured water level values were normalised to values between 0
and 1 for the purpose of ANN training. Collected data is visualised by line graph, shown in Figures 5
and 6, to investigate trends and patterns in water behaviour.
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2.4. Air, Water and Concrete Temperature Data

Air, water and concrete temperature data is collected by sensors positioned on the dam and inside
of the dam’s structure. Air temperature is measured by one automatic thermometer and one manual
mercury thermometer. Water temperature is measured automatically in three vertical levels: 227 m,
240 m and 250 m above sea level (top of the dam’s crest is at 275 m and maximal water level is at
270 m). Measurements were excluded from research in cases when water level was below sensor
level. Concrete temperature is measured by numerous sensors evenly distributed inside of the dam’s
concrete walls. Values of 9 concrete thermometers positioned on the downstream side of the dam,
where geodetic object points are installed, were used. The other sensors are installed inside dam’s
galleries walls and their values are almost constant hence these measurements were not taken into
account. Measured values of air, water and concrete temperature are shown in Figure 7.
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Data from sensors are recorded every 30 min, and we used daily mean values. As presented in
Table 1, there are significant differences in air, water and concrete temperature between seasons. It is
important to note that the air temperature sensor is installed in a way so that it is not directly exposed
to sun radiation and measured value does not accurately depict temperature on the surface of the
dam—the real difference between maximal and minimal value is even larger.

Table 1. Air, water and concrete temperature – maximal, minimal and average values (unit: ◦C).

Max. Air
temp.

Min. Air
temp.

Average
Air

temp.

Max.
Water
temp.

Min.
Water
temp.

Average
Water
temp.

Max.
Concrete

temp.

Min.
Concrete

temp.

Average
Concrete

temp.

29.0 −10.9 12.4 14.0 3.5 9.4 20.4 7.7 13.7

2.5. Prediction of Influencing Factors

Prediction of influencing factors is performed by means of machine learning and statistical
methods suitable for time series data. A total of three methods was used in this research: ARIMA,
NAR network and NARX network.

Autoregressive integrated moving average (ARIMA) model was introduced by Box and Jenkins
in 1970 and it is one of the most popular approaches for prediction in various fields (economy, weather,
engineering). ARIMA model uses linear combination of the past values and the past errors of a
variable to determine future values of that variable. The general form of ARIMA model is given by the
following equation:

y′t= c+φ1y′t−1+ . . .+φpy′t−p+θ1εt−1+ . . .+ θqεt−q+εt, (6)

where y′t is a stationary stochastic process, c is the constant, φi (I = 1, . . . , p) is the autoregression
coefficient, θk (k = 1, . . . , q) is the moving average coefficient and εt is the error term. This model
is usually denoted as ARIMA (p,d,q) model where p is the order of the autoregressive part, d is the
degree of differencing and q is the order of the moving average part [26].
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The Box-Jenkins methodology is a method of identifying, fitting, checking and using ARIMA time
series models. This method refers to the iterative application of three steps: identification, estimation,
and diagnostic checking. The process is repeated until the model cannot be further improved.

Makridakis et al. in [27] added two more steps in the Box-Jenkins methodology: preliminary
step of data preparation and final step of ARIMA model application. By adding these two steps in the
original method, an extended Box-Jenkins methodology has the following form:

1. Data preparation includes data transformations and differencing. Transformations are used
to stabilise the variance while differencing is used to remove obvious patterns from data
(trends and seasonality).

2. Model selection includes inspecting of time-series graphs of original data but also autocorrelation
and partial autocorrelation graphs in order to determine potential model for data fitting.

3. Parameter estimation includes finding values of model coefficients which provide the best
data fitting.

4. Model checking—the fitted model is checked for inadequacies by considering the autocorrelations
of the residual series. If it is concluded that the chosen model is inadequate then it is necessary to
go back to the step 2.

5. Prediction by using chosen model.

To perform time series ARIMA prediction it is necessary for time series to be stationary. Stationarity
is examined by augmented Dickey-Fuller test (ADF) and Kwiatkowski-Phillips-Schmidt-Shin test
(KPSS). KPSS test considers as null hypothesis that the series is stationary and ADF test considers that
the series possesses a unit root and hence is not stationary. Both used tests verified that used time
series were stationary, so ARIMA models were not differenced (d = 0 in all models).

The Ljung-Box test [28] is commonly used to test the quality of the fit of a time series model.
The null hypothesis of the test is that the model does not exhibit lack of fit. The test is based on
the statistic:

Q = T(T + 2)
∑h

k=1

r2
k

(T − k)
, (7)

where T is the length of the time series, rk is the k-th autocorrelation coefficient of the residuals and h is
the number of lags to test. The test rejects the null hypothesis if:

Q > χ2
1−α,m, (8)

where χ2
1−α,h is the chi-square distribution table value with m = h− (p + q) degrees of freedom (DOF)

and significance level α, p and q indicate the number of parameters from the ARIMA(p,q) model fit to
the data.

The Akaike Information Criterion (AIC) and Bayesian information criterion (BIC) are often used
for choosing the best model from a number of tested models. These criteria try to find optimal balance
between number of parameters in model and good fit. AIC and BIC are defined by:

AIC = − 2 ln(L) + 2p, and (9)

BIC = − 2 ln(L) + p ∗ ln(n), (10)

where L is maximum likelihood function, p is the number of estimated parameters and n is the number
of observations.

The AIC tries to select the model that most adequately describes reality—lower value of AIC
means a model is considered to be closer to the truth. On the other side, BIC is an estimate of a function
of the posterior probability of a model being true, under a certain Bayesian setup, so a lower BIC means
that a model is considered more likely to be the true model [29]. The model with the least value of AIC
and BIC is considered as the best model.
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ARIMA practitioners, just like ANN practitioners, often find that ARIMA model selection is partly
art and partly science. In this research, we relied on statistics to choose models for prediction of time
series influencing factors. The following algorithm was used for model selection:

1. The number of differences 0 ≤ d ≤ 2 is determined using repeated ADF and KPSS tests.
2. A constant is included in a model if d = 0.
3. Fit models while p ≤ 8 and q ≤ 8.
4. The model with the smallest combination of AIC and BIC value fitted in step 3 is tested by

Ljung-Box test. If it is declared that a model passed the test, then set model to be the “optimal
model”. Otherwise, test the next model according to chosen criteria until a model pass the test.

5. Use optimal model for time series prediction of influencing factors.

NAR Network enables the prediction of future values of a time series, supported by its historical
background, by means of a re-feeding mechanism, in which a predicted value may serve as an input for
new predictions at later points in time [30]. NAR model can be defined by the following equation [31]:

y(t)= f(y (t− 1), y(t− 2), . . . , y(t − ny)). (11)

If the value of output signal y(t) is regressed on previous values of the output signal and previous
values of an independent (exogenous) input signal u(t) then this model is called NARX. The equation
of NARX model is [31]:

y(t) = f(y (t− 1), y(t− 2), . . . , y(t − ny), u(t− 1), u(t− 2), . . . , u(t− nu)
)
. (12)

Dynamic networks with feedback, such as NARX and NAR neural networks, can be transformed
from open-loop to closed-loop modes and vice versa. Open-loop networks make one step predictions
and closed-loop networks make multistep predictions. In other words, closed-loop networks continue
to predict when external feedback is missing, by using internal feedback [31].

Different researchers offer various methods to determine ANN structure. The most common
used rule of thumb methods and equations to determine ANNs structure are summed in papers by
Heaton in [32] and Lu et al. in [33]. Network without hidden layers is only capable of representing
linear separable functions or decisions. Network with one hidden layer can approximate any function
which contains a continuous mapping from one finite space to another, while two hidden layers can
represent an arbitrary decision boundary to arbitrary accuracy with rational activation functions and
can approximate any smooth mapping to any accuracy [32].

In [32] it is stated that:

• The number of hidden neurons should be in the range between the size of the input layer and the
size of the output layer,

• The number of hidden neurons should be 2/3 of the input layer size, plus the size of the output layer,
• The number of hidden neurons should be less than twice the input layer size.

Authors in [33] tested equations for choosing the exact number of neurons in hidden layer.
They collected and tested various equations suggested by ANN practitioners and researchers,
i.e., Equations (13)–(16):

N = 2 ∗ i + 1, (13)

N =
√

i ∗ o, (14)

N =
√

0.43∗i ∗ o + 0.12∗o2 + 2.54∗i + 0.77∗o + 0.35+ 0.51, and (15)

N =
√

i + o + A. (16)

In Equations (13)–(16), N is the number of neurons in hidden layer, i is number of input nodes,
o is number of output nodes and A is the constant between 1 and 10.
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Above mentioned rules and equations were used to determine the starting ANN architectures for
ANN training. Method of trial and error was used to determine exact ANN architecture. This method
is more time-consuming compared to all of the previously mentioned methods but it also gives better
chance of finding optimal ANN structure.

2.6. Horizontal Dam Movement Prediction

A total of five types of ANNs were used for the prediction of influencing factors and dam
displacement prediction. Two types of time series prediction ANNs were used for influencing factors
prediction: NAR network and NARX network. Three types of classical ANNs and a statistical
method were used for dam displacement prediction: Cascade Forward Back Propagation (CFBP),
Feed Forward Back Propagation (FFBP), Layer Recurrent Back Propagation (LRBP) and multiple linear
regression (MLR).

FFBP network consists of series of layers. The first layer is connected to inputs and each following
layer is connected to the previous layer. The first layer has weights coming from the input and each
subsequent layer has a weight coming from the previous layer. The last layer is the network output.
Unlike FFBP networks, CFBP networks have layers connected to the input and all previous layers.
In the LRBP networks, there is a feedback loop with a single delay around each layer of the network
except for the last layer. This allows the network to have an infinite dynamic response to time series
input data [31].

The basic concept of the MLR is that predicted value y has linear relationship with two or more
independent variables. The general form of multiple regression model is:

yt= β0+β1x1,t+β2x2,t+ . . .+ βkxk,t + εt, (17)

where y is the variable to be predicted and x1, . . . , xk are the k predictor variables. The β coefficients
measure the effect of each predictor after taking into account the effects of all the other predictors in
the model [34].

MATLAB “dividerand” function was used for analysis and prediction in all trained ANNs.
This function divides data in the three subsets where default ratios for training, testing and validation
are 0.70, 0.15 and 0.15, respectively. For ANNs training Levenberg-Marquardt algorithm was chosen
which is known for its fast convergence ability [35]. Additionally, all tested ANNs contained one hidden
layer and for ARIMA models ADF and KPSS tests determined that there is no need for differencing of
time series, hence d = 0. After starting ANN structure was determined, the number of neurons and
number of delays were increased and decreased until there was no more progress.

2.7. System Modelling

In this research, dam movement prediction is not performed directly from measured values of
influencing factors. Influencing factors are rather predicted by means of machine learning and statistical
methods and only then predicted values are used for the dam movement prediction. The main focus
is on time series prediction methods: NAR network, NARX network and ARIMA. Two approaches
are used:

1. Every influencing factor is predicted independently by using NAR networks and ARIMA –
independently predicted values are used for dam movement prediction.

2. Influencing factors are predicted using NARX network by taking into account their
interconnections, e.g., water temperature is dependent on air temperature, concrete temperature
is dependent on air and water temperature, while water level is dependent on water inflow, water
outflow and water used for the production of electric energy. This approach addresses these
interdependences among influencing factors, which is often neglected in researches.

Influencing factors do not have the same impact on every part of the dam, hence one model cannot
precisely describe behaviour of every part of the dam. Therefore, a localised approach for analysis and
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prediction is introduced, i.e., for every object point on the dam two models were designed: the first
model is built to analyse and predict dam movement in direction of X axes (+X is directed upstream,
−X is directed downstream), and the second model is built to analyse and predict dam movement in
direction of Y axes (+Y is directed toward left river bank, −Y is directed toward right river bank).

Dam monitoring was performed in different periods of a year hence dam’s state was captured
in various conditions including extreme water levels, very low and very high temperatures. Date of
each monitoring series and values of influencing factors at the moment when series took place are
presented in Table 2.

Table 2. Measured values of influencing factors during geodetic dam monitoring series (date format:
day/month/year; water level unit: m; temperature unit: ◦C).

Series 1 Date Water Level 2 Air temp. Water temp. Concrete temp.

1 15.–16.01.2015. 263.56 4.0 5.5 9.2
2 17.02.2015. 265.86 2.7 5.9 8.5
3 23.03.2015. 262.69 9.4 6.6 9.6
4 22.–23.04.2015. 266.69 14.4 8.0 11.5
5 24.–25.05.2015. 267.97 13.4 9.9 14.6
6 26.–27.06.2015. 269.08 19.0 11.0 16.2
7 13.–14.07.2015. 268.51 23.9 11.7 17.7
8 19.–20.08.2015. 266.31 19.6 13.2 20.0
9 12.–13.09.2015. 263.96 20.2 13.9 19.9
10 30.11.–01.12.2015. 256.03 3.9 8.6 13.5
11 28.–29.01.2016. 255.38 2.0 6.4 10.9
12 04.–05.04.2016. 267.84 16.5 7.8 10.8
13 14.–15.06.2016. 269.64 12.8 10.0 13.0
14 11.–12.02.2017. 269.29 25.8 11.8 17.4
15 15.–16.10.2016. 262.10 20.5 12.7 18.5
16 22.–23.12.2016. 255.57 1.8 6.6 10.4
17 11.–12.02.2017. 250.56 3.9 5.7 8.4
18 01.–02.04.2017. 260.68 14.3 8.3 11.6

Val. 1 23.02.2017. 249.40 7.1 5.9 8.8
Val. 2 07.04.2017. 260.09 12.3 8.6 12.1

1 Val. 1 and Val. 2 are validation series, these series were not included in model fitting; 2 Maximal water level is
270.00 m.

To determine relationships between influencing factors and dam movements two methods are
used. The first method is machine learning with the use of three types of classical ANNs: FFBP,
CFBP and LRBP. After ANNs training the value of regression coefficient gives information about
correlation between influencing factors and dam movements. The second method is MLR which is
used after ANNs training is performed. MLR has two functions: the first is to determine the existence
of correlation between influencing factors and dam movements and the second is to determine the
type of these relationships. If value of MLR coefficient is not significant, it still does not mean there is
no significant relationship between dam movement and influencing factors—it only means that this
relationship is not linear. We do not consider the exact type of this relationship.

Only short-term prediction is performed due to limitations caused by the accuracy of weather
prediction for longer periods. Air temperature and precipitation are two main factors influencing the
prediction of dam movement. Thus, without accurate prediction of these factors there is no accurate
prediction of dam movements. Any significant difference of measured displacements and predicted
displacements implies that there is an anomaly in the behaviour of the dam. The complete flowchart of
proposed approach for dam behaviour analysis and short-term dam movement prediction based on
time series influencing factors is presented in Figure 8.
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If we denote yi as i-th measurement and
−
yi as prediction of yi, then the prediction error ei is:

ei = yi −
−
yi. (18)

To evaluate prediction performance mean absolute error (MAE) was used. MAE is defined as:

MAE =

∑n
i=1|ei|

n
, (19)

MAE gives general sense about prediction accuracy and maximum error is used as a measure of
prediction reliability, e.g., gives an answer to the question: “What is the result of the worst-case scenario?”

To measure predictive power of a model multiple correlation coefficient R was used, which is
defined as follows:

R =

√√√√√√
1−

∑n
i=1

(
Yi − Ŷi

)2

∑n
i=1

(
Yi −Y

)2 , (20)

where Y is measured variable, Ŷ represents the estimated value and Y is the mean of Y.
The multiple correlation coefficient R can be regarded as the square root of the ratio of the variation

in the estimated value Ŷ (that is the variation explained by the model) to the variation in the response
variable Y. If the model estimates Yi well without dispersion, the value of R approaches 1. Thus,
we regard the multiple correlation coefficient as a reasonable measure of predictive power [36].

3. Results and Discussion

Dam displacement data was incomplete due to the missing data of point JP24 in series 13, 14 and
15. The missing data was interpolated by ANN prediction and the results are presented in Table 3.
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Table 3. Interpolation of missing dam displacement data (unit: mm).

Axes Point Series Method Value Validation MAE

X JP24 13 Voting system “MAX” function −2.64 0.36
Y JP24 13 Voting system “MAX” function −1.97 0.47
X JP24 14 LRBP prediction −3.12 0.19
Y JP24 14 Voting system “Mean of closest 2” function −1.40 0.93
X JP24 15 Voting system “Mean of 3” function −2.12 0.16
Y JP24 15 Voting system “MAX” function −1.53 0.79

External validation results show that it is possible to accurately interpolate missing dam
displacement data (MAE under 1 mm). Also, displacements in direction of X axes had significantly
smaller mean absolute error of prediction compared to displacements in direction of Y axes.
The completed dam displacement data set was later used for the calculation of regression coefficients
by ANNs and MLR.

Water level in reservoir was predicted by using 3 methods: two methods use single variable
for time series prediction (NAR and ARIMA) and the third method that uses multiple variables
for time series prediction (NARX). The main goal was to find ANN structure and ARIMA model
which can accurately predict short-term water level, which is needed for dam movement prediction.
The secondary goal was to inspect how adding new variables impact prediction accuracy in periods of
sudden water level change. In [17] it was concluded that the main weakness of single variable time
series water level prediction by NAR networks and FFBP networks is slow adjustment to sudden water
level changes. This weakness causes large maximal errors in this prediction method.

External validation is performed to compare the prediction power of three used methods. The data
from 1 January 1998 to 7 April 2017 was used for ANN training and ARIMA model fitting and external
validation is performed sequentially ten by ten days on the data from 1 January 2016 to 4 January 2017
(37 sequential validations in total). In every sequential step of external validation training/fitting set
of data was updated by adding new measured data. The basic principle of sequential approach for
short-term prediction is presented in Figure 9.
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Among all tested ARIMA models and ANNs structure the best results were obtained by ARIMA
(3,0,4) model, NAR network with seven neurons in hidden layer and three delays and NARX network
with four neurons in hidden layer and one delay. The results of external validation are presented in
Table 4.

Table 4. External validation results of water level prediction (unit: m).

Method Input MAE MAE 10th Day 1 MAX

ARIMA Water level 0.90 1.59 9.79
NAR Water level 0.87 1.57 8.60

NARX Water level, total water inflow, water discharge, water
consumption for the production of electric energy 0.48 0.63 2.13

1 “MAE 10th day” disregards prediction errors of all the days prior 10th day in sequential approach for
short-term prediction.

According to data in Table 4, NARX networks outperformed ARIMA and NAR networks in
predicting water level in the reservoir. By analysing graph of measured and predicted values of water
level by every method it is obvious that this advantage for NARX networks comes in periods when
sudden water level occurs. In periods when water level is slowly changing there is no significant
difference in prediction quality among tested methods, as presented in Figure 10.
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Figure 10. Water level prediction—method comparison (unit: m; date format: month/day/year).

For the prediction of water level for the dam displacement prediction validation series,
i.e., for prediction of water level for 23 February 2017 and 7 April 2017 training/fitting data set
was updated and three best models/structures of every used method were used for prediction.
The mean value of three predictions of every method was used. Results are presented in Table 5.
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Table 5. Water level prediction (unit: m; date format: day/month/year).

Method 1 Prediction for 23.02.2017. Method Prediction for 07.04.2017.

ARIMA (3,0,4) 251.72 ARIMA (3,0,4) 260.30
ARIMA (2,0,1) 251.47 ARIMA (2,0,1) 260.23
ARIMA (6,0,1) 251.75 ARIMA (6,0,1) 260.29

NAR (n = 7, d = 3) 250.52 NAR (n = 7, d = 3) 260.56
NAR (n = 6, d = 5) 251.10 NAR (n = 6, d = 5) 260.74
NAR (n = 5, d = 3) 250.87 NAR (n = 5, d = 3) 260.74

NARX (n = 4, d = 1) 250.63 NARX (n = 4, d = 1) 260.57
NARX (n = 5, d = 1) 250.11 NARX (n = 5, d = 1) 260.35
NARX (n = 7, d = 1) 250.36 NARX (n = 7, d = 1) 260.64

1 n—number of neurons in hidden layer, d—number of delays.

Measured water level on 23 February 2017 was 249.40 m and on April 7th, 2017 260.09 m. Although,
all three tested methods showed good results, NARX networks performed somewhat better, especially
in the first validation measurement. These results are in agreement with results obtained in external
validation presented in Table 4.

Air temperature has direct and indirect influence on dam movements. Direct impact is only on
the dam’s surface due to absorbed solar radiation and indirect impact is through water and concrete
temperature due to long-term air temperature’s influence on water and concrete.

Weather forecasters use very sophisticated software, algorithms and various sources of weather
data (historical data, satellite imagery) to forecast weather. Even with all these tools, weather forecasters
struggle to give accurate forecast for period longer than three days. There is no consensus among
weather forecasting professionals about what the maximum number of days is which can be reliably
forecasted but most of the practitioners agree that accurate weather forecast is not possible for ten or
more days, as shown in Figure 11 [37].
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Due to the above-mentioned facts, we did not forecast air temperature but air temperature forecasts
are taken from web weather services: AccuWeather [38] and The Weather Channel [39]. The results of
air weather forecast for ten days ahead in the first validation series and eight days ahead in second
validation series are presented in Table 6.
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Table 6. The results of air temperature forecast (unit: ◦C, date format: day/month/year).

Date Measured Air Temperature accuweather.com Forecast weather.com Forecast

23.02.2017. 7.1 7.0 9.5
07.04.2017. 9.2 8.0 12.0

To compare the prediction power of used methods for water temperature prediction external
validation is performed on the data from 1 January 2016 to 4 January 2017. The approach for external
validation was the same as for water level data. The results of external validation for short-term water
temperature prediction are shown in Table 7.

Table 7. External validation results of water temperature prediction (unit: ◦C).

Method Input MAE MAE 10th Day 1 MAX

ARIMA Measured water temperature 0.2 0.4 1.6
NAR Measured water temperature 0.2 0.3 1.1

NARX Measured water temperature, measured air temperature 0.2 0.3 1.0
1 “MAE 10th day” disregards prediction errors of all the days prior 10th day in sequential approach for
short-term prediction.

The results of external validation showed that there is no significant difference in short-term
water temperature prediction among three tested methods. Due to the slow pace of water temperature
change, univariate methods are able to adapt and accurately predict future values of water temperature.
Hence, no significant difference was detected in accuracy among univariate and multivariate methods
when the value of predicted variable changes slowly.

Water temperature prediction is performed by two approaches: the first approach is a simple
univariate TSP based on historical water temperature data (ARIMA and NAR networks) and the second
approach is multivariate TSP—water temperature is predicted by using measured air temperature,
water temperature data and weather forecast air temperature (NARX networks). To predict water
temperature on 23 February 2017 and 7 April 2017 three models of each method which showed best
results in external validation were used. The mean value of three predictions of every method was
used as the final result. Results are presented in Table 8.

Table 8. Water temperature prediction (unit: ◦C; date format: day/month/year).

Method 1 Prediction for 23.02.2017. Method Prediction for 07.04.2017.

ARIMA (2,0,6) 6.1 ARIMA (2,0,5) 8.7
ARIMA (2,0,7) 6.1 ARIMA (2,0,6) 8.8
ARIMA (7,0,3) 5.9 ARIMA (2,0,7) 8.8

NAR (n = 2, d = 7) 6.3 NAR (n = 2, d = 7) 8.0
NAR (n = 3, d = 7) 5.5 NAR (n = 3, d = 7) 7.9
NAR (n = 4, d = 5) 6.2 NAR (n = 4, d = 5) 8.7

NARX (n = 7, d = 1) 5.7 NARX (n = 7, d = 1) 7.4
NARX (n = 8, d = 1) 6.7 NARX (n = 8, d = 1) 8.2
NARX (n = 9, d = 1) 5.7 NARX (n = 9, d = 1) 8.6

1 n—number of neurons in hidden layer, d—number of delays.

All three used methods predicted accurately measured water temperature on 23 February 2017
(5.9 °C) and 7 April 2017 (8.6 °C). Although, prediction errors are small these results are not surprising
because water temperature changes slowly and it is not hard to perform short-term prediction.

External validation for concrete temperature is performed on the data from 1 January 2016 to
4 January 2017 by using the same approach as for water level and water temperature data. Results are
presented in Table 9.
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Table 9. External validation results of concrete temperature prediction (unit: ◦C).

Method Input MAE MAE 10th Day 1 MAX

ARIMA Measured concrete temperature 0.2 0.2 1.1
NAR Measured concrete temperature 0.2 0.4 1.1

NARX Measured concrete temperature, measured water temperature,
measured air temperature 0.2 0.3 0.7

1 “MAE 10th day” disregards prediction errors of days prior to 10th day in sequential approach for
short-term prediction.

The results of concrete temperature prediction were very similar to those from water temperature
prediction. These variables change slowly hence univariate prediction had similar accuracy as
multivariate prediction.

Concrete temperature prediction was performed by two approaches: the first approach is simple
univariate time series prediction based on historical measured concrete temperature data (ARIMA and
NAR networks) and the second approach is a two-step cascade approach (NARX networks). Two-step
cascade approach has the following form:

1. In the first step, water temperature is predicted by using measured and weather forecast air
temperature data and measured water temperature data,

2. In the second step, measured air temperature, water temperature and concrete temperature,
weather forecast air temperature and predicted water temperature from the first step is used for
concrete temperature prediction.

For prediction of concrete temperature for two dam displacement prediction validation series
(ten days ahead and eight days ahead prediction), training/fitting data set was updated and three best
models/structures of every used method were used for prediction. The mean value of three predictions
of every method is used as the final result as presented in Table 10.

Table 10. Concrete temperature prediction (unit: ◦C; date format: day/month/year).

Method 1 Prediction for 23.02.2017. Method Prediction for 07.04.2017.

ARIMA (2,0,1) 8.9 ARIMA (2,0,1) 11.8
ARIMA (2,0,2) 8.9 ARIMA (2,0,2) 11.8
ARIMA (2,0,8) 8.8 ARIMA (2,0,8) 12.0

NAR (n = 4, d = 5) 8.4 NAR (n = 4, d = 5) 12.0
NAR (n = 4, d = 15) 9.1 NAR (n = 4, d = 15) 11.8
NAR (n = 10, d = 7) 8.7 NAR (n = 10, d = 7) 11.8
NARX (n = 2, d = 2) 8.9 NARX (n = 2, d = 2) 11.6
NARX (n = 4, d = 2) 8.9 NARX (n = 4, d = 2) 11.6
NARX (n = 5, d = 1) 8.7 NARX (n = 5, d = 1) 11.6

1 n—number of neurons in hidden layer, d—number of delays.

Measured concrete temperature on 23 February 2017 was 8.8 ◦C and on 7 April 2017was 12.1 ◦C.
All three tested methods accurately predicted concrete temperature and additionally, all models had
consistent results.

The completed dam displacement data for every object point was matched with the corresponding
values of influencing factors for the days when geodetic measurements were performed. These data
sets were then used for ANN training and MLR fitting for each point independently. Additionally,
separate models for each object point were developed for dam movements in direction of X and Y
axes. The main criteria for choosing optimal model for prediction of dam displacements was multiple
correlation coefficient R. Correlation test results are presented in Figure 12.
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This figure indicates that there is a strong correlation between dam displacements and values of
water level in reservoir, air temperature on the dam, reservoir water temperature and dam’s concrete
temperature. Additionally, these influencing factors have a larger impact on dam displacements in the
direction of X axes (+X upstream, −X downstream) compared to displacements in the direction of Y
axes. Also, the results showed that this relationship is not linear for majority of dam object points but
if we consider only dam movements in direction of X axes for all object points distanced from dam
foundations there is a strong linear correlation between influencing factors and dam movement.

To test predictive power of ANNs and MLR for short-term dam movement prediction based on
time series prediction of influencing factors two validation measurements were used. Predicted values
of influencing factors were used as an input for trained ANN models with highest R values. A total of
12 combinations were tested, three inputs (ARIMA, NAR and NARX predictions of influencing factors)
and four models of displacement prediction (FFBP, CFBP, LRBP and MLR), to investigate the existence
of superior combination for prediction. Prediction results for all 12 tested combinations is presented in
Appendix A. The results of external validation for short-term dam movement prediction based on time
series prediction of influencing factors are presented in Tables 11 and 12.

Table 11. External validation for dam movement prediction in direction of X axes (unit: mm).

Method Input 1 1st Validation
MAE

1st Validation
MAX Error

2nd Validation
MAE

2nd Validation
MAX error

CFBP ARIMA 0.8 1.7 0.5 1.4
CFBP NAR 0.8 1.9 0.5 1.6
CFBP NARX 0.8 1.9 0.5 1.5
FFBP ARIMA 0.7 1.4 0.6 2.1
FFBP NAR 0.7 1.6 0.7 1.9
FFBP NARX 0.8 2.0 0.7 1.9
LRBP ARIMA 0.7 1.6 0.6 1.9
LRBP NAR 0.7 1.8 0.7 2.1
LRBP NARX 0.8 1.9 0.7 2.0
MLR ARIMA 0.4 1.2 0.3 0.9
MLR NAR 0.5 1.3 0.4 1.1
MLR NARX 0.6 1.4 0.5 1.1

1 Method used for prediction of influencing factors which are later used as inputs for the dam movement prediction.
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Table 12. External validation for dam movement prediction in direction of Y axes (unit: mm).

Method Input 1 1st Validation
MAE

1st Validation
MAX Error

2nd Validation
MAE

2nd Validation
MAX Error

CFBP ARIMA 0.6 2.1 0.9 2.0
CFBP NAR 0.7 2.1 0.9 2.4
CFBP NARX 0.7 2.1 1.0 2.4
FFBP ARIMA 0.5 1.3 0.9 2.0
FFBP NAR 0.5 1.5 0.9 2.4
FFBP NARX 0.6 1.7 1.0 2.4
LRBP ARIMA 0.5 1.5 1.0 2.5
LRBP NAR 0.6 1.7 1.1 2.5
LRBP NARX 0.6 1.7 1.0 2.5
MLR ARIMA 0.7 1.5 0.8 1.5
MLR NAR 0.7 1.6 0.9 1.6
MLR NARX 0.7 1.6 0.9 1.5

1 Method used for prediction of influencing factors which are later used as inputs for the dam movement prediction.

The spatial distribution of the prediction quality for all object points on the dam body is presented
in Figure 13.

If we consider only dam movements in the direction of the X axes (direction of river flow) it
can be concluded that object points distanced from dam foundations have smaller prediction errors
compared to those close to the foundations. When considering dam movements in direction of Y axes
there is no clear rule that can explain spatial distribution of prediction errors. Additionally, even when
correlation coefficients are not very high, for example point JP24, prediction accuracy is still good.
Relationship between observed and predicted deformations for five selected object points in four
consecutive measurement series is presented in Figures 14 and 15. Predicted dam displacement is
mean value of predictions from all used methods.
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As it can be seen from Figures 14 and 15, the proposed approach for dam movement prediction
can accurately estimate dam movement on every part of the object. Also, predicted values of dam
displacements often follow the current trend of dam movements in directions of X and Y axes.

By analysing all obtained results, it can be concluded that by using proposed approach it is
possible to accurately predict short-term dam movement based on predicted values of influencing
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factors. There was no single combination which showed superior prediction results compared to other
tested methods but MLR showed somewhat better results compared to ANNs in both validation series
for prediction of dam movement in direction of X axes. This result is counterintuitive because ANNs
performs better (scored higher R values) when testing ANNs and MLR models.
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4. Conclusions

In this research, complete process of data acquisition, data processing and dam stability analysis
by means of geodetic measurements are presented. Four major influencing factors for short-term dam
movement are identified and later used for short-term movement prediction.

A method based on ANNs for the interpolation of missing dam displacement data is presented
and used for the completion of missing dam displacement data. This unique method had sufficient
accuracy for predicting missing dam displacement data which is confirmed by external validation on
four known object points.

Time series prediction of influencing factors is performed by a statistical method (ARIMA) and
two machine learning methods (NAR network and NARX network). Two approaches were presented
for the prediction of time series influencing factors. The first approach uses only historical data of
predicted variable. The second, multivariate method, approach which cascade prediction taking in
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account interdependence of influencing factors. External validation was performed to compare used
methods and approaches sequential. The results show that multivariate prediction of water level
is superior to univariate prediction. This superiority is especially noticeable in periods of sudden
changes in water level. In periods when water level changes slowly univariate and multivariate
prediction shows very similar results. Water temperature in reservoir and concrete temperature of the
dam changes slowly and in these particular examples there was no significant difference in prediction
accuracy among three tested methods.

To inspect the existence of correlation between influencing factors and dam displacements three
types of classical ANNS (FFBP, CFBP and LRBP) and a statistical method (MLR) were used. As a
measure of predictive power multiple regression coefficient (R) is used. The results show that there
is significant relationship between selected influencing factors and dam movements. Calculated R
coefficient from MLR proved that this relationship is not linear for most of object points but at the same
time this simple statistical method shows good results for short-term prediction of dam displacements
based on predicted values of influencing factors.

Very high values of R for all three tested ANNs show that ANNs can correctly generalise dam
movement based on values of influencing factors. This is the most important result of this research
because object health state can be determined by comparing measured values of dam displacements
and predicted values obtained by ANNs prediction based on measured influencing factors. Measured
and compared values must agree with low residuals, otherwise some external factor (geological
instability, internal erosion, dam material decay) caused unexpected dam movement.

All four used methods for short-term dam movement based on predicted values of influencing
factors indicated good prediction results. The main limiting factor for extending prediction length is
accurate long-term weather forecast, especially accurate precipitation which exerts a direct influence
on water level and air temperature that further influence water and concrete temperature.

The results obtained in this research could be improved by adding new data in used models,
e.g., new monitoring series of measurements. A good chance of improving prediction of water level
data exists by calculating water catchment area for all rivers and streams that influence total water
inflow in reservoir. This could be accomplished by using digital terrain model. By adding measured
precipitation and forecasted precipitation data water level prediction could be improved. This is
significant factor for dam movement prediction and if calculated with high accuracy these data could
also be used for planning production of electric energy. Additionally, remote sensing data (historical
and actual) could be used to better understand dam behaviour in relation with influencing factors.
By installing GPS receivers on the dam crest, it would be possible to assess state of the dam’s health in
real time and investigate how influencing factors effect dam’s movement. These could be future tasks
for the research and guidelines for improving dam monitoring system.
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Appendix A

Observed and predicted values of dam displacements are presented in: Tables A1–A8.
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Table A1. CFBP dam movement prediction in direction of X axes (unit: mm).

Point 1st Validation 1 ARIMA−CFBP 2 NAR−CFBP 3 NARX−CFBP 4 2nd Validation ARIMA−CFBP NAR−CFBP NARX−CFBP

JP11 −2.2 −0.8 −1.0 −1.1 −1.3 −2.7 −2.5 −2.5
JP21 −8.3 −8.2 −8.6 −8.8 −7.2 −8.0 −8.2 −8.2
JP22 −8.2 −7.5 −7.3 −7.1 −7.1 −7.8 −7.8 −7.7
JP23 −8.7 −7.4 −7.3 −7.1 −7.9 −7.9 −8.0 −7.9
JP24 −1.8 −0.5 −0.6 −0.8 −1.1 −1.4 −1.0 −1.0
JP31 −9.9 −9.2 −9.2 −9.1 −8.8 −8.3 −8.7 −8.8
JP32 −10.7 −9.4 −9.3 −9.1 −9.6 −8.9 −9.6 −9.6
JP33 −8.2 −7.1 −7.2 −7.1 −7.3 −7.2 −7.3 −7.3
JP34 −8.5 −7.3 −7.4 −7.4 −7.8 −8.0 −8.3 −8.2
JP41 −11.2 −11.1 −11.0 −10.8 −9.4 −8.2 −9.3 −9.5
JP42 −11.3 −10.0 −9.9 −9.7 −10.0 −9.2 −10.0 −10.1
JP43 −8.8 −8.0 −8.1 −7.9 −8.1 −7.6 −7.7 −7.8
JP44 −8.0 −7.7 −7.6 −7.4 −7.5 −6.9 −7.5 −7.6
JP45 −4.7 −3.7 −3.6 −3.5 −4.2 −4.4 −4.4 −4.4
JP51 −13.8 −13.0 −13.3 −13.3 −10.8 −10.0 −10.3 −10.3
JP52 −6.7 −6.4 −6.3 −6.1 −5.4 −4.6 −5.4 −5.5
JP53 −11.3 −10.3 −10.2 −10.0 −9.9 −9.8 −10.3 −10.4
JP54 −10.8 −10.1 −10.5 −10.7 −9.9 −10.4 −10.2 −10.2
JP55 −7.7 −6.7 −6.8 −6.6 −7.3 −6.5 −6.5 −6.5
JP61 −11.7 −10.9 −10.9 −10.8 −9.4 −8.9 −9.4 −9.6
JP62 −11.1 −11.8 −12.1 −12.1 −10.0 −10.2 −10.4 −10.5
JP63 −9.6 −9.0 −8.9 −8.7 −8.7 −8.7 −9.1 −9.3
JP64 −8.9 −8.5 −8.3 −8.2 −8.2 −8.5 −8.9 −8.9
JP65 −8.8 −8.8 −9.0 −9.1 −7.9 −9.2 −8.6 −8.5
JP71 −10.2 −9.7 −9.9 −9.8 −8.7 −8.7 −9.3 −9.2
JP72 −8.9 −8.7 −8.5 −8.4 −7.8 −7.4 −8.2 −8.3
JP73 −7.2 −6.0 −6.2 −6.3 −6.3 −5.6 −6.6 −6.5
JP74 −7.4 −9.1 −9.3 −9.3 −6.3 −6.6 −7.3 −7.3
JP81 −6.7 −6.5 −6.6 −6.4 −5.6 −5.8 −6.7 −6.7
JP82 −7.6 −7.7 −7.7 −7.6 −6.8 −7.1 −7.7 −7.6
JP83 −6.7 −7.2 −7.0 −6.9 −5.8 −6.7 −7.4 −7.3
JP91 −4.1 −4.6 −4.7 −4.8 −2.9 −3.5 −3.7 −3.7

1 Observed values of dam displacements in validation series; 2 Influencing factors are predicted by using ARIMA method and dam movement is predicted by CFBP ANN; 3 Influencing
factors are predicted by using NAR method and dam movement is predicted by CFBP ANN; 4 Influencing factors are predicted by using NARX method and dam movement is predicted
by CFBP ANN.
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Table A2. FFBP dam movement prediction in direction of X axes (unit: mm).

Point 1st Validation 1 ARIMA−FFBP 2 NAR−FFBP 3 NARX−FFBP 4 2nd Validation ARIMA−FFBP NAR−FFBP NARX−FFBP

JP11 −2.2 −1.4 −3.1 −1.2 −1.3 −2.9 −1.1 −2.9
JP21 −8.3 −7.4 −8.0 −7.3 −7.2 −7.9 −7.3 −7.9
JP22 −8.2 −7.0 −6.9 −7.0 −7.1 −7.1 −7.0 −7.2
JP23 −8.7 −7.8 −7.5 −7.7 −7.9 −7.9 −7.7 −7.9
JP24 −1.8 −1.1 −0.2 −1.1 −1.1 −0.4 −0.9 −0.4
JP31 −9.9 −10.3 −7.9 −10.1 −8.8 −8.7 −9.9 −8.8
JP32 −10.7 −9.6 −9.6 −9.6 −9.6 −9.9 −9.5 −10.0
JP33 −8.2 −7.5 −7.6 −7.5 −7.3 −7.6 −7.5 −7.6
JP34 −8.5 −7.5 −8.3 −7.5 −7.8 −8.5 −7.4 −8.5
JP41 −11.2 −10.2 −9.0 −10.2 −9.4 −9.6 −10.1 −9.8
JP42 −11.3 −11.5 −9.5 −11.6 −10.0 −10.0 −11.7 −10.2
JP43 −8.8 −9.5 −7.8 −9.6 −8.1 −8.9 −9.7 −8.9
JP44 −8.0 −7.4 −7.4 −7.3 −7.5 −7.5 −7.2 −7.6
JP45 −4.7 −3.7 −4.3 −3.7 −4.2 −4.2 −3.6 −4.2
JP51 −13.8 −12.4 −11.1 −12.2 −10.8 −11.3 −11.8 −11.3
JP52 −6.7 −5.8 −5.0 −5.7 −5.4 −5.4 −5.6 −5.6
JP53 −11.3 −11.4 −9.8 −11.4 −9.9 −10.2 −11.5 −10.4
JP54 −10.8 −10.4 −9.8 −10.2 −9.9 −11.1 −10.0 −11.1
JP55 −7.7 −8.5 −5.5 −8.5 −7.3 −6.7 −8.6 −6.8
JP61 −11.7 −10.7 −7.3 −10.7 −9.4 −8.3 −10.2 −8.6
JP62 −11.1 −11.0 −9.8 −11.0 −10.0 −10.6 −11.1 −10.3
JP63 −9.6 −9.5 −8.9 −9.7 −8.7 −9.0 −9.7 −9.0
JP64 −8.9 −7.6 −9.0 −7.9 −8.2 −8.9 −8.0 −8.7
JP65 −8.8 −8.2 −8.1 −8.3 −7.9 −8.4 −8.3 −8.3
JP71 −10.2 −9.3 −9.1 −9.3 −8.7 −9.5 −9.1 −9.6
JP72 −8.9 −8.3 −7.8 −8.3 −7.8 −8.6 −8.3 −8.6
JP73 −7.2 −7.7 −6.9 −7.7 −6.3 −7.2 −7.7 −7.2
JP74 −7.4 −7.1 −7.2 −7.1 −6.3 −7.3 −7.1 −7.3
JP81 −6.7 −6.5 −6.7 −6.4 −5.6 −7.0 −6.4 −7.0
JP82 −7.6 −7.9 −8.1 −7.9 −6.8 −8.7 −7.9 −8.7
JP83 −6.7 −6.3 −7.3 −6.2 −5.8 −7.7 −6.1 −7.7
JP91 −4.1 −3.6 −4.0 −3.6 −2.9 −4.0 −3.5 −4.0

1 Observed values of dam displacements in validation series; 2 Influencing factors are predicted by using ARIMA method and dam movement is predicted by FFBP ANN; 3 Influencing
factors are predicted by using NAR method and dam movement is predicted by FFBP ANN; 4 Influencing factors are predicted by using NARX method and dam movement is predicted by
FFBP ANN.
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Table A3. LRBP dam movement prediction in direction of X axes (unit: mm).

Point 1st Validation 1 ARIMA−LRBP 2 NAR−LRBP 3 NARX−LRBP 4 2nd Validation ARIMA−LRBP NAR−LRBP NARX−LRBP

JP11 −2.2 −1.2 −2.2 −1.0 −1.3 −2.5 −0.9 −2.3
JP21 −8.3 −7.7 −7.3 −7.6 −7.2 −7.8 −7.5 −7.8
JP22 −8.2 −6.6 −7.4 −6.5 −7.1 −8.0 −6.5 −8.0
JP23 −8.7 −7.1 −8.0 −6.9 −7.9 −7.9 −6.8 −7.9
JP24 −1.8 −0.9 −1.6 −1.0 −1.1 −1.5 −0.9 −1.2
JP31 −9.9 −9.8 −7.8 −9.8 −8.8 −8.9 −9.7 −8.9
JP32 −10.7 −10.0 −9.0 −10.0 −9.6 −9.4 −10.0 −9.4
JP33 −8.2 −7.3 −7.6 −7.3 −7.3 −7.7 −7.3 −7.7
JP34 −8.5 −7.3 −7.6 −7.3 −7.8 −7.9 −7.2 −7.9
JP41 −11.2 −10.6 −7.6 −10.7 −9.4 −8.4 −10.5 −8.4
JP42 −11.3 −10.5 −9.9 −10.4 −10.0 −10.5 −10.3 −10.6
JP43 −8.8 −8.0 −7.4 −8.0 −8.1 −8.0 −7.9 −8.1
JP44 −8.0 −7.3 −7.1 −7.3 −7.5 −7.5 −7.3 −7.6
JP45 −4.7 −3.6 −4.4 −3.6 −4.2 −4.4 −3.5 −4.4
JP51 −13.8 −12.6 −10.0 −12.6 −10.8 −11.2 −12.4 −11.4
JP52 −6.7 −6.2 −4.9 −6.2 −5.4 −5.5 −6.2 −5.6
JP53 −11.3 −11.0 −9.9 −10.9 −9.9 −10.5 −10.8 −10.6
JP54 −10.8 −10.2 −9.3 −10.2 −9.9 −10.0 −10.2 −10.1
JP55 −7.7 −6.1 −6.8 −6.0 −7.3 −7.0 −5.9 −7.0
JP61 −11.7 −11.2 −10.1 −11.2 −9.4 −10.3 −11.1 −10.5
JP62 −11.1 −12.0 −9.8 −12.2 −10.0 −10.1 −12.3 −10.3
JP63 −9.6 −9.9 −8.6 −9.8 −8.7 −9.2 −9.7 −9.3
JP64 −8.9 −8.9 −7.8 −8.9 −8.2 −8.5 −8.9 −8.6
JP65 −8.8 −9.1 −9.8 −9.1 −7.9 −10.0 −9.1 −9.9
JP71 −10.2 −9.8 −8.9 −9.8 −8.7 −9.3 −9.6 −9.4
JP72 −8.9 −9.3 −8.7 −9.3 −7.8 −9.2 −9.0 −9.3
JP73 −7.2 −8.1 −6.4 −8.2 −6.3 −7.1 −8.2 −7.1
JP74 −7.4 −7.2 −7.5 −7.1 −6.3 −7.9 −7.0 −7.9
JP81 −6.7 −6.7 −6.5 −6.6 −5.6 −7.0 −6.5 −7.0
JP82 −7.6 −7.8 −8.0 −7.8 −6.8 −8.4 −7.7 −8.4
JP83 −6.7 −6.3 −7.3 −6.2 −5.8 −7.6 −6.2 −7.5
JP91 −4.1 −4.1 −4.0 −4.0 −2.9 −4.2 −3.9 −4.3

1 Observed values of dam displacements in validation series; 2 Influencing factors are predicted by using ARIMA method and dam movement is predicted by LRBP ANN; 3 Influencing
factors are predicted by using NAR method and dam movement is predicted by LRBP ANN; 4 Influencing factors are predicted by using NARX method and dam movement is predicted
by LRBP ANN.
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Table A4. MLR dam movement prediction in direction of X axes (unit: mm).

Point 1st Validation 1 ARIMA−MLR 2 NAR−MLR 3 NARX−MLR 4 2nd Validation ARIMA−MLR NAR−MLR NARX−MLR

JP11 −2.2 −1.4 −1.3 −1.3 −1.3 −1.9 −2.1 −2.1
JP21 −8.3 −7.7 −7.6 −7.5 −7.2 −7.3 −7.6 −7.7
JP22 −8.2 −7.4 −7.3 −7.2 −7.1 −7.4 −7.7 −7.7
JP23 −8.7 −7.6 −7.5 −7.4 −7.9 −7.9 −8.1 −8.1
JP24 −1.8 −0.6 −0.5 −0.4 −1.1 −1.4 −1.6 −1.6
JP31 −9.9 −9.9 −9.9 −9.7 −8.8 −8.7 −9.1 −9.3
JP32 −10.7 −10.0 −10.0 −9.9 −9.6 −9.7 −9.9 −10.0
JP33 −8.2 −7.3 −7.3 −7.2 −7.3 −7.4 −7.6 −7.6
JP34 −8.5 −7.8 −7.7 −7.6 −7.8 −7.8 −8.1 −8.1
JP41 −11.2 −11.1 −11.0 −10.9 −9.4 −9.5 −9.7 −9.9
JP42 −11.3 −10.5 −10.5 −10.3 −10.0 −9.8 −10.2 −10.3
JP43 −8.8 −8.3 −8.2 −8.1 −8.1 −7.8 −8.0 −8.1
JP44 −8.0 −7.5 −7.5 −7.4 −7.5 −7.2 −7.5 −7.5
JP45 −4.7 −4.0 −4.0 −3.9 −4.2 −4.3 −4.3 −4.3
JP51 −13.8 −13.0 −13.0 −12.8 −10.8 −11.2 −11.4 −11.6
JP52 −6.7 −6.4 −6.4 −6.2 −5.4 −5.1 −5.4 −5.6
JP53 −11.3 −11.0 −11.0 −10.8 −9.9 −10.0 −10.3 −10.4
JP54 −10.8 −10.6 −10.5 −10.4 −9.9 −9.7 −10.2 −10.3
JP55 −7.7 −7.0 −6.9 −6.9 −7.3 −6.9 −7.1 −7.1
JP61 −11.7 −11.6 −11.6 −11.5 −9.4 −10.0 −9.8 −10.1
JP62 −11.1 −11.2 −11.2 −11.1 −10.0 −9.8 −10.2 −10.3
JP63 −9.6 −9.7 −9.6 −9.5 −8.7 −8.4 −8.8 −8.9
JP64 −8.9 −8.6 −8.5 −8.5 −8.2 −8.1 −8.3 −8.4
JP65 −8.8 −8.7 −8.7 −8.7 −7.9 −7.9 −8.4 −8.4
JP71 −10.2 −10.3 −10.3 −10.2 −8.7 −9.0 −9.3 −9.4
JP72 −8.9 −8.6 −8.5 −8.4 −7.8 −8.2 −8.5 −8.6
JP73 −7.2 −6.9 −6.9 −6.8 −6.3 −6.6 −7.0 −7.0
JP74 −7.4 −6.9 −6.8 −6.8 −6.3 −6.8 −7.2 −7.2
JP81 −6.7 −6.7 −6.7 −6.6 −5.6 −5.9 −6.4 −6.4
JP82 −7.6 −7.4 −7.3 −7.3 −6.8 −7.4 −7.7 −7.7
JP83 −6.7 −6.7 −6.6 −6.6 −5.8 −6.6 −6.8 −6.8
JP91 −4.1 −4.2 −4.1 −4.1 −2.9 −3.8 −4.0 −4.0

1 Observed values of dam displacements in validation series; 2 Influencing factors are predicted by using ARIMA method and dam movement is predicted by MLR; 3 Influencing factors
are predicted by using NAR method and dam movement is predicted by MLR; 4 Influencing factors are predicted by using NARX method and dam movement is predicted by MLR.
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Table A5. CFBP dam movement prediction in direction of Y axes (unit: mm).

Point 1st Validation 1 ARIMA−CFBP 2 NAR−CFBP 3 NARX−CFBP 4 2nd Validation ARIMA−CFBP NAR−CFBP NARX−CFBP

JP11 −2.1 −2.4 −1.3 −3.3 −1.0 −1.9 −4.2 −1.9
JP21 6.4 7.1 6.0 7.1 7.0 6.2 7.0 6.1
JP22 5.5 5.3 5.3 5.4 6.7 5.4 5.4 5.1
JP23 5.1 5.8 4.6 5.9 5.9 4.5 5.9 4.6
JP24 −1.8 −1.6 −1.5 −1.7 −0.8 −1.6 −1.8 −1.5
JP31 6.3 6.6 5.4 6.6 7.1 6.1 6.6 6.1
JP32 4.7 3.0 4.7 3.3 5.6 4.6 3.6 4.3
JP33 4.8 5.6 4.6 5.5 5.9 4.6 5.5 4.5
JP34 3.6 4.0 3.3 4.0 4.5 3.5 4.0 3.4
JP41 2.8 2.1 2.7 2.0 3.9 2.6 2.1 2.6
JP42 2.1 3.4 2.3 3.6 3.3 2.4 3.6 2.4
JP43 1.0 1.4 0.4 1.4 2.4 0.6 1.4 0.6
JP44 2.3 1.6 1.5 1.7 3.5 1.1 1.7 1.1
JP45 3.9 1.8 3.3 1.8 5.3 3.3 1.8 3.2
JP51 0.2 −0.8 0.7 −0.9 2.3 0.9 −0.8 0.8
JP52 −1.1 −1.4 0.9 −1.6 0.4 −0.5 −1.9 −0.6
JP53 0.2 0.7 0.8 0.8 1.9 0.5 0.8 0.4
JP54 0.4 0.7 1.6 0.0 1.8 1.5 −0.6 1.6
JP55 3.4 4.5 3.8 4.6 4.9 3.9 4.7 4.0
JP61 −1.2 −0.7 0.2 −0.7 1.3 0.3 −0.5 0.2
JP62 0.5 0.6 2.3 0.5 2.4 2.3 0.7 2.2
JP63 −0.8 −0.9 0.6 −0.9 1.0 −0.2 −0.8 −0.2
JP64 0.4 0.9 2.1 0.8 2.1 2.2 0.9 2.2
JP65 6.5 7.5 7.3 7.5 8.0 7.8 7.5 7.9
JP71 −0.1 −0.3 2.2 −0.5 1.9 1.8 −0.5 1.7
JP72 −3.6 −3.8 −1.7 −3.8 −1.9 −1.9 −3.8 −2.0
JP73 −2.6 −2.8 −1.6 −3.0 −1.1 −1.6 −3.2 −1.6
JP74 0.0 0.8 1.2 0.7 1.2 1.5 0.7 1.5
JP81 −4.9 −6.0 −3.4 −6.5 −2.9 −3.8 −6.8 −3.8
JP82 −1.1 −0.8 −0.5 −0.9 0.6 −1.1 −0.8 −1.1
JP83 −1.9 −1.6 0.3 −1.5 −0.3 −0.2 −1.5 −0.1
JP91 −7.9 −8.0 −6.8 −8.3 −6.5 −7.1 −8.3 −7.0

1 Observed values of dam displacements in validation series; 2 Influencing factors are predicted by using ARIMA method and dam movement is predicted by CFBP ANN; 3 Influencing
factors are predicted by using NAR method and dam movement is predicted by CFBP ANN; 4 Influencing factors are predicted by using NARX method and dam movement is predicted
by CFBP ANN.
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Table A6. FFBP dam movement prediction in direction of Y axes (unit: mm).

Point 1st Validation 1 ARIMA−FFBP 2 NAR−FFBP 3 NARX−FFBP 4 2nd Validation ARIMA−FFBP NAR−FFBP NARX−FFBP

JP11 −2.1 −2.1 −1.3 −1.9 −1.0 −1.8 −1.7 −1.9
JP21 6.4 6.5 6.3 6.5 7.0 6.2 6.6 6.3
JP22 5.5 5.9 5.1 6.0 6.7 5.0 6.0 4.8
JP23 5.1 4.1 5.3 3.7 5.9 4.7 3.5 4.8
JP24 −1.8 −1.9 −1.0 −1.8 −0.8 −1.2 −1.8 −1.2
JP31 6.3 6.5 6.0 6.7 7.1 6.1 6.7 6.0
JP32 4.7 4.1 5.2 4.1 5.6 4.9 4.1 5.0
JP33 4.8 4.6 4.6 4.9 5.9 4.5 4.9 4.5
JP34 3.6 4.4 3.1 4.5 4.5 3.3 4.5 3.2
JP41 2.8 3.3 4.2 3.0 3.9 4.0 2.8 3.9
JP42 2.1 2.8 1.5 3.0 3.3 1.9 3.1 1.9
JP43 1.0 1.2 1.1 1.4 2.4 1.0 1.5 1.0
JP44 2.3 1.3 2.6 1.3 3.5 2.1 1.4 2.2
JP45 3.9 4.7 3.0 4.7 5.3 3.3 4.7 3.4
JP51 0.2 −0.1 1.2 −0.2 2.3 1.0 −0.2 1.0
JP52 −1.1 −1.9 −1.2 −1.8 0.4 −1.3 −1.7 −1.3
JP53 0.2 0.6 0.7 0.6 1.9 0.7 0.7 0.6
JP54 0.4 −0.1 0.3 −0.1 1.8 0.4 −0.1 0.4
JP55 3.4 3.4 4.1 3.5 4.9 3.8 3.4 3.7
JP61 −1.2 −0.8 −0.4 −0.8 1.3 −0.5 −0.8 −0.5
JP62 0.5 0.4 2.2 0.3 2.4 2.3 0.4 2.2
JP63 −0.8 0.4 0.7 0.4 1.0 0.6 0.4 0.7
JP64 0.4 0.0 1.5 −0.2 2.1 2.2 −0.2 2.3
JP65 6.5 6.5 6.8 6.6 8.0 7.1 6.6 7.0
JP71 −0.1 −1.4 1.6 −1.6 1.9 2.1 −1.7 1.9
JP72 −3.6 −4.2 −1.0 −4.3 −1.9 −1.3 −4.3 −1.5
JP73 −2.6 −3.0 −2.3 −3.3 −1.1 −2.4 −3.4 −2.5
JP74 0.0 −0.3 1.0 −1.0 1.2 1.0 −1.7 1.0
JP81 −4.9 −5.1 −3.5 −5.2 −2.9 −3.7 −5.0 −3.7
JP82 −1.1 −0.8 0.7 −0.9 0.6 0.0 −1.0 0.1
JP83 −1.9 −1.5 −0.4 −1.5 −0.3 −0.6 −1.4 −0.5
JP91 −7.9 −7.6 −8.1 −7.9 −6.5 −8.4 −8.0 −8.3

1 Observed values of dam displacements in validation series; 2 Influencing factors are predicted by using ARIMA method and dam movement is predicted by FFBP ANN; 3 Influencing
factors are predicted by using NAR method and dam movement is predicted by FFBP ANN; 4 Influencing factors are predicted by using NARX method and dam movement is predicted by
FFBP ANN.
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Table A7. LRBP dam movement prediction in direction of Y axes (unit: mm).

Point 1st Validation 1 ARIMA−LRBP 2 NAR−LRBP 3 NARX−LRBP 4 2nd Validation ARIMA−LRBP NAR−LRBP NARX−LRBP

JP11 −2.1 −2.1 −1.5 −2.0 −1.0 −2.1 −1.9 −2.0
JP21 6.4 6.7 6.7 6.7 7.0 6.4 6.7 6.5
JP22 5.5 6.5 5.4 6.6 6.7 5.5 6.7 5.6
JP23 5.1 5.6 4.9 5.6 5.9 4.8 5.7 4.9
JP24 −1.8 −1.2 −1.7 −1.0 −0.8 −2.1 −0.9 −2.0
JP31 6.3 6.4 5.2 6.3 7.1 6.2 6.4 6.4
JP32 4.7 4.5 3.4 4.6 5.6 3.4 4.5 3.5
JP33 4.8 3.9 5.0 4.1 5.9 4.7 4.2 4.5
JP34 3.6 3.4 2.5 3.5 4.5 2.4 3.5 2.5
JP41 2.8 1.8 4.0 1.8 3.9 3.7 1.9 3.7
JP42 2.1 3.4 2.6 3.5 3.3 2.1 3.4 2.2
JP43 1.0 −0.3 −0.1 −0.4 2.4 −0.1 −0.4 −0.1
JP44 2.3 3.3 2.0 3.6 3.5 1.6 3.7 1.7
JP45 3.9 2.4 3.5 2.2 5.3 4.0 2.3 4.0
JP51 0.2 −0.7 0.6 −1.0 2.3 0.6 −1.3 0.6
JP52 −1.1 −1.4 −0.7 −1.4 0.4 −1.1 −1.3 −1.0
JP53 0.2 0.2 0.4 0.2 1.9 0.4 0.2 0.3
JP54 0.4 0.6 2.9 0.1 1.8 2.4 −0.3 2.4
JP55 3.4 3.2 2.9 3.1 4.9 3.0 3.0 3.1
JP61 −1.2 −1.6 2.0 −1.9 1.3 1.8 −2.1 1.9
JP62 0.5 0.5 2.2 0.4 2.4 2.1 0.4 2.2
JP63 −0.8 −2.0 0.7 −2.2 1.0 0.4 −2.5 0.5
JP64 0.4 0.4 1.6 0.3 2.1 1.7 0.3 1.8
JP65 6.5 6.1 7.9 6.1 8.0 8.0 6.1 7.8
JP71 −0.1 −1.3 1.5 −1.6 1.9 1.2 −1.7 1.2
JP72 −3.6 −4.0 −1.6 −3.9 −1.9 −2.0 −3.7 −2.1
JP73 −2.6 −3.0 −1.8 −3.1 −1.1 −1.8 −3.0 −1.9
JP74 0.0 0.3 0.5 0.2 1.2 0.9 0.1 1.0
JP81 −4.9 −5.4 −3.6 −5.5 −2.9 −4.0 −5.7 −4.0
JP82 −1.1 −1.6 −0.2 −1.8 0.6 −1.0 −2.0 −1.0
JP83 −1.9 −2.1 −0.6 −2.2 −0.3 −1.0 −2.1 −1.0
JP91 −7.9 −7.8 −7.0 −8.0 −6.5 −7.2 −8.0 −7.2

1 Observed values of dam displacements in validation series; 2 Influencing factors are predicted by using ARIMA method and dam movement is predicted by LRBP ANN; 3 Influencing
factors are predicted by using NAR method and dam movement is predicted by LRBP ANN; 4 Influencing factors are predicted by using NARX method and dam movement is predicted
by LRBP ANN.



ISPRS Int. J. Geo-Inf. 2020, 9, 47 33 of 35

Table A8. MLR dam movement prediction in direction of Y axes (unit: mm).

Point 1st Validation 1 ARIMA−MLR 2 NAR−MLR 3 NARX−MLR 4 2nd Validation ARIMA−MLR NAR−MLR NARX−MLR

JP11 −2.1 −1.8 −1.7 −1.7 −1.0 −1.7 −1.9 −1.9
JP21 6.4 7.4 7.5 7.5 7.0 6.3 6.2 6.3
JP22 5.5 6.2 6.2 6.2 6.7 5.7 5.6 5.6
JP23 5.1 5.7 5.7 5.8 5.9 5.2 5.1 5.2
JP24 −1.8 −1.3 −1.2 −1.2 −0.8 −1.7 −1.7 −1.7
JP31 6.3 7.1 7.1 7.1 7.1 6.1 6.1 6.2
JP32 4.7 5.0 5.0 5.0 5.6 4.5 4.5 4.5
JP33 4.8 5.2 5.2 5.2 5.9 4.7 4.6 4.6
JP34 3.6 3.8 3.8 3.8 4.5 3.4 3.3 3.4
JP41 2.8 3.9 3.9 3.9 3.9 3.0 3.0 3.1
JP42 2.1 2.9 2.9 2.9 3.3 2.2 2.3 2.3
JP43 1.0 1.4 1.5 1.5 2.4 1.1 1.0 1.0
JP44 2.3 2.6 2.7 2.7 3.5 2.1 2.0 2.0
JP45 3.9 4.0 4.1 4.1 5.3 3.8 3.8 3.8
JP51 0.2 1.1 1.1 1.1 2.3 0.8 1.0 1.0
JP52 −1.1 −1.3 −1.3 −1.3 0.4 −1.0 −1.1 −1.1
JP53 0.2 0.8 0.8 0.8 1.9 0.7 0.7 0.7
JP54 0.4 1.4 1.4 1.4 1.8 0.7 0.8 0.9
JP55 3.4 3.7 3.8 3.8 4.9 3.7 3.3 3.4
JP61 −1.2 0.3 0.4 0.4 1.3 1.6 0.7 0.8
JP62 0.5 1.6 1.7 1.7 2.4 1.8 1.7 1.7
JP63 −0.8 0.6 0.7 0.7 1.0 0.5 0.3 0.3
JP64 0.4 1.4 1.4 1.4 2.1 1.7 1.5 1.5
JP65 6.5 7.9 8.0 8.0 8.0 7.2 7.2 7.2
JP71 −0.1 0.3 0.3 0.3 1.9 1.7 1.4 1.4
JP72 −3.6 −2.9 −2.9 −2.9 −1.9 −2.2 −2.3 −2.3
JP73 −2.6 −1.9 −1.9 −1.9 −1.1 −1.4 −1.5 −1.5
JP74 0.0 0.8 0.8 0.8 1.2 0.9 0.9 0.9
JP81 −4.9 −4.5 −4.5 −4.5 −2.9 −3.6 −3.8 −3.8
JP82 −1.1 −0.3 −0.3 −0.3 0.6 0.2 0.0 0.0
JP83 −1.9 −1.1 −1.0 −1.0 −0.3 −0.7 −0.9 −0.9
JP91 −7.9 −7.0 −6.9 −6.9 −6.5 −6.7 −7.0 −6.9

1 Observed values of dam displacements in validation series; 2 Influencing factors are predicted by using ARIMA method and dam movement is predicted by MLR; 3 Influencing factors
are predicted by using NAR method and dam movement is predicted by MLR; 4 Influencing factors are predicted by using NARX method and dam movement is predicted by MLR.
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