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Abstract: Spoofing of Unmanned Aerial Vehicles (UAV) is generally carried out through spoofing 

of the UAV’s Global Positioning System (GPS) receiver. This paper presents a vision-based UAV 

spoofing detection method that utilizes Visual Odometry (VO). This method is independent of the 

other complementary sensors and any knowledge or archived map and datasets. The proposed 

method is based on the comparison of relative sub-trajectory of the UAV from VO, with its absolute 

replica from GPS within a moving window along the flight path. The comparison is done using 

three dissimilarity measures including (1) Sum of Euclidian Distances between Corresponding 

Points (SEDCP), (2) angle distance and (3) taxicab distance between the Histogram of Oriented 

Displacements (HOD) of these sub-trajectories. This method can determine the time and location of 

UAV spoofing and bounds the drift error of VO. It can be used without any restriction in the usage 

environment and can be implemented in real-time applications. This method is evaluated on four 

UAV spoofing scenarios. The results indicate that this method is effective in the detection of UAV 

spoofing due to the Sophisticated Receiver-Based (SRB) GPS spoofing. This method can detect UAV 

spoofing in the long-range UAV flights when the changes in UAV flight direction is larger than 3° 

and in the incremental UAV spoofing with the redirection rate of 1°. Additionally, using SEDCP, 

the spoofing of the UAV, when there is no redirection and only the velocity of the UAV is changed, 

can be detected. The results show that SEDCP is more effective in the detection of UAV spoofing 

and fake GPS positions. 

Keywords: UAV spoofing; visual odometry; GPS; trajectory descriptor; dissimilarity measure 

 

1. Introduction 

Navigation of Unmanned Aerial Vehicles (UAV) in the outdoor environment is mostly 

performed using the Global Navigation Satellite Systems (GNSS), and especially using the Global 

Positioning System (GPS) [1–3]. Despite the proper capability of GPS, this system is prone to some 

problems. GPS has been recognized as susceptible to the intentional and un-intentional Radio 

Frequency Interferences (RFI) [4–6]. Two main intentional vulnerabilities are jamming and GPS 

spoofing and the latter is a major threat to the civilian GPS users [6–8]. Jamming refers to the 

intentional transmission of radiofrequency energy to hinder a navigation service by masking the GPS 
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signals using the noise [6]. GPS spoofing is the transmission of counterfeit and fake GPS signals 

without disrupting the GPS operation and intends to produce a fake position and time within the 

target receiver [6,9,10]. Unlike the jamming attacks, which may stop the GPS receiver from 

positioning, in the GPS spoofing attacks, the positioning operation is done normally and the fake GPS 

positions are produced. Therefore, using the GPS spoofing, it is possible to successfully spoof a 

civilian UAV and change its flight trajectory and destination of from the predefined ones without the 

user’s notice. 

Some studies have shown the successful spoofing of UAVs with low-cost hardware using GPS 

spoofing [10–14]. Shepard et al. in [11] showed that a GPS spoofer can alter the location and time-

reference of a civilian UAV. In [10], Kerns et al. described the conditions of a successful spoofing 

attack on a UAV and demonstrated the operational and technical feasibility of a destructive GPS 

spoofing attack in a test field. During a workshop in the 23rd Defcon conference, Huang succeed in 

spoofing a DJI Phantom 3 via the GPS spoofing based on the Software Defined Radio (SDR) [15]. Eric 

Horton and Prakash Ranganathan detailed, developed and successfully implemented a low-cost and 

high-level GPS spoofing to spoof a DJI Matrice 100 quadcopter [12],. Li et al. designed and 

implemented a GPS spoofer and successfully conducted a field test and landed a consumer-level 

UAV on a spoofed position [13]. In [14], a counter-UAV defence system based on the GPS spoofing 

was presented and tested in the field, which was able to remotely control and drive away a non-

cooperative UAV to a specified location. A covert GPS spoofing method of UAVs was developed in 

[16], which provided a good theoretical basis and solution for the UAV spoofing in an integrated 

GPS/INS (Inertial Navigation System) navigation. Based on the literature, the rate of civilian UAVs 

spoofing is increased using different GPS spoofing methods. 

GPS spoofing methods can be divided into three main categories: GPS signal simulators, 

receiver-based spoofers, and Sophisticated Receiver-Based (SRB) spoofers [5,6]. In the first category, 

a GPS signal simulator is concatenated with a radio frequency front-end to mimic the authentic GPS 

signals. Synchronization of fake signals with the real ones is not needed in this method. This is the 

simplest method of GPS spoofing which can affect the civilian GPS receivers. The second category is 

more advanced. This method needs a GPS receiver is concatenated with the spoofing transmitter to 

extract position, time, and satellites ephemeris to synchronize the fake GPS signals with the real ones. 

It is difficult to detect this type of spoofing. The third category is the most effective spoofing method. 

In this type, the position and velocity of the phase center of the victim receiver antenna are assumed 

to be precisely known. This type is the most complex spoofing method and it may be impossible to 

be detected with the traditional anti-spoofing methods [6]. 

Anti-spoofing techniques can be divided into GNSS Receiver Stand-alone (GRS) and Hybrid 

Positioning Receiver (HPR) techniques [5,6]. In GRS techniques, the received signal is processed to 

determine whether it is genuine or not [5]. These techniques are based on spatial processing [17], 

time-of-arrival discrimination [18], distribution analysis of the correlator outputs [19], vestigial signal 

defense [20,21], and receiver autonomous integrity monitoring (RAIM) [6,22]. More details can be 

found in [5,21,23–27]. The GRS anti-spoofing techniques just rely on the processing of the GPS signal 

to detect and confront the RFI attacks, and it will be capable of failure in the use of the more advanced 

hardware and sophisticated methods by invaders [6,21,28–30]. 

In HPR techniques, the aiding position data from other positioning systems such as INS [22,31] 

and LBS (Location-Based Service) or communication systems, such as the cellular networks [32] or 

Wi-Fi stations, as the wireless positioning systems [5], and the vision-based positioning system [33] 

are used to GPS spoofing detection and mitigation [6]. The current HPR techniques suffer from some 

drawbacks. Using LBS, cellular, and Wi-Fi networks as the aiding positioning, the limited coverage 

of these systems limits the applicability of spoofing discrimination [5]. The techniques that use the 

INS information as the aiding positioning services suffer from the INS calibration and initialization, 

and also from the impact of the spoofed GPS information on the fused GPS/INS outputs [5]. 

Moreover, if these aiding systems rely on the GPS-based time synchronization, they should employ 

a suitable timing backup independent of GPS timing. The time delay of these techniques is another 

drawback of these aiding systems. 
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In the usage of vision-based methods as the aiding system in HPR anti-spoofing techniques, the 

camera is used as the aiding sensor. As the camera is a passive sensor, its performance is independent 

of GPS signals or others. Thus, GPS spoofing and the other RFI attacks such as jamming cannot affect 

its performance. In [33], for the first time, a vision-based method as a position aiding system was used 

to detect GPS spoofing, although Visual Odometry (VO) [34–36] and Visual Simultaneous Location 

And Mapping (VSLAM) [37,38], in combination with other sensors including Inertial Measurement 

Unit (IMU), altimeter, laser, and radar, were already used in UAV navigation [10,35]. 

In [33], the UAV velocity was determined from UAV images using the pyramidal Lucas-Kanade 

algorithm [39,40] and fused with the IMU output in a Kalman filtering approach. Then, this velocity 

was compared with the velocity of the UAV from GPS. This method is not applicable when the 

spoofer knows the mean velocity of the UAV and considers this in the generation of fake GPS signals. 

This paper introduces a vision-based UAV spoofing detection method that relies on the relative 

positioning of the UAV using VO. Since VSLAM has high computational cost due to the process of 

map production [41,42]; this method is not more suitable for UAV spoofing detection. Moreover, 

other sensors, such as LiDAR (Light Detection and Ranging), altimeter, and radar are not usually 

used in the civilian UAVs due to their high cost and weight. 

The relative trajectory of the UAV is produced from its relative positions using VO. This 

trajectory is comparable with the corresponding absolute trajectory of the UAV, which can be 

obtained using GPS. The comparison of these trajectories using some dissimilarity measures reveals 

the occurrence of UAV spoofing. The proposed method is independent of other sensors, such as IMU, 

LIDAR, radar, and altimeter, any archived data, such as the Digital Elevation Models (DEM) and 

satellite images, and any knowledge from the predefined flight region of the UAV or the approximate 

position of the UAV. 

The novelty of this paper includes introducing a vision-based UAV spoofing detection method 

that relies only on the relative positioning of the UAV using VO, comparing the relative and absolute 

sub-trajectories of the UAV in a window-based approach, introducing a modified Histogram of 

Oriented Displacements (HOD) trajectory descriptor and using of it in the comparison of the relative 

and absolute sub-trajectories of UAV, and introducing three dissimilarity measures for detecting of 

UAV spoofing and analyzing the performance of them. 

The remainder of this paper is organized as follows: Section 2 introduces the methodology of 

the proposed method for the UAV spoofing detection and explains its implementation. The results 

and experimental works are presented in Section 3, and the conclusions follow in Section 4. 

2. Vision-Based UAV Spoofing Detection 

In this section initially, we describe the GPS spoofing effects on the UAV positioning and then 

our vision-based UAV spoofing detection method is presented. In the case of SRB GPS spoofing, the 

spoofer is aware of the instantaneous location and predefined trajectory and destination of the UAV. 

Additionally, the spoofer can generate and broadcast fake GPS signals such that the trajectory created 

from fake GPS positions coincides with the predefined trajectory of the UAV. As a result, while the 

positions obtained from the spoofed GPS signals show the predefined UAV trajectory, the spoofed 

UAV follows another fake trajectory and is guided to a fake destination. Thus, the actual trajectory 

of the UAV and consequently the captured images from this trajectory will not conform to the 

predefined trajectory of the UAV. Hereafter, we call the actual trajectory followed by the spoofed 

UAV the true-travelled spoofed UAV trajectory. 

The proposed vision-based UAV spoofing detection method relies on the UAV camera, which 

is a passive sensor and its performance and images are not altered by the fake GPS signals. A piece 

of information which can be extracted from UAV images is the relative trajectory of UAV using VO. 

Additionally, UAV images are usually geotagged using GPS positions. In the occurrence of the GPS 

spoofing, fake GPS positions are used in the geotagging of UAV images. The proposed vision-based 

UAV spoofing detection stands on the comparison of two flight trajectories, which are 

simultaneously determined for the UAV from two different positioning methods: the first trajectory 

is obtained from GPS positions and the second trajectory is obtained from UAV images using VO. 
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When the UAV is spoofed, the location, shape, length, and other characteristics of the UAV 

trajectory extracted from GPS positions do not adapt with the characteristics of the true-travelled 

spoofed UAV trajectory obtained from UAV images using VO. Assume the line of ABC in Figure 1 is 

the predefined UAV trajectory and points A and C are its flight start and predefined destination 

points. Suppose that when the UAV reaches point B, it is spoofed by invaders using GPS spoofing. 

Therefore, the UAV will be departed from its predefined trajectory and will run into line BC’ instead 

of line BC. As mentioned, in the case of SRB level of GPS spoofing, the spoofed GPS positions still 

show that the UAV follows its predefined trajectory (i.e., line BC), while the true-travelled trajectory 

of the UAV is line BC’. Therefore, in Figure 1, the line of ABC’ is the true-travelled spoofed UAV 

trajectory. The comparison of these trajectories is used here for the UAV spoofing detection. Although 

this comparison can detect UAV spoofing, it cannot specify the time and location of UAV spoofing. 

To overcome this shortcoming, instead of comparing the entire UAV’s predefined and true-travelled 

spoofed trajectories, a moving window-based approach is used to locally compare these trajectories 

within each window. For this purpose, a window along the UAV trajectory is slid position-by-

position and in each imaging position of UAV selects k geotagged images. Here, k is the size of the 

moving windows. In Figure 1, the yellow rectangles in the beginning and middle parts of the 

trajectories are examples of moving window. In each window, two sub-trajectories of the UAV can 

be extracted: the first sub-trajectory is extracted from the GPS positions (true or spoofed), which are 

used in geotagging of UAV images. The second sub-trajectory is extracted from UAV images using 

VO. If there is no UAV spoofing, these sub-trajectories will be similar. By comparison of these sub-

trajectories, it is possible to precisely detect the time and location of the UAV spoofing. These sub-

trajectories can be compared directly using a metric distance or indirectly using a trajectory descriptor 

which describes the trajectory by a feature vector that reflects the various characteristics of trajectory. 

In the following, the components of this vision-based method are fully described. 

 

Figure 1. An example of predefined and true-travelled spoofed Unmanned Aerial Vehicles (UAV) 

trajectories: the line ABC is the predefined trajectory and the line ABC’ is the true-travelled spoofed 

UAV trajectory. 

2.1.  Trajectory Extraction Using VO 

The trajectory of a moving point (e.g., a UAV), T, is a sequence of the ordered pairs of (𝑡𝑖 , 𝑷𝑖) 

[43] as in Equation (1). In this Equation, 𝑷𝑖 is the position vector of the point at the time of ti, and n 

is the number of positions in T or the length of T: 

𝑇 = {(𝑡1, 𝑷1), … , (𝑡𝑛, 𝑷𝑛)} (1) 

At the i-th position of the UAV and within a moving window of Wi, two sub-trajectories with a 

length of k (k is the window size) can be assigned to the UAV. This window moves along the UAV 

trajectory and in each i-th position of UAV, k geotagged images will be selected from the image 

number of i-(k-1)/2 to i+(k-1)/2. Inside Wi, the first sub-trajectory is extracted from the GPS positions 

of Gi-(k-1)/2 to Gi+(k-1)/2 which are used in the geotagging of UAV images (Equation (2)). This sub-

trajectory is called the GPS trajectory and, in the following, is denoted as GTi. Additionally, the second 
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sub-trajectory is extracted from the UAV camera positions of Ci-(k-1)/2 to Ci+(k-1)/2 within Wi, which are 

computed using VO (Equation (4)). This sub-trajectory is called the Camera Trajectory and, in the 

following, is denoted as CTi (Equation (3)): 

𝐺𝑇𝑖 = {(𝑡𝑗 , 𝑮𝑗), … , (𝑡𝑗+𝑘−1, 𝑮𝑗+𝑘−1)} ;   𝑗 = 𝑖 −
𝑘 − 1

2
: 𝑖 +

𝑘 − 1

2
 (2) 

𝐶𝑇𝑖 = {(𝑡𝑗, 𝑪𝑗), … , (𝑡𝑗+𝑘−1, 𝑪𝑗+𝑘−1)} ;   𝑗 = 𝑖 −
𝑘 − 1

2
: 𝑖 +

𝑘 − 1

2
 (3) 

The extraction of GTi within each Wi is easy but the achievement of CTi using VO requires more 

computations. VO is the process of estimating the ego-motion of an agent (e.g., the UAV), using only 

the input of a single or multiple cameras attached to it [44]. The relative position of the camera in VO 

can be estimated in an appearance-based or feature-based approach. In the appearance-based 

method, the intensity values, in a template matching approach, or the optical flow values are used 

for pose estimation [45]. In the feature-based methods, distinct point features extracted and described 

and then used for point matching and relative pose estimation between two images that are 

dependent to image texture [46]. As in the proposed method, only the relative sub-trajectories of the 

UAV are used; thus, a geometric feature-based monocular VO [47] approach with a calibrated camera 

was used for UAV trajectory computation. Additionally, a SIFT (Scale-Invariant Feature Transform) 

[48] operator was used to point feature extraction and description to match the corresponding points 

and compute the relative orientation parameters. 

For the computation of CTi, within each Wi, the relative orientation, (𝑅𝑗,𝑗+1, 𝑩𝑗,𝑗+1), parameters 

between successive stereo images of 𝐼𝑗  and 𝐼𝑗+1 need to be estimated. Here, 𝑅𝑗,𝑗+1 is the relative 

rotation matrix of camera at the position j+1 concerning the camera at the position j, and 𝑩𝑗,𝑗+1 is the 

relative position vector of the camera at the position j+1 concerning the camera at the position j, as 

shown in Figure 2. Then, all relative camera positions within Wi have transformed into the model 

coordinate system of the first stereo images using Equation (4) [36,49]. 

 

Figure 2. The relative orientation parameters between images 𝐼𝑗, 𝐼𝑗+1, and 𝐼𝑗+2, (𝑅𝑗,𝑗+1, 𝑩𝑗,𝑗+1) and 

(𝑅𝑗+1,𝑗+2, 𝑩𝑗+1,𝑗+2), and the calculation of the position vectors of the center of these images in the 

model coordinate system of the images 𝐼𝑗 and 𝐼𝑗+1. 

𝑪𝑗 = 𝟎 ;     𝑗 = 𝑝 = 𝑖 −
𝑘 − 1

2
   

𝑪𝑗 = 𝑩𝑗−1,𝑗  ;     𝑗 = 𝑝 + 1         

𝑪𝑗 = 𝑪𝑗−1 + 𝑆𝑝,𝑗−2𝑀𝑝,𝑗−2𝑩𝑗−1,𝑗   ;   𝑝 + 2 ≤ 𝑗 ≤ 𝑖 +
𝑘 − 1

2
     

𝑆𝑝,𝑗−2 = 𝜆𝑝,𝑝+1 … 𝜆𝑗−2,𝑗−1 

𝑀𝑝,𝑗−2 = 𝑅𝑝,𝑝+1 … 𝑅𝑗−2,𝑗−1 

(4) 
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In Equation (4), 𝑪𝑗 is the position vector of j-th image within Wi, 𝜆𝑗−2,𝑗−1 is the scale factor of 

the distance transformation from the stereo model of 𝑗 − 1 to the stereo model of 𝑗 − 2, 𝑅𝑗−2,𝑗−1 is 

the relative rotation matrix of the camera at the position 𝑗 − 1 concerning the camera at the position 

𝑗 − 2, 𝑆𝑝,𝑗−2 is the scale factor of distance transformation from stereo model of 𝑗 − 2 to the first stereo 

model of 𝑗 = 𝑝, and 𝑀𝑝,𝑗−2 is the relative rotation matrix of camera at the position 𝑗 − 2 concerning 

the first camera at the position 𝑗 = 𝑝. 

The most important defect of VO, especially in the long-range VO, is the cumulative error in the 

estimation of camera position. This will cause a drift in the estimated trajectory from the real one, 

which is unbounded. This error increases as the length of the trajectory is increased. By applying the 

window-based approach in the extraction of the UAV sub-trajectories of CTis, the drift error of VO 

was controlled in this paper. Additionally, to reduce this error, the sliding sparse bundle adjustment 

[44,50], as an effective technique in the reduction of this error, was implemented. 

2.2. Coordinate Transformation 

To detect the UAV spoofing within the window Wi, two sub-trajectories of CTi and GTi must be 

compared. However, it is not possible to compare them directly. This is due to the different coordinate 

systems of these sub-trajectories. Thus, before comparing them, these sub-trajectories should be 

transformed into the same coordinate system. GTi is usually expressed in a ground coordinate system, 

such as WGS84 (World Geodetic System 1984) or UTM (Universal Transverse Mercator), and, as 

aforementioned, CTi is stated in the model coordinate system of the first stereo images within Wi. These 

coordinate systems have different origins, scales, and axes orientation. Moreover, since the accuracy of 

height positioning by GPS is lower than the accuracy of the planimetric positioning by GPS, in this 

paper, only the planimetric trajectories were used. In Wi, the coordinate system of GTi is transformed 

into the coordinate system of CTi, using a two-dimensional (2D) conformal model (Equation (5)): 

𝑻𝑮𝑗 = 𝑿𝑜 + 𝜌𝑅(𝜑)𝑮𝑗 (5) 

where 𝜑 is the rotation angle, 𝜌 is the scale factor and 𝑿𝑜 is the translation vector of the coordinate 

system of GTi concerning the coordinate system of CTi. In this equation, 𝑻𝑮𝑗 is the transformed position 

vector of 𝑮𝑗 in Equation (2). To obtain parameters of this model (i.e., 𝜑, 𝜌, and 𝑿𝑜), the corresponding 

coordinates of the first and last images within Wi from GPS and VO were used. After transformation, 

the transformed GTi is denoted as TGTi, as in Equation (6): 

𝑇𝐺𝑇𝑖 = {(𝑡𝑗 , 𝑻𝑮𝑗), … , (𝑡𝑗+𝑘−1, 𝑻𝑮𝑗+𝑘−1)}     ;    𝑗 = 𝑖 −
𝑘 − 1

2
: 𝑖 +

𝑘 − 1

2
 (6) 

2.3.  Comparison of Camera and GPS Sub-Trajectories 

The comparison of CTi and TGTi within Wi can detect the UAV spoofing. This comparison can be 

done directly or indirectly using some dissimilarity measures. In this article, for direct comparison, the 

Sum of Euclidian Distances between Corresponding Points (SEDCP) of CTi and TGTi is used. 

Additionally, for indirect comparison, the angle distance and taxicab distance between the HOD 

(Histogram of Oriented Displacements) trajectory descriptors of CTi and TGTi are used. 

2.3.1. Direct Comparison 

The direct comparison of CTi and TGTi within Wi can be done using SEDCP, as in Equation (7). In 

this equation, 𝑑(𝑻𝑮𝑗 , 𝑪𝑗) is the Euclidian distance between 𝑻𝑮𝑗 and 𝑪𝑗: 

𝑆𝐸𝐷𝐶𝑃(𝐶𝑇𝑖 , 𝑇𝐺𝑇𝑖) = ∑ 𝑑(𝑻𝑮𝑗 , 𝑪𝑗)
𝑖+

𝑘−1
2

𝑗=𝑖−
𝑘−1

2

 (7) 

Figure 3 shows the Euclidian distances between the corresponding points of CTi and TGTi within 

a five-point window of Wi. In this figure, point C’ is the beginning point of UAV spoofing and its 

redirection point due to GPS spoofing which is recorded in CTi. 
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2.3.2. Indirect Comparison 

The indirect comparison of CTi and TGTi can be done using their HOD trajectory descriptors. The 

HOD trajectory descriptor was introduced in [51] to describe the trajectory of body joints and to 

recognize the human actions from the Kinect point cloud. The HOD trajectory descriptor is a histogram 

that its bins record the displacement amount of the moving object in different directions between 0° to 

360°. The bins number (BN) of the HOD determines the angular resolution or the bin interval (BI) of 

HOD (Equation (8)). For example, if BN is set to eight, its bin interval (BI) will be equal to 45° and its 

bins indicate the directions at the angles of 0°, 45°, …, and 315° (Figure 4). 

 

Figure 3. An example of CTi and TGTi within a five-point window of Wi and the Euclidian distances 

between the corresponding points to obtain the Sum of Euclidian Distances between Corresponding 

Points (SEDCP) dissimilarity measure. 

 

Figure 4. Directions of HOD (Histogram of Oriented Displacements) trajectory descriptor with eight 

bins. Distance 𝐷𝑗,𝑗+1 is divided between its two nearest bins, concerning the angle of Ɵ𝑗,𝑗+1. 

In conventional HOD, distance 𝐷𝑗,𝑗+1  with the azimuth angle (the direction angle of 𝐷𝑗,𝑗+1 

concerning Y-axis) of Ɵ𝑗,𝑗+1 (Equation (9)) is assigned to its nearest bin in terms of the angular distance, 

and then, the sum of the assigned distances to each bin is computed. In this paper, a modified HOD 

was constructed by dividing each distance of 𝐷𝑗,𝑗+1 between its two nearest bins in terms of the relative 

angular distance of Ɵ𝑗,𝑗+1 with the angles of those bins. In Equation (9), (𝑥𝑗 , 𝑦𝑗) is the coordinates of 

the j-th point. The portion of each bin from each distance of 𝐷𝑗,𝑗+1 is computed according to Equation 

(10). The two nearest bins of 𝐷𝑗,𝑗+1 are determined using Equations (11) and (12): 

𝐵𝐼 =
360°

𝐵𝑁
 

(8) 

Ɵ𝑗,𝑗+1 = atan2−1 ((𝑥𝑗+1 − 𝑥𝑗), (𝑦𝑗+1 − 𝑦𝑗)) (9) 

𝑏𝑖𝑛𝑃𝑜𝑟𝑡𝑖𝑜𝑛 = 𝐷𝑗,𝑗+1 × (1 −
|Ɵ𝑗,𝑗+1 − (𝐵𝑁 − 1) × (𝐵𝐼)|

(𝐵𝐼)
) 

(10) 
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𝐹𝑖𝑟𝑠𝑡𝐵𝑁 = ⌊ 
Ɵ𝑗,𝑗+1

𝐵𝐼
 ⌋ + 1 

(11) 

𝑆𝑒𝑐𝑜𝑛𝑑𝐵𝑁 = 𝐹𝑖𝑟𝑠𝑡𝐵𝑁 + 1 (12) 

As illustrated in Figure 4, the HOD is dependent on the Y-axis of coordinate system in computing 

the azimuth angle of Ɵ𝑗,𝑗+1. Hence, to compare CTi and GTi with their HOD descriptors, GTi should be 

transformed into the coordinate system of CTi. Figure 5a and Figure 5b, respectively, show an example 

of a general trajectory, T, and its HOD trajectory descriptor. Furthermore, Table 1 shows the values of 

𝐷𝑗,𝑗+1 and Ɵ𝑗,𝑗+1, their first and second nearest bin numbers and the portion of each side of T on these 

bins. Additionally, Table 2 shows the portion of each side of T in each bin. The last row in Table 2 is the 

modified HOD trajectory descriptor of T and is the sum of the portion of sides in each bin. 

 
(a) 

 
(b) 

Figure 5. (a) A general trajectory of T. (b) HOD trajectory descriptor of T (the numbers over bins show 

the portion of each side of T in that bin). 

Table 1. Distance and azimuth angle of the sides of T in Figure 5a. 

SecondBN Portion FirstBN Portion SecondBN FisrtBN θj,j+1 Dj,j+1 Side 

50 100 3 2 60 150 AB 

100 80 4 3 115 180 BC 

93.33 26.67 2 1 35 120 CD 

120 60 1 8 345 180 DE 

Table 2. The portion of each side of T in each bin of the HOD trajectory descriptor of T in Figure 5a. 

HOD Bins  

8 7 6 5 4 3 2 1 Sidej,j+1 

0 0 0 0 0 50 100 0 AB 

0 0 0 0 100 80 0 0 BC 

0 0 0 0 0 0 93.33 26.67 CD 

120 0 0 0 0 0 0 60 DE 

120 0 0 0 100 130 193.33 86.67 HOD 

For an indirect comparison of CTi and TGTi using their HOD trajectory descriptors, two 

dissimilarity measures are proposed here. First, the Angle Distance between HODs (HOD_AD), and 

second, the Taxicab Distance between HODs (HOD_AD) of these sub-trajectories were used to 

compute their dissimilarities (Equations (13) and (14)). In these equations, 𝐚 and 𝐛, respectively 

denote the HOD trajectory descriptors of CTi and TGTi, and 𝑎𝑖 and 𝑏𝑖 are the i-th components of 𝐚 

and 𝐛: 
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𝐻𝑂𝐷_𝐴𝐷(𝐚, 𝐛) =
1

𝜋
× 𝑐𝑜𝑠−1 (

⟨𝐚|𝐛⟩

‖𝐚‖‖𝐛‖
) 

(13) 

𝐻𝑂𝐷_𝑇𝐷(𝐚, 𝐛) = ∑ |𝑎𝑖 − 𝑏𝑖|
𝑝=𝐵𝑁

𝑖=1
 

(14) 

2.4.  Vision-Based UAV Detection 

Figure 6 shows the steps of the proposed vision-based method for UAV spoofing detection, which is 

briefly described in seven steps in Figure 6. 

 

Figure 6. The flowchart of the proposed vision-based UAV spoofing detection method. 

Step 1: Initially, the size of moving window (k), the threshold of the used dissimilarity measure (Th), 

and the threshold of UAV spoofing declaration (k/2) are determined. The threshold of 

dissimilarity measure is used in the determination of fake GPS positions and the threshold of 

UAV spoofing declaration is used in declaring of UAV spoofing. The threshold values of 

SEDCP, HOD_AD and HOD_TD dissimilarity measure are obtained by a sensitivity analysis 

that is fully described in Section 3.7. Additionally, the threshold of UAV spoofing declaration 

is set to k/2. 

Step 2: In this step, at each i-th UAV position, k images from UAV flight path, from the image number 

of i-(k-1)/2 to i+(k-1)/2, are selected using a moving window of Wi. 

Step 3: In step 3, using the selected images and their corresponding GPS positions within the window 

Wi, two corresponding CTi and GTi sub-trajectories are calculated. 
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Step 4: In this step, the coordinate system of GTi is transformed into the coordinate system of CTi. 

Step 5: Here, the dissimilarity measure between CTi and TGTi is computed. 

Step 6: In this stage, the computed dissimilarity measure between CTi and TGTi within the window 

Wi is compared with the threshold value, Th. If the value of dissimilarity measure exceeds Th, 

the GPS position at point i, will be recognized as a fake position. 

Step 7: Finally, based on the results of the previous step, the decision is made to declare the UAV 

spoofing based on the given threshold. 

3. Experiments and Results 

3.1. Data 

To evaluate the proposed vision-based approach for UAV spoofing detection, 97 images of a 

UAV photogrammetry project from Golgir village of Masjed Soleiman city in southwestern Iran were 

used. Figure 7, shows a Google Earth view of Golgir village and the flight lines of this UAV 

photogrammetry project which are used in the implementation of different scenarios of the proposed 

approach. 

 
(a) 

 
(b) 

Figure 7. (a) A Google Earth view of Golgir village. (b) The flight lines of Golgir UAV 

photogrammetry project. The images and Global Positioning System (GPS) positions of these lines 

were used in the evaluation of the proposed method. 

A DJI-FC6520 digital camera with the focal length of 12 mm and the image size of 5280 by 3956 

pixels and GSD (Ground Sample Distance) of 0.03 m was used in this project. The overlap area 

between the successive images is about 80% and the imaging height above the earth surface is about 

110 m. The length of the trajectory from the used images is about 2300 m. All images were geotagged 

using GPS positions during the flight with an accuracy of ±1.5 m. Figure 8 shows two successive 

stereo images of the dataset. 
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(a) 

 
(b) 

Figure 8. (a) and (b) are two stereo images of the Golgir UAV photogrammetry project. 

3.2. GPS Spoofing Simulation 

In Section 1, some studies about the successful spoofing of civilian UAVs using the GPS spoofing 

are reviewed [10–14]. In this paper, due to the limitations in the implementation of GPS spoofing, the 

occurrence of GPS spoofing in the SRB spoofing level was simulated. The UAV spoofing due to the 

GPS spoofing in the SRB spoofing level means that the spoofer knows the UAV location, destination, 

velocity, and its predefined trajectory. Thus, the spoofer can generate and propagate fake GPS signals 

so that the fake GPS positions generated from the spoofed signals coincide with the predefined UAV 

trajectory, while UAV is directed to another spoofed trajectory. The SRB spoofing level is the most 

difficult mode of GPS spoofing for detecting and mitigating. Additionally, it is assumed that the 

spoofer generates fake GPS signals so that the UAV velocity is not significantly changed. As a result, 

the distance travelled by UAV at the time of spoofing will be equal to its travelled distance in the case 

of that no GPS spoofing exists. This will make it almost impossible to detect the UAV spoofing using 

the comparison of UAV velocity and its travelled distance from the spoofed GPS and other sensors 

such as the camera. 

In this research, the simulated spoofed UAV positions are selected from the available GPS 

positions of geotagged UAV images in the flight lines of Golgir UAV photogrammetry project (Figure 

7b). Additionally, corresponding to these spoofed GPS positions (i.e., the predefined flight line), 

another flight line from Golgir UAV photogrammetry project is considered to be the true-travelled 

spoofed UAV trajectory. 

3.3. UAV Spoofing Detection: First Scenario 

Figure 9 schematically shows the first scenario of UAV spoofing. The images and GPS positions 

in the predefined and in the true-travelled spoofed UAV trajectories are selected from the flight lines 

of the Golgir UAV photogrammetry project (i.e., the lines of ABC and ABC’ in Figure 7b). As these 

are selected from the same UAV photogrammetry project, there is not a significant difference in UAV 

velocity over these flight lines. 

In this scenario, point A was assumed as the starting point of the UAV trajectory and point B 

was assumed as the starting point of the UAV spoofing, which was applied at the imaging position 

number of 33 (Figure 9). The predefined destination of the UAV was point C; however, when the 

spoofing was applied, the UAV will be redirected to point C’. Line BC in Figure 9 was constructed 

from the faked GPS positions, and line ABC (in red-circle markers) was considered to be the 

predefined UAV trajectory. Additionally, line ABC’ in Figure 9 (in black-dot markers) was considered 

to be the true-travelled spoofed UAV trajectory, which includes the UAV images. It was assumed 

that no spoofing has occurred in segment AB. Thus, the predefined UAV trajectory and the true-

travelled spoofed UAV trajectory coincided in this segment. Within each window of Wi, the GPS 

positions of the geotagged UAV images were used to construct GTi, and the corresponding UAV 

images were used to construct CTi. When spoofing occurred at point B, the GPS measurement during 

the flight of UAV over line BC’ should demonstrate line BC (i.e., predefined flight line). Hence, the 
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GPS positions in line BC were considered to be the fake GPS positions, which correspond to the UAV 

images in line BC’; Line BC’ is the true-travelled spoofed UAV trajectory. The GPS positions of line 

BC are used in the construction of GTis and the UAV images of line BC’ are used in the construction 

of the corresponding CTis using VO. 

 

Figure 9. The first scenario in the UAV spoofing. 

Results of the First Scenario 

In this scenario, to detect the UAV spoofing, the size of the moving window of Wi was set to 9, 

15, and 21. Figure 10 shows the values of three dissimilarity measures used for UAV spoofing 

detection within each window of Wi. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. The values of dissimilarity measures in the first scenario of UAV spoofing: (a) HOD_AD, 

(b) HOD_TD, and (c) SEDCP. 

In Figure 10, the horizontal axis is the imaging position number of UAV in its flight trajectory 

and the vertical axis shows the values of the dissimilarity measure. In Figure 10a, when the imaging 

positions from VO are in coincidence with the GPS positions within the moving window, the 
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HOD_AD is close to zero. In this scenario, this situation occurs up to the UAV imaging position 

number 26 for a window size of 15. Until this position, the moving window does not contain any fake 

GPS position from the line BC’. In this region, there is no significant difference between CTi and TGTi. 

However, by reaching the window to position number 27, and by entering the first fake GPS position 

(i.e., position number 34) into the window, the value of the HOD_AD dissimilarity measure begins 

to rise (Figure 10a). The maximum value of the HOD_AD dissimilarity measure has occurred at 

imaging position number 33, which is the starting point of UAV spoofing. As depicted in Figure 9, 

the maximum difference between CTi and TGTi has occurred at this point within the window W33. 

After passing position number 41, all imaging positions in the true-travelled spoofed UAV trajectory 

and all fake GPS positions in the predefined UAV trajectory are located in a straight direction within 

the moving windows (e.g., CT50 and GT50 at W50 in Figure 9). Therefore, HOD_AD becomes close to 

zero again, because, in these positions, TGTi coincides with CTi. This pattern can be observed in 

window sizes 9 and 21, as demonstrated in Figure 10a. Additionally, the results of this scenario from 

HOD_TD and SEDCP dissimilarity measures are presented in Figure 10b and Figure 10c, 

respectively. The results demonstrate that all HOD_AD, HOD_TD, and SEDCP have a good 

sensitivity to the instant change in the direction of UAV due to the spoofing. Additionally, the values 

of HOD_TD and SEDCP considerably increase as the window size increases from 9 to 15 and 21. 

As mentioned before, point B or the position number of 33 is the starting point of UAV spoofing 

and point C’ is the spoofed destination of UAV at the position number of 66 (Figure 9) . In this regard, 

33 fake GPS positions have occurred during the UAV spoofing. To detect the spoofing occurrence, 

the threshold values of HOD_AD, HOD_TD, and SEDCP are set to 0.002, 0.13, and 0.31, respectively. 

The process of the determining of these thresholds is described in Section 3.7. The number of fake 

GPS positions detected by the proposed method using these dissimilarity measures at three sizes of 

the moving window is given in Table 3. 

Table 3. The numbers of fake GPS positions in the first scenario, detected by the proposed method. 

 SEDCP HOD_AD HOD_TD 

W = 9 33 (100%) 13 (39%) 13 (39%) 

W = 15 33 (100%) 19 (57%) 19 (57%) 

W = 21 33 (100%) 25 (75%) 25 (75%) 

 

The obtained results demonstrate that all dissimilarity measures, detect the UAV spoofing at its 

beginning, particularly in the case of using a window size of 9. Therefore, the proposed method 

through these dissimilarity measures can correctly detect the location and time of UAV spoofing. 

In general, by increasing the window size, the numbers of the detected fake GPS position by the 

proposed method are increased. Moreover, the sensitivity of SEDCP to the UAV spoofing up to the 

fake destination (i.e., the position number of 66) can be observed in Figure 10c. Compared to 

HOD_AD and HOD_TD, the SEDCP dissimilarity measure can successfully detect all fake GPS 

positions even after the position numbers of 37, 40, and 43 in all sizes of the moving window. After 

these positions, all imaging positions in the true-travelled spoofed UAV trajectory and all fake GPS 

positions in the predefined UAV trajectory are located in a straight direction within the moving 

window. A closer look at the positions of GPS and camera in lines BC and BC’ reveals that there is a 

little difference in UAV velocity between these lines because the images and GPS positions are 

selected from two different flight lines of Golgir UAV photogrammetry project. This shows that 

SEDCP is more sensitive to the slight changes in UAV velocity due to the GPS spoofing. Therefore, 

to monitor the UAV spoofing, SEDCP is more valuable due to its sensitivity to the changes in the 

UAV direction and velocity caused by the GPS spoofing. 

 

3.4. UAV Spoofing Detection: Second Scenario 

Figure 11 shows that the second scenario of UAV spoofing aims to evaluate the effects of 

redirection points. In this regard, the line of ABCDE is considered as the predefined UAV trajectory 
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in which points C and D are redirection points of UAV. Additionally, line ABC’ is considered to be 

the true-travelled spoofed UAV trajectory. Point A is the starting point of UAV flight and point B is 

the starting point of UAV spoofing at the imaging position number of 33. The predefined destination 

of UAV is point E; however, the spoofed UAV is redirected to point C’ at the imaging position number 

of 97. Similar to the first scenario, in this scenario, the UAV images in the true-travelled spoofed UAV 

trajectory and the fake GPS positions in the predefined UAV trajectory are selected from the flight 

lines of Golgir UAV photogrammetry project. 

Similar to the first scenario, the size of the moving window was set to 9, 15, and 21. Figure 12 

shows the values of the dissimilarity measure. Considering this figure, the first maximum value of 

dissimilarity measures was obtained at the starting point of UAV spoofing, at position number 33 

(i.e., point B in Figure 11). Additionally, two additional maximum values were achieved at the UAV 

redirection points at position numbers 55 and 76, at points C and D. This condition was true for all 

dissimilarity measures and window sizes. The reason for the appearance of these maximum values 

at the redirection points is the difference that exists between the shape of CTi and GTi at these points. 

Therefore, the proposed method is sensitive to the existence of any redirection point. In particular, 

the performance of SEDCP and HOD_TD in the detection of UAV spoofing in these redirection points 

was better than the performance of HOD_AD. Moreover, SEDCP demonstrates superior results, since 

it can efficiently discriminate between the normal and spoofed states of UAV. Generally, the values 

of SEDCP are bigger than the values of HOD_TD and SEDCP is a suitable dissimilarity measure 

compared to HOD_TD. The impact of window size in the UAV spoofing detection and at the 

beginning of UAV spoofing is important. In other words, as the size of the window becomes smaller, 

it gets more sensitive and can detect UAV spoofing earlier, namely, at the beginning. Moreover, the 

obtained results demonstrate that the monitoring time of UAV spoofing is dependent on the window 

size. When the size of the window increases, the fake GPS positions remain inside the window for a 

long time. In other words, the response time to spoofing occurrence in the larger size of the window 

(e.g., 21) is longer than the response time in the smaller window size (e.g., 9). Table 4 shows the 

number of the detected fake GPS positions using the proposed dissimilarity measures at three sizes 

of the moving window. In this scenario, SEDCP successfully detected the UAV spoofing occurrence 

in the window sizes of 15 and 21 from the starting point of spoofing up to the end of it.  

Table 4. The numbers of fake GPS positions in the second scenario, detected by the proposed method. 

 SEDCP HOD_AD HOD_TD 

W = 9 54 (84%) 44 (69%) 50 (78%) 

W = 15 64 (100%) 55 (86%) 59 (92%) 

W = 21 64 (100%) 62 (97%) 64 (100%) 

 

Figure 11. The second scenario in UAV spoofing. 
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(a) 

 
(b) 

 
(c) 

Figure 12. The values of dissimilarity measures in the second scenario of UAV spoofing: (a) HOD_AD, 

(b) HOD_TD, and (c) SEDCP. 

3.5. UAV Spoofing Detection: Third Scenario 

In this scenario, a flight line of Golgir UAV photogrammetry project was selected as the true-

travelled spoofed UAV trajectory. Corresponding to this trajectory, a predefined UAV trajectory was 

designed as a curve instead of a straight line. This curve demonstrates the case in which the UAV 

direction in the predefined UAV trajectory changed incrementally with a rate of 1° from one imaging 

position to the next. Figure 13 shows this scenario. Point A was the starting point of the UAV 

trajectory and point B was the starting point of UAV spoofing, which was applied at position number 

31. Additionally, point C’, at position number 64, was considered to be the spoofed destination of the 

UAV (Figure 13). In this regard, 32 fake GPS positions occurred during the UAV spoofing. The results 

of this scenario at the window size of 9, 15, and 21 are presented in Figure 14. Table 5 shows the 

numbers of fake GPS positions in this scenario, which were detected by the proposed dissimilarity 

measures at different window sizes. 

Table 5. The numbers of fake GPS positions in the third scenario, detected by the proposed method. 

 SEDCP HOD_AD HOD_TD 

W = 9 31 (97%) 12 (38%) 11 (34%) 

W = 15 31 (97%) 26 (81%) 29 (91%) 

W = 21 32 (100%) 27 (84%) 29 (91%) 

 

As shown in Figure 14, all the used dissimilarity measures have small values in the small 

window size, such that the UAV spoofing detection is not reliable compared to the large window 

size. Additionally, in this scenario, the values of the dissimilarity measures incrementally increase 

after the starting of UAV spoofing. This result demonstrates that the UAV spoofing can be monitored 

for a long time during the incremental UAV spoofing. However, the values of SEDCP and HOD_TD 

in the large window size have an acceptable amount for UAV spoofing detection. 
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Figure 13. The third scenario of UAV spoofing. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. The values of dissimilarity measures in the third scenario of UAV spoofing: (a) HOD_AD, 

(b) HOD_TD, and (c) SEDCP. 

3.6. UAV Spoofing Detection: Fourth Scenario 

This scenario was designed to demonstrate the efficiency of the proposed method in the UAV 

spoofing detection in which only the UAV velocity has changed due to the GPS spoofing and there 

is no change in the flight direction. In this scenario, the flight line of the Golgir UAV photogrammetry 

project, which was used in the third scenario, was selected as the true-travelled spoofed UAV 
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trajectory. Additionally, it was assumed that the UAV spoofing occurred after imaging position 

number 31. Corresponding to this trajectory, three predefined UAV trajectories were designed; in 

them, the UAV velocities after the spoofing point were 1.1, 1.2, and 1.3 times the true velocity of the 

spoofed UAV. These trajectories are depicted in Figure 15. In this figure, point A is the starting point 

of the UAV trajectory and point B is the starting point of UAV spoofing. Additionally, points C and 

C’, at position number 64, are, respectively, considered to be the predefined and spoofed destinations 

of UAV. In this regard, 32 fake GPS positions occurred during UAV spoofing. The results of this 

scenario at a window size of 9 and three different velocities of the spoofed UAV are presented in 

Figure 16. As shown in Figure 16, HOD_AD and HOD_TD dissimilarity measures had values smaller 

than their thresholds, as they are the most sensitive to the redirections in the trajectory of the spoofed 

UAV. As in this scenario, there was no redirection point in the trajectory of the spoofed UAV; the 

values of these dissimilarity measures were close to zero and the same results were obtained for all 

velocities of the spoofed UAV. In contrast, the SEDCP dissimilarity measure was able to detect UAV 

spoofing and discriminate between different velocities of the spoofed UAV. Table 6 shows the 

numbers of fake GPS positions in this scenario that were detected by the proposed dissimilarity 

measures. It is shown in Figures 16a, and 16b that HOD_AD and HOD_TD dissimilarity measures 

cannot detect any fake GPS positions, while SEDCP successfully detects more than six fake GPS 

positions (Figure 16c). 

Table 6. The numbers of fake GPS positions in the fourth scenario, detected by the proposed 

method. 

 SEDCP HOD_AD HOD_TD 

Predefined Velocity = 1.1 × (Spoofed Velocity) 6 (18%) 0 (0%) 0 (0%) 

Predefined Velocity = 1.2 × (Spoofed Velocity) 7 (21%) 0 (0%) 0 (0%) 

Predefined Velocity = 1.3 × (Spoofed Velocity) 7 (21%) 0 (0%) 0 (0%) 

 

 
(a) 

 
(b) 

 
(c) 

Figure 15. The fourth scenario of UAV spoofing. (a) The predefined velocity is 1.1 times of the spoofed 

velocity of UAV. (b) The predefined velocity is 1.2 times of the spoofed velocity of UAV. (c) The 

predefined velocity is 1.3 times of the spoofed velocity of UAV. 
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(a) 

 
(b) 

 
(c) 

Figure 16. The values of dissimilarity measures in the fourth scenario of UAV spoofing: (a) HOD_AD, 

(b) HOD_TD, and (c) SEDCP. 

3.7. Sensitivity Analysis 

For sensitivity analysis of the proposed method to the changes in the direction of UAV, initially, 

one of the flight lines of Golgir UAV photogrammetry project was selected as the true-travelled 

spoofed UAV trajectory (line with the black markers in Figure 17). Point A is the starting point of the 

UAV flight trajectory and point B is the starting point of UAV spoofing in this scenario, which was 

applied at position number 31. Additionally, point C’ was considered as the spoofed destination of 

UAV. Then, line BC’ drifted in some angles and the drifted line was considered as the predefined 

UAV trajectories. For this purpose, line BC’ drifted in 1°, 2°, 3°, 4°, and 5°. For clarity, only the drifted 

line at 5° is depicted in Figure 17. The fake GPS positions over these predefined UAV trajectories 

were simulated according to the UAV velocity and the imaging rate camera. To determine the optimal 

threshold values of the dissimilarity measures, the sensitivity analysis was conducted at the window 

size of 9 to obtain the minimum response of the dissimilarity measures to the changes in the direction 

of UAV due to spoofing. The results of this sensitivity analysis are presented in Figure 18. 

As can be seen in Figure 18, there was a maximum value almost at position number 31, which 

was the starting position of UAV spoofing. Concerning Figure 18a,b, HOD_AD and HOD_TD were 

sensitive to the redirection of UAV when UAV has deviated bigger than 2°. Additionally, SEDCP can 

detect deviations bigger than 1°. In this regard, the maximum values of HOD_AD and HOD_TD at 

3° and the maximum value of SEDCP at 2° were selected as a reliable threshold for the spoofing 

declaration at each window. Therefore, the threshold values of HOD_AD, HOD_TD, and SEDCP 

were determined to be 0.002, 0.13, and 0.31, respectively. These thresholds were applied to the result 

of the scenarios in Tables 3–6 to show the capability of the proposed method in the detection of UAV 

spoofing. 
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Figure 17. The true-travelled spoofed UAV trajectory and the predefined UAV trajectory with a drift 

angle of 5°. 

 
(a) 

 
(b) 

 
(c) 

Figure 18. The values of the dissimilarity measures at a moving window size of 9 in different drift 

angles of 1°, 2°, 3°, 4°, and 5°, performed for the sensitivity analysis: (a) HOD_AD, (b) HOD_TD, and 

(c) SEDCP. 

4. Conclusions 

This paper introduced a vision-based UAV spoofing detection method. This method can be used 

in the spoofing detection of civilian UAVs, which are spoofed using GPS spoofing at the SRB spoofing 

level. The proposed method was based on the determination of CTi sub-trajectory using VO and GTi 
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sub-trajectories from the GPS positions within a moving window. Three dissimilarity measures, 

including HOD_AD, HOD_TD, and SEDCP, were introduced to compare these sub-trajectories. To 

evaluate the proposed method, four scenarios were designed using the real images and GPS positions 

of the flight lines of Golgir UAV photogrammetry project. Moreover, based on the rate of the changes 

in the UAV direction due to the GPS spoofing, a sensitivity analysis was conducted at a window size 

of 9 to determine a suitable threshold for each dissimilarity measure. 

The experimental results of the first scenario demonstrated that the time and location of the UAV 

spoofing occurrence could be detected using the moving window approach with a time delay in 

about half of the window size. Consequently, UAV spoofing was successfully detected by the 

proposed vision-based method. Moreover, by increasing the window size, the monitoring time of 

UAV spoofing and the numbers of fake GPS positions that were detected by the proposed method 

were increased. In this experiment, SEDCP demonstrated better performance compared to HOD_AD 

and HOD_TD and was sensitive to the slight changes in UAV velocity due to GPS spoofing. 

In the second scenario, which contains three redirection points, the proposed dissimilarity 

measures could detect the UAV spoofing at these points. The results of the second scenario showed 

that the proposed method is sensitive to the existence of the redirection points in the predefined or 

in the true-travelled spoofed UAV trajectories. In particular, the performance of SEDCP and 

HOD_TD in the detection of UAV spoofing in the redirection points outperformed HOD_AD. When 

the length of a straight line in the predefined UAV trajectory and its corresponding straight line in 

the true-travelled spoofed UAV trajectory became significantly larger than the window size, then, the 

fake GPS positions were not detected and the monitoring time decreased. 

In the third scenario, in which the UAV direction was changed incrementally with the rate of 1° 

from one imaging position to the next, the obtained results of three proposed dissimilarity measures 

could detect the UAV spoofing. In particular, during the occurrence of the UAV spoofing, the values 

of these dissimilarity measures continuously increased, especially in the large window sizes. Hence, 

the UAV spoofing could be monitored using the proposed method for a long time even in the 

incremental redirection of UAV with a rate of bigger than 1°. 

In the fourth scenario, the ability of the proposed method and dissimilarity measures were 

examined against the velocity change of the spoofed UAV due to SRB GPS spoofing. The achieved 

results at a window size of 9 showed that the HOD_AD and HOD_TD could not detect the UAV 

spoofing, since the obtained results were close to zero for all velocities of the spoofed UAV. However, 

the SEDCP was sensitive to the velocity changes in this scenario, and could efficiently detect UAV 

spoofing and discriminate between different velocities of the spoofed UAV. 

In conclusion, the obtained results of these scenarios indicate that the proposed method is 

effective and efficient in the detection of UAV spoofing due to SRB GPS spoofing. Since the proposed 

method was based on the moving window method, it is capable to determine the time and location 

of UAV spoofing occurrence. This method can detect the UAV spoofing when the true velocity of the 

spoofed UAV is almost equal to the predefined UAV velocity. The results showed that this method 

can detect UAV spoofing with the changes less than 3° in the direction of UAV and even in the case 

of the gradual and subtle changes in the UAV direction. The results demonstrated that SEDCP is a 

more valuable dissimilarity measure due to its more sensitivity to the changes in the UAV redirection 

due to GPS spoofing. Moreover, when there is not any redirection point in the trajectory of spoofed 

UAV and only its velocity is changed, UAV spoofing can be detected efficiently by the SEDCP 

dissimilarity measure. 

However, this method may be unsuccessful in some situations, for example, in the night-time or 

in areas with poor texture, such as areas covered with water or snow. Moreover, the efficiency of the 

VO in the determination of the spoofed UAV trajectory may be affected due to the velocity changes 

of spoofed UAV, which may cause to decreases the overlap of UAV images. 
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