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Abstract: The agricultural sector and natural resources are heavily interdependent, comprising a
coherent but complex system. The soil and water assessment tool (SWAT) is widely used in assessing
these interdependencies for regional watershed management. However, long-term simulations of
agricultural watersheds are considered as not realistic since they have often been performed assuming
constant land use over time and are based on the coarse resolution of the existing global or national
data. This work presents the first insights of the synergy among SWAT model and deep learning
classification algorithms to provide annually updated and realistic model’s parameterization and
simulations. The proposed hybrid modelling approach couples the physical process SWAT model
with the versatility of Earth observation data-driven non-linear deep learning algorithms for land
use classification (Overall Accuracy (OA) = 79.58% and Kappa = 0.79), giving a strong advantage to
decision makers for efficient management planning. A validation case at an agricultural watershed
located in Northern Greece is provided to demonstrate their synergistic use to estimate nitrate and
sediment concentrations that load in Zazari Lake. The SWAT model has been implemented under
two different simulations; one with the use of a static coarse land use map and the other with
the use of the annual updated land use maps for three consecutive years (2017–2019). The results
indicate that the land use changes affect the final estimations resulting to an enhanced prediction
performance of 1% and 2% for sediment and nitrate, respectively, when the annual land use maps are
incorporated into SWAT simulations. In this context, a hybrid approach could further contribute to
addressing challenges and support a data-centric scheme for informed decision making with regard
to environmental and agricultural issues on the river basin scale.
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1. Introduction

A deeper understanding of the agricultural sector is needed to provide an informed and transparent
framework required to meet increasing resource demands and pressures, without compromising
sustainability. In this regard, an integrated management of the ecosystems is critical to address the
priorities laid out by global policies and, achieve land degradation neutrality and resource efficient
regions. In this regard, the importance of undertaking quantitative assessments and corresponding
reporting of degraded lands across various scales to halt and reverse current trend in degradation has
been recognized and prioritized [1].
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To ensure tangible results in achieving land degradation neutrality, informed decisions based on
comprehensive analyses are required, integrated at scale sufficient to support both sustainable land
management and planning [2]. Thus, a data-driven approach to environmental protection promises to
make it easier to spot problems, highlight policy failures and identify best practices.

In this context, the soil and water assessment tool (SWAT), a large-scale hydrologic and water
quality physically-based model has proven its capabilities as an essential tool in examination of
agronomic and environmental impacts of various management practices and relevant terrestrial
resources planning [3]. Evidently, a number of research studies have been conducted in the area
of modelling water and nutrient fluxes, ranging from few hundreds km2 [4] to regional [5,6] scales.
In addition, numerous studies have used scenario-based methods to quantify the impacts of land use
on hydrological components with the SWAT model [7,8], while several studies examine how the land
use change affects the concentrations of nitrate [9] and sediment [10,11] in the catchment area.

Overall, in the case of SWAT simulations reliable and accurate data and information are required.
Spectral, temporal and spatial features derived from Earth observation (EO) systems can facilitate
the systematic monitoring of the Earth’s land surface. With the support of high spatial resolution EO
data (10 m), researchers and policy makers have the means to detect the changes and disturbances of
land use/land cover (LULC) classes based on a time-series of satellite imagery data to provide high
resolution and updated LULC maps and to improve physically process modelling. It is noteworthy
that the importance of monitoring LULC for evaluating compliance with policies in force has been
recognized and prioritized with the use of spaceborne data at global level [12]. Recently, the arrival
of the era of deep learning (DL) for EO-based land cover mapping generated dual view [13] and
multi-source [14] DL architectures that have attained significant improvements to reach the desired
spatiotemporal representativeness and reliability for LC mapping. This can open a new era for
operational terrestrial monitoring without the need for additional implemented training and validation
data collection procedures.

Despite the usefulness of annual LC maps that can be derived from remote sensing time series,
most of the strategies proposed for SWAT analysis, apply static coarse cover maps from relevant data
archives, thus ignoring any spatiotemporal land change processes that may be discovered by the EO
derived LULC maps. To our knowledge, there are only a few studies that used remote sensing LULC
maps in combination with the SWAT model [15–18]. Thus, the exploitation of sophisticated non-linear
models can be a game changer in classifying remote sensing time series data and generating spatial
explicit indicators and incorporating them into physical based models.

Building upon the existing SWAT physical process model and non-linear classification algorithms,
the current study will strive to deliver preliminary insights of the synergistic use of annual updates on
land cover derived from EO imagery data and possible spatio-temproral based simulations to monitor
and predict nitrate and sediment concentrations that load to a small surface water body in Northern
Greece. The results of this study demonstrate a paradigm-shift from standard static water and land
resource quantification toward generating more dynamic, on-demand, natural resource management
strategies through the integration of state of the art DL algorithms to handle large volume of satellite
imagery. The novel element of the proposed hybrid approach is that it paves the way for the assessment
of the environmental impact of the agricultural sector, drawing knowledge from heterogeneous data of
various scales for measuring the environmental performance of current and upcoming policies.

2. Materials and Methods

The proposed hybrid approach couples the physical process SWAT model with the versatility of
EO-data driven non-linear classification algorithms for land use classification. In this regard, we based
our analyses on multitude of information as inputs, such as multispectral spaceborne open EO data
(Copernicus), the aerial imagery digital elevation model (DEM) and other spatial explicit indicators
from relevant data archives. The overall data processing and analysis workflow is illustrated in
Figure 1, while detailed descriptions of the different steps are provided in the sections below.
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Figure 1. Workflow of the proposed hybrid approach. A set of satellite imagery data is fed into a deep 
learning (DL) algorithm. The land use (LU) maps produced by the DL algorithm are used separately 
to feed the soil and water assessment tool (SWAT) model. 

2.1. Description of the Study Area 

The study area includes the hydrologic basin of two Lakes in Greece, Zazari, and Chimaditida, 
with a special focus to Lake Zazari in order to validate the nitrate and sediment concentrations. The 
Zazari-Chimaditida river sub-basin is located at the eastern part of the Vegoritida watershed and 
occupies over 216 km2, and it is considered as one of the most important wetlands in Greek territory 
(Figure 2). The morphology of the region of interest is characterized by the presence of two sections, 
a mountainous area (19.05%) with intense relief and large slopes and a flat area (80.95%) with smooth 
slopes around the two lakes (Zazari and Chimaditida) and in the valleys. The climate of the study 
area can be classified by Köppen as hot-summer Mediterranean climate (Csa) [19]. The elevation of 
the river catchment ranges from 384 to 1796m. Due to its elevation (+600 m) and its long distance 
from the sea, it presents climatic characteristics different from those of the Greek Mediterranean type. 
Moreover, the lack of protective mountain areas from the North contributes to the formation of a 
continental climate. Lake Zazari (average depth of 4.6 m) has a natural flow towards Lake 
Chimaditida, with which it is connected. Considering that the geological formation of Lake Zazari 
was formed by large geological settlements, it is considered as tectonic. It is noteworthy that the main 
water entrance to the Zazari Lake is from the Sklithros stream, which make it also the main source of 
pollution for the lake. In the summer months the Sklithros stream usually has zero flow, but when 
the stream has water it is Zazari’s main water supplier. Zazari belongs to alpine-type lakes it is hot 
monomimetic with high nitrogen content and increasing eutrophication as well as occurrence of 
microcystins [20]. 

Figure 1. Workflow of the proposed hybrid approach. A set of satellite imagery data is fed into a deep
learning (DL) algorithm. The land use (LU) maps produced by the DL algorithm are used separately to
feed the soil and water assessment tool (SWAT) model.

2.1. Description of the Study Area

The study area includes the hydrologic basin of two Lakes in Greece, Zazari, and Chimaditida,
with a special focus to Lake Zazari in order to validate the nitrate and sediment concentrations.
The Zazari-Chimaditida river sub-basin is located at the eastern part of the Vegoritida watershed and
occupies over 216 km2, and it is considered as one of the most important wetlands in Greek territory
(Figure 2). The morphology of the region of interest is characterized by the presence of two sections,
a mountainous area (19.05%) with intense relief and large slopes and a flat area (80.95%) with smooth
slopes around the two lakes (Zazari and Chimaditida) and in the valleys. The climate of the study
area can be classified by Köppen as hot-summer Mediterranean climate (Csa) [19]. The elevation of
the river catchment ranges from 384 to 1796m. Due to its elevation (+600 m) and its long distance
from the sea, it presents climatic characteristics different from those of the Greek Mediterranean type.
Moreover, the lack of protective mountain areas from the North contributes to the formation of a
continental climate. Lake Zazari (average depth of 4.6 m) has a natural flow towards Lake Chimaditida,
with which it is connected. Considering that the geological formation of Lake Zazari was formed by
large geological settlements, it is considered as tectonic. It is noteworthy that the main water entrance
to the Zazari Lake is from the Sklithros stream, which make it also the main source of pollution for the
lake. In the summer months the Sklithros stream usually has zero flow, but when the stream has water
it is Zazari’s main water supplier. Zazari belongs to alpine-type lakes it is hot monomimetic with high
nitrogen content and increasing eutrophication as well as occurrence of microcystins [20].
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Figure 2. Hydrological catchment of Lakes Zazari-Chimaditida, along with the hydrographic 
network. The red circle indicates the part of the digital elevation model that has been excluded from 
the analyses. 
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2.2.1. In Situ Information Procurement  

The climatic data were derived from a hydro meteorological station located within our region of 
interest (21.678881, 40.690079). The hydro meteorological data were obtained from the region of 
Western Macedonia, where the relevant data records of local stations in the catchment are kept 
updated. The climatic data refer to daily precipitation, temperature, relative humidity, wind speed 
and solar radiation for the period from 2006 to 2019. During summer maximum temperatures are 
recorded in July-August, while during winter minimum values in January. The driest month rains 
less than 30mm, while during the wettest winter, it is about three times more. The wind speed is of a 
light breeze, and relative humidity and solar radiation ranged at relatively moderate-to-high levels. 
A brief overview of the climatic observations is presented in Table 1.  
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Furthermore, for calibration and validation purposes of the model, monthly observed stream 
flow data from the years 2011 to 2014 were collected at the inlet of Zazari Lake. The stream flow data 
were obtained by Aristotle University of Thessaloniki, where historical archives of the relevant data 
records are kept. In addition, within the framework of the AquaNEX project one telemetric station 

Figure 2. Hydrological catchment of Lakes Zazari-Chimaditida, along with the hydrographic network.
The red circle indicates the part of the digital elevation model that has been excluded from the analyses.

2.2. Data Collection and Analysis

The overall proposed hybrid approach requires in situ meteorological variables, stream flow input
information and spatially explicit data. Below we briefly present the main data sources.

2.2.1. In Situ Information Procurement

The climatic data were derived from a hydro meteorological station located within our region
of interest (21.678881, 40.690079). The hydro meteorological data were obtained from the region of
Western Macedonia, where the relevant data records of local stations in the catchment are kept updated.
The climatic data refer to daily precipitation, temperature, relative humidity, wind speed and solar
radiation for the period from 2006 to 2019. During summer maximum temperatures are recorded
in July-August, while during winter minimum values in January. The driest month rains less than
30mm, while during the wettest winter, it is about three times more. The wind speed is of a light
breeze, and relative humidity and solar radiation ranged at relatively moderate-to-high levels. A brief
overview of the climatic observations is presented in Table 1.

Table 1. Overview of the qualitative and quantitative information regarding the
meteorological observations.

Meteorological Data (2006–2019)

Temperature ◦C Rainfall mm Other

Max Min Max Mean
Annual Min Driest

Month
Wettest
Month

Wind
speed

Relative
Humidity

Solar
Radiation

41.12 −14.6 857 615.3 374 30 mm 90 mm Light
breeze

Moderate
to high

Moderate
to high

Furthermore, for calibration and validation purposes of the model, monthly observed stream
flow data from the years 2011 to 2014 were collected at the inlet of Zazari Lake. The stream flow data
were obtained by Aristotle University of Thessaloniki, where historical archives of the relevant data
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records are kept. In addition, within the framework of the AquaNEX project one telemetric station was
installed at the inlet of the Zazari Lake, giving monthly nitrate values and data of observed sediment
for the second semester (July–December) of 2019.

2.2.2. Spatially Explicit Data

In this study, it is noteworthy that, the DEM used could not cover the entire Zazari-Chimaditida
river sub-basin area (Figure 2, red circle). Hence, a small area (approximately 7 km2) in the western
part was excluded from the rest of the analysis, without significantly affecting the final results and the
stability of the model. For stream delineation purposes, we obtained a two-meter resolution DEM
from a previous airborne campaign in 2018, which has been used for delineating the sub-river basin
watershed and stream network (Figure 3a). Based on these values, the slope map was reclassified into
four slopes (0–2.6%, 2.6–10.4%, 10.4–20.1% and more than 20.1%). Considering the soil data, we utilized
a grid soil map from the Food and Agriculture Organization of the United Nations digital soil data
hub. The Cambisols, Lithosols, Luvisols and Regosols are the dominant soils in the area (Figure 3b).
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In addition to the topographic data, other data sources were needed as well, such as the land cover.
In this study a dataset of geo-referenced polygons of land parcels and information on the type of land
cover according with their area was utilized. This product is a combination of (i) the Greek Integrated
Administration and Control System of 2017; (ii) in situ recordings for ground truth validation; and (iii)
photo interpretation of very high-resolution spaceborne images. Note that the in situ data collection is
not through the use of volunteer efforts but instead by a group of highly trained experts involved in
the data collection, during the field campaigns of the AquaNEX research project. Water and built-up
surfaces are derived from the national data archive. Prior to merging these data, they were checked for
consistency and if needed, re-warped to the universal transverse mercator (UTM) coordinate system,
resampled to 10 m and retiled into the Sentinel-2 tiling grid. Then, this information was converted into
raster format. This land cover product hereinafter called as the combined reference dataset (Figure 3c).
The final reference data includes 2,158,324 pixels distributed over 33 classes (see Appendix A). Based on
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this, the LC was categorized into agricultural land (24.26%), forest (68.50%), orchard (0.23%), grassland
(3.15%), water (1.97%), wetland (0.42%), urban land (1.46%), and barren land (0.01%).

Then, the decision was made to follow an object-partitioning approach to guarantee that calibration
and independent validation pixels were located in different land objects (e.g., neighborhood of pixels).
A set of 70,000 random points generated within the boundary shapefile of the entire river basin and
utilizing the Voronoi polygons a layer of smaller polygons was generated. Then, the labelled raster
(33 classes) was polygonized and intersected with the created sub-polygons layer to ensure that all areas
of the polygonized labelled data were contained within one of the created sub-polygons. The generated
objects were separated into a randomly selected train (90%) and a test set (10%) with the total number
of pixels varying between classes.

One main improvement in the proposed approach is the utilization of spaceborne EO imagery
data to provide annual updates in the land cover map at 10m spatial resolution (see Section 2.3). In the
current work, only visible (B2, B3, B4), near-infrared (B5-B8 and B8a) and short wave infrared (B11, B12)
bands were used for both Sentinel-2A and Sentinel-2B Level-2A. To mitigate the limitation that arises
due to cloud cover, we applied a selection criterion to cloud percentage (<10%) when generating
our nearly cloud-free time series. Sitokonstantinou et al. [21] indicated that the utilization of dense
satellite time series data regardless of the cloud coverage offered only a marginal increase in accuracy
for a disproportionally larger cost in processing time. Consequently, it was decided to select satellite
acquisitions that covers critical phenological stages of the targeted agricultural classes. In this context,
the available Sentinel-2 images for the study area were downloaded from the Copernicus Open Access
Hub. Figure 4 illustrates the selected Sentinel-2 acquisitions for 2017–2019 period, along with the
phenology stages of agricultural classes (aquatic and urban classes are not presented). In the last step
of pre-processing the bands at 20 m resolution (B5-B7, B8a, B11 and B12) were resampled at 10 m using
a bicubic interpolation. These multispectral bands from the selected satellite observations constituted
the classification features and were extracted for further processing.
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presented in Table A1.
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2.3. Generation of Annual Land Cover Dynamic Maps

Previous works indicated great potential in the utilization of non-linear deep learning methods for
land cover classification with time series data from EO multispectral systems [13,14,22]. The Sentinel-2
time series together with the combined reference dataset for 2017 were inputs for the supervised
classification algorithm in this study. Crop type prediction models were built based on a convolutional
neural network (CNN) that has been utilized in a recent study [13].

The proposed network is arranged in a series of four different types of layers, namely: (i) the input
layers, where the remotely sensed time series accounted for constituting the model’s input channel
(ii) the two-dimension convolutional layers, which filters a given input and extracts information
from specific spectral regions by carrying out the convolution operation; (iii) the flattening layer,
which converts the multi-dimensional filters into a single continuous vector; and (iv) the dense layer,
which connects all outputs of the previous layer to all inputs of the forthcoming layer. In the proposed
architecture, we can notice that the first convolution has a kernel of 3 × 3 and it generates 256 feature
maps, while the subsequent one generates 512 feature maps and still applies a kernel of 3 × 3. The last
convolutional layer utilizes a kernel size of 1 × 1 and is mainly devoted to increasing the final number
of extracted features to 1024. All the convolutions are followed by batch normalization, dropout (0.4),
as well as a rectifier linear unit (ReLU) activation function (α = 0.01).

For the quantitative evaluation, the land cover map generated was assessed using an independent
validation dataset which includes 140,689 sampling pixels (6.52% of the total surface) across the
33 classes. The classification performance for 2017 was obtained using the overall accuracy and the
kappa coefficient.

2.4. The SWAT Model

The SWAT model was firstly proposed by Arnold, et al. [23]. The SWAT model is developed
to predict the impact of land management practices on water, nutrients, sediments and agricultural
yields in large complex watersheds with varying soils, land use and management conditions over a
long period of time. It can also be used to predict water and soil loss in agriculturally dominant small
watersheds [24]. The model is a physically based, offers flexibility and efficiency in the computational
process and uses readily available data, making it perfectly suitable for the simulation of our study
area. In general, the watershed in SWAT is divided into multiple sub-watersheds, connected by a
stream network, which are then subdivided into hydrological response units (HRUs) consisting of
unique combinations of land cover and soils in each sub basin.

The amount of nitrate moved with the water is calculated by multiplying the nitrate concentration
in the mobile water by the volume of water moving in each pathway. Sediment yield are estimated for
each HRU with the modified universal soil loss equation (MUSLE) [25].

2.4.1. SWAT Model Set Up

In the current study, the SWAT model was set-up to run on monthly bases considering the first
four years (2009–2012) of data for the warm up period. For this study, the minimum threshold area
of 433.5 ha was used to divide the catchment into 19 sub-basins. After the calculation of the sub
basin parameters, two reservoirs (Lakes Zazari and Chimaditida) were located in the stream network.
The land use baseline map that was used for the initial model set up was the combined reference
dataset (Section 2.2.2). In addition multiple HRUs with 5% land use, 10% soil and 10% slope thresholds
were utilized and the overlay of the sub basins, land use, soil and slope generated 284 HRUs.

2.4.2. Sensitivity Analysis, Calibration and Validation

In this study calibration and validation of the SWAT model were carried out using a four year
period (2011–2014) based on monthly observed stream flow data which were collected at the inlet of Lake
Zazari. The dataset was divided into calibration 2011–2013 and validation 2014 periods. Calibration
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and validation were carried out in SWAT calibration and uncertainty procedures (SWAT-CUP) 2012
using the sequential uncertainty fitting (SUFI-2) analysis algorithm, as it has been implemented in
previous studies [26].

The first step in the calibration and validation process in SWAT is the determination of the most
sensitive parameters for a given watershed. Sensitivity analysis (SA) is helpful to identify and rank the
parameters that have significant impact on specific model outputs of interest [27]. In this study the
results of the global SA performed in SWAT CUP using the SUFI-2 algorithm [28]. The analysis was
carried out on a daily time step in order to accurately preserve the hydrologic characteristics of the
watershed. The number of simulations used was 1000, which is adequate to obtain accurate results for
a global SA [26]. SA determined the most sensitive parameters in this study area, as defined in Table 2.
The t-statistic gives a measure of the sensitivity of the parameter, where those larger in absolute values
are more sensitive. The p-values show the significance of the sensitivity, where p-values closer to
zero are more significant. In this context, they have been used to provide a measure and significance
of sensitivity.

Table 2. SWAT sensitivity analysis and calibration results in the river sub-basin of Lakes Zazari
and Chimaditida.

Parameter
SWAT Code

Description
Statistical Indices Range Fitted

Valuet-Stat p-Value Min Max

CN2 Soil conservation service (SCS)
runoff curve number −2.9339 0.0324 35 98 64

ALPHA_BF Base flow recession constant −0.5717 0.5922 0 1 1

GWQMN Threshold depth for return flow
of water in the shallow aquifer 3.5081 0.0171 0 5000 1150

GW_DELAY Groundwater delay in days 4.3518 0.0073 0 500 14
GW_REVAP Groundwater revap coefficient 1.0249 0.3633 0.02 0.2 0.2

2.4.3. Validation of the Results

The accuracy of the proposed approach was finally evaluated by examining the regression
correlation coefficient (R2), the Nash-Sutcliffe model efficiency coefficient (NSE), percent bias (PBIAS),
root mean square error (RMSE)-observations and the standard deviation ratio (RSR), which are
calculated using Equations (1)–(4).

R2 =

[∑n
i=1(Oi −O)

(
Pi − P

) ]2[∑n
i=1

(
Oi −O

)2
][∑n

i=1

(
Pi − P

)2
] (1)

NSE =

∑n
i=1 (Oi −O)

2
−

(
Pi − P

)2

∑n
i=1 (Oi −O)

2 (2)

PBIAS =

[∑n
i=1(Oi − Pi) ∗ 100∑n

i=1(Oi)

]
(3)

RSR =
RMSE

STDEVobs
=

[√∑n
i=1(Oi − Pi)

2
]

[√∑n
i=1

(
Oi −O

)2
] (4)

where: Pi is the predicted values, Oi is the observed values, O is the mean of the observed data, P is
the mean of the predicted data, n is the total number of observations and STDEVobs is the standard
deviation of the observed values. Moriasi et al. [29] suggest that NSE, PBIAS, and RSR are better
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quantitative statistics to evaluate model performance. They concluded that model simulation for
monthly stream flow is satisfactory if 0.5 < NSE ≤ 0.65, 0.60 < RSR ≤ 0.70, and ±15 ≤ PBIAS < ±25.
However, it is satisfactory for the sediment yield if ±30 ≤ PBIAS < ±55 with same values for NSE and
RSR as reported for stream flow. Other studies have suggested that an R2 value greater that 0.5 is
considered acceptable [30,31].

2.4.4. Improvement in SWAT Predictions

According to Hernandez et al. [32], to better understand any improvements due to temporally
precise disturbance data, we explored the relationship between the number of HRUs and the total
number of them:

Total HRUs = Initial HRUs2013 × Number of years with changes (5)

and the relative improvement in the stream flow predictions defined by

Improvement = NSE or RSRusing dynamic maps − NSE or RSRusing static maps (6)

Change is defined by the availability of a three or annual map.

2.5. Implementation

In this work, the Geographic Information System ArcGIS 10.5 was used for interfacing the SWAT
hydrological model. The analysis of EO data was preformed on a local version of the Committee on
Earth Observation Satellites data cube [33], making the whole processing routine more efficient and
effective in terms of handling the EO data [34]. The features for classification corresponding to the
classes were then extracted for further processing. The statistical and CNN classification analyses were
performed utilizing the R software [35] with the keras package. The classification model was built on a
workstation with a NVIDIA Quadro K4200 graphics processing unit.

3. Results and Discussion

3.1. Remote Sensing Land Use and Land Cover Classification Results

We report here only a short summary of the classification results. Overall, the CNN achieved
good classification results (Overall Accuracy (OA) = 79.58% and Kappa = 0.79) considering the ground
truth data of 2017. In terms of class-specific accuracies wetlands, water bodies sugar-beet and tree
crops (e.g., almonds, olives, apples etc.) are mapped with very high accuracies (>90%). Few classes
such as grapes, wheat and the majority of urban land uses are moderate (>80%) while arable lands
(alfalfa, agricultural land generic and close grown, as well as urban transportation) have lower-class
accuracies (<65%). The visual results that support the previous section, are presented in terms of heat
maps in Figure 5. This corresponds to the confusion matrix points of the CNN algorithm.

The most noticed difference between adjusted and predicted areas is produced for arable land
classes. This can be explained by the underestimation of alfalfa due to its confusion with other relevant
classes. It is noteworthy to mention that the small size in several parcels, as well as in a few classes
(e.g., urban transportation) cannot be captured efficiently by Sentinel-2 resolution, and this may affect
the classification performance. In addition, considering the pastures, rangelands and in general the
open agricultural areas, we can observe moderate classification results due to their similar temporal
patterns compared to other classes where they have distinctive temporal patterns within a growing
season. In this context, classification should be performed taking into account the phenological cycles
of each vegetation type investigated, and further research is required to increase the efficiency. The total
agricultural areas remained stable across the three year period. In this regard, next to a discrete land
cover layer for 2017, we generated the relevant products for 2018 and 2019 through the use of Sentinel-2
data and the developed classification algorithm (Figure 6).
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When compared with the reference land cover dataset, the land cover maps of 2018 and 2019,
respectively, show on a regional scale high dissimilarities, especially in the conversion of alfalfa crops
into cereals (Figure 7).
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3.2. SWAT Calibration and Validation

As has already mentioned, the SWAT model was calibrated and validated at the inlet of the Lake
Zazari where observed discharge load data were available. The performance evaluation of the SWAT
model on the basis of monthly discharge is shown in Table 3. Moreover, the observed and simulated
monthly discharges for the calibration and validation periods are presented in Figure 8. The graphical
representation and the statistical results show that the observed and simulated discharge closely match
during the simulation period, except for some cases which were mostly underestimated due to high
flow events like storms (Oct -11th, Mar -12th, Jul -13th, Jan -14th). Furthermore, the model performance
was considered as sufficient due to the strong agreement between discharge and precipitation with
only a set of small underestimations during the wet seasons.
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Table 3. Statistical metrics of calibration and validation phases.

Evaluation
Statistics

Calibration Validation

Reference Data Annual Update Reference Data Annual Update

R2 0.89 0.95 0.90 0.91
NSE −0.56 0.31 −0.76 0.30

PBIAS −58.65 14.2 −48.80 13.5
RSR 1.61 0.70 1.03 0.63
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The annual updates in LU maps generated by the Sentinel-2 data produced better performance
estimates across the time series available for the watershed. Regarding the statistical evaluation the R2

(0.95 for calibration and 0.91 for validation) values show very high consistency between the observed
and simulated data results. For the PBIAS, we found 14.2 for calibration and 13.5 for validation which
are acceptable results. Moreover, the values 0.7 for calibration and 0.63 for validation regarding the
RSR showed a satisfactory consistency.

It is well stated that the rainfall -runoff and stream flow are the main driving forces behind the
movement of sediment and nitrate through the watershed. Therefore, the appropriate calibration
step of the SWAT model regarding the stream flow plays a vital role. It is noteworthy that the lack
of a complete time series of nitrate and data of observed sediment did not allow the full calibration
and validation for those parameters. At this point, it should be mentioned that a model calibrated,
for example, for discharge, may not be adequate for prediction of sediment, or for application to
another region, or for application to another time period [36]. However, a lot of research works
has been done successfully in the past by calibrating the model with the discharge and simulating
sediments [37] or implementing land use change scenarios [38]. In future research, the previous
assumption will be considered by using the SWAT-CUP for calibration and validation purposes.
The values of the observed and the model simulated stream flow were found to display a satisfactory
statistical agreement. The results obtained from the model calibration and evaluation process (Table 3)
for both reference and annual update data can be also explained due to the high spatial DEM resolution
used in the simulation. Many studies report that DEM resolution is the most critical input for SWAT
simulation [9,39–41], and, for this reason, in this study, a high spatial resolution of 2 × 2 DEM was
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used, giving a reliable and accurate stream network of the region of interest and therefore a very good
overall watershed delineation.

3.3. SWAT Model Simulation Results

Two different simulations were applied in the Zazari -Chimaditida river sub-basin area for
assessing the effects of LULC change regarding the concentrations of sediment and nitrate that load in
Zazari Lake. The first approach was based on a reference data digital map from 2013 to 2019 and the
second one utilizing the annual updates of LU maps for 2017, 2018 and 2019. It should be mentioned
that the other inputs such as DEM, soil, climate were kept the same in both simulations.

Considering the first approach, the results of the sum of average annual sediment and nitrate
concentration that load to Zazari Lake are 102,597.84 tons and 7356.43 tons, respectively. The sum
values regarding the simulation period 2013–2019 vary from 1415.51 to 24,194.68 tons for sediments
and 384.07 to 1666.98 Kg for nitrate loads. The maximum values were obtained in 2015 and 2016 for
sediments and nitrates, respectively, and the minimum in 2017 for both of the observed parameters.
On the other hand, we evaluated the results as derived from the second approach. According to this
simulation results, the sum average annual sediments and nitrate concentration that load to Zazari
Lake are 106,459.26 tons and 7209.44 tons, respectively. The sum values regarding the total period vary
from 1436.52 tons to 24,614.28 tons for sediments and 382.23 to 1674.56 Kg for nitrate loads. In addition,
the maximum values were obtained in 2015 and 2016 for sediments and nitrates, respectively, and the
minimum in 2017 for both of the observed parameters. In Figure 9, a comparison of the results
considering the reference datasets and the annual updates in LU is illustrated for the years 2017, 2018
and 2019.

Comparing the values of the reference dataset with those of the average annual concentrations of
sediment and nitrate that load in Zazari Lake, an overall increase of 3.76% in sediments and an overall
decrease of 1.94% for nitrates were observed. The comparison results were realistic if we mention the
LULC changes in the annual update EO-driven maps for the years 2017, 2018 and 2019.

Moreover, in both nitrates and sediments shown in Figure 10, the integration of annual LU maps
in SWAT simulations, within a framework of a hybrid approach, can lead to results with enhanced
prediction capabilities. Overall the annual updated LU products increase the R2 by 1% and 2% for
sediment and nitrates, respectively.

Soil nitrate leaching is greatly influenced by soil and climatic factors as well as agricultural
management practices. This results in further deterioration of the surface water bodies as well as
ground water reservoirs. For instance, corn crop is particularly demanding in water and sensitive to
weed, thereby increasing the pressure on water bodies (intense agricultural practices). On the other
hand, alfalfa crop has low demands on water and fertilization. Moreover, the forest areas in general
have low water demands, and because of the strong tree root, they greatly impede the transport of
sediments. In the light of the above, the inclusion of more hectares under alfalfa cultivation and
pastures in conjunction with a significant decrease in corn cultivation areas (Figure 7) may explain the
results in nitrates and sediments (Figure 10). Last but not least, the extreme values (max -min) of the
concentrations of sediments and nitrates in the lake were found to agree in both simulations as far
as the time of observation is concerned and as presented above. Sediments and nitrates are directly
related to rainfall, and if one considers that the meteorological data entered in the SWAT model are
the same for both simulations, then the extreme values regarding the year are considered reliable.
Regarding the study area, the high annual rainfall values were observed in 2015 (814 mm) and 2016
(819 mm), and the minimum in the year 2017 (374 mm).
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3.4. Source of the Improvement in Predictions

The introduction of annual update LU products derived from EO data in comparison with a
reference static LU map also generated differences in the total number of HRUs that were available for
SWAT to model changes from year to year. Considering the Equations (5) and (6) in conjunction with
the simulations outputs of the SWAT model for the two approaches, we obtained 284 HRUs for the
reference dataset in year 2013 and an increase of 14 HRUs when the updated LU maps (298 HRUs)
were integrated. Based on Equation (5), the total HRUs were 894 for the second approach where
we integrated LU products that were annually updated. In this context, a difference of 610 HRUs is
observed between the total HRUs and the HRUs as recorded for the reference static map. Finally,
obtaining the difference between the estimated NSE considering the reference static map and the
annually update LU maps, the improvement in the NSE metric was calculated. The same formula was
applied to evaluate the SWAT’s improvement in terms of RSR. In light of the above, the results showed
a 0.87 and 0.01 higher performance for NSE and RSR, respectively. Our results are in agreement with
those obtained in a previous study, where improved predictions in a stream flow were observed due to
the utilization of updating land cover maps with EO -based forest change detection products [32].

4. Conclusions and Outlook

In this study, EO imagery data coupled with DL techniques were used in order to improve the
performance of a physical process model (SWAT) and predict nitrate and sediments concentrations
that load to Zazari Lake located in Northern Greece. In this case, the LULC change plays a vital role
regarding sediment and nitrate concentration that can transfer via the watershed’s stream network
into the area’s water bodies. The proposed hybrid approach is based on using detailed remote sensing
annual maps derived from Sentinel-2, and with the use of a general DL framework to provide a reliable
and accurate LULC classification (OA = 79.58% and Kappa = 0.79) of the entire river basin.

The simulations results indicate that the LULC changes affect the final estimations, resulting in an
enhanced prediction performance of 1% and 2% for sediments and nitrates, respectively, when the
annual land use maps are incorporated into physical -based process model simulations. In this context,
a hybrid approach could further contribute to addressing challenges and support a data-centric schemes
for informed decision making with regard to environmental and agricultural issues on the river basin
scale. The study outcomes are relevant to improve decisions of policy makers, concerning agricultural
and natural processes in general. It has strong potential to help the EU’s Common Agricultural Policy
to meet its objectives concerning enhanced competitiveness of the agricultural sector and improved
sustainability and effectiveness through reduced environmental impacts and utilization of natural
resources in more sustainable and highly efficient manners. In future studies, we should prioritize an
inferencing system that can be used on a large/regional scale and provide input as per the outcome of
the direct payments scheme on specific sustainability performance indicators, such as land degradation,
to allow for insightful decision making on a regional and/or national level.
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Appendix A

The table below (Table A1) presented the characteristics of the classes included in the combined
reference dataset.

Table A1. Characteristics of the combined reference dataset.

Class SWAT Code Label Number of Pixels Number of Pixels for Validation

Agricultural

0 LENT Lentils 5501 491
1 ALFA Alfalfa 320,917 20,592

2 AGRL Agricultural
Land-Generic 21,397 1625

3 WWHT Winter Wheat 90,055 5728
4 CORN Corn 89,190 6205
5 POTA Potatoe 12,579 1049
6 GRAP Vineyard 12,526 1001
7 TOMA Tomato 1427 174
8 DWHT Durum Wheat 33,361 2118
9 SUNF Sunflower 21,145 1662
10 SGBT Sugarbeet 5055 408
11 FPEA Field Peas 1546 158
12 CSIL Corn Silage 1112 120

13 AGRC Agricultural
Land-Close-grown 72,529 3613

14 AGRR Agricultural
Land-Row Crops 80,600 4778

15 ALMD Almonds 5843 584
16 APPL Apple 9588 715
17 ORCD Orchard 6969 613
18 OLIV Olives 1242 122
19 GRSG Grain Sorghum 15,209 1017

Forest

20 FRST Forest-Mixed 44,676 3128
21 FRSE Forest-evergreen 730 100
22 GRAR Grarigue 323 100
23 FRSD Forest-deciduous 467,909 30,295

Pasture

24 PAST Pasture 269,435 16,740
25 RNGE Range-Grasses 22,211 1620
26 RNGB Range-brush 97,858 5918

Urban

27 URMD
Urban

Residential-Medium
Density

26,036 1883

28 UCOM Urban Commercial 18,887 1294
29 UIDU Urban Industrial 206,224 14,168

30 UTRN Urban
Transportation 63,571 3584

Water

31 WETN Wetlands-Non-Forested 26,770 1856
32 WATR Water 105,905 7230
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