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Abstract: Map generalization is a process of reducing the contents of a map or data to properly show
a geographic feature(s) at a smaller extent. Over the past few years, the fractal way of thinking
has emerged as a new paradigm for map generalization. A geographic feature can be deemed as
a fractal given the perspective of scaling, as its rough, irregular, and unsmooth shape inherently
holds a striking scaling hierarchy of far more small elements than large ones. The pattern of far
more small things than large ones is a de facto heavy tailed distribution. In this paper, we apply
the scaling hierarchy for map generalization to polygonal features. To do this, we firstly revisit the
scaling hierarchy of a classic fractal: the Koch Snowflake. We then review previous work that used
the Douglas–Peuker algorithm, which identifies characteristic points on a line to derive three types
of measures that are long-tailed distributed: the baseline length (d), the perpendicular distance to
the baseline (x), and the area formed by x and d (area). More importantly, we extend the usage
of the three measures to other most popular cartographical generalization methods; i.e., the bend
simplify method, Visvalingam–Whyatt method, and hierarchical decomposition method, each of
which decomposes any polygon into a set of bends, triangles, or convex hulls as basic geometric units
for simplification. The different levels of details of the polygon can then be derived by recursively
selecting the head part of geometric units and omitting the tail part using head/tail breaks, which is a
new classification scheme for data with a heavy-tailed distribution. Since there are currently few tools
with which to readily conduct the polygon simplification from such a fractal perspective, we have
developed PolySimp, a tool that integrates the mentioned four algorithms for polygon simplification
based on its underlying scaling hierarchy. The British coastline was selected to demonstrate the
tool’s usefulness. The developed tool can be expected to showcase the applicability of fractal way of
thinking and contribute to the development of map generalization.

Keywords: cartographical generalization; scaling of polygonal features; fractal analysis;
head/tail breaks

1. Introduction

Dealing with global issues such environment, climate, and epidemiology for policy or decision
making related to spatial planning and sustainable development requires geospatial information
involving all types of geographic features at any level of details. In geographic information science, the
term map generalization has been coined to address this need [1–4]. Simply put, map generalization
keeps the major essential parts of the source data or a map at different levels of detail, thus excluding
elements with less vital characteristics [5,6]. In other words, the purpose of generalization is to reduce
the contents or complexity of a map or data to properly show the geographic feature(s) to a smaller
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extent. The generalization relates closely to the map scale, which refers to the ratio between the
measurement on the map and the one in reality [7]. As the scale decreases, it is unavoidable to simplify
and/or eliminate some geographic objects to make the map features discernible.

The generalization of a geographic object can be understood as the reduction of its geometric
elements (e.g., points, lines, and polygons). The easiest way to conduct the simplification is removing
points at a specified interval (i.e., every nth point; [8]); however, it may often fail to maintain the essential
shape as it neglects the object’s global shape and neighboring relationships between its containing
geometric elements. In order to keep as much as the original shape at coarser levels, related studies in
the past several decades made great contributions from various perspectives, including smallest visible
objects [9], effective area [10], topological consistency [11], deviation angles and error bands [12], shape
curvature [13], multi-agent systems (AGENT project; [14,15]), and mathematical solutions such as a
conjugate-gradient method [16], a Fourier-based approximation [17], etc. The accumulated repository
of simplification methods and algorithms offer useful solutions to retain the core shape upon different
criteria, but they seldom connect effectively simplified results with map scales.

In recent years, fractal geometry [18] has been proposed as the new paradigm for map
generalization. Normant and Tricot [19] designed a convex-hull-based algorithm for line simplification
while keeping the fractal dimension for different scales. Lam [20] pointed out that fractals could
characterize the spatial patterns and effectively represent the relationships between geographic features
and scales. Jiang et al. [5] developed a universal rule for map generalization that is totally within
the fractal-geometric thinking. The rule is universal because there are far more small things than
large ones globally over the geographic space and across different scales. This fact of an imbalanced
ratio between large and small things—also known as the fractal nature of geographic features—has
been formulated as scaling law [21–23]. Inspired by inherent fractal structure and scaling statistics of
geographic features, Jiang [24] proposed that a large-scale map and its small-scale map have a recursive
or nested relationship, and the ratio between the large and small map scales should be determined by
the scaling ratio. In this connection, fractal nature, or scaling law could, to a certain degree, lead to a
better guidance of the map generalization than Töpfer’s radical law [25], with respect to what needs to
be generalized and the extent to which it can be generalized.

To characterize the fractal nature of geographic features, a new classification scheme called
head/tail breaks [26] and its induced metric, the ht-index [27] can be effectively used to obtain the
scaling hierarchy of numerous smallest, very few largest, and some in between the smallest and the
largest (see more details in Section 2.2 and Appendix A). The scaling hierarchy derived from head/tail
breaks can lead to automated map generalization from a single fine-grained map feature to a series of
coarser-grained ones. Based on a series of previous studies, mapping practices, or map generalization
in particular, can be considered to be head/tail breaks processes applied to geographic features or data.
These kinds of thinking have received increased attention in the literature (e.g., [28–32]). However,
given that fractal geometric thinking, especially linking with a map feature’s own scaling hierarchy,
is still relatively new for map generalization, the practical difficulty is the lack of a tool to facilitate the
computation of related fractal metrics that can guide the map generalization process.

The present work aims to develop such a tool, to advance the application of fractal-geometric
thinking to the map generalization practices. The contributions of this paper can be described in terms
of its three main aspects: (1) we introduced the geometric measures used in the previous study [5] to
another three most popular polygon simplification algorithms; (2) we found out the fractal pattern of
a polygonal feature is ubiquitous across selected algorithms, represented by the scaling statistics of
geometric measures of all types; and (3) the developed tool (PolySimp) can make it possible to derive
automatically a multiscale representation of a single polygonal feature based on head/tail breaks and
its induced ht-index.

The rest of this paper is organized as follows. Section 2 reviews the related polygon simplification
methods and illustrates the application of scaling hierarchy therein. Section 3 introduces the
PolySimp tool regarding its user interface, functionality, and algorithmic consideration. In Section 4,
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the simplification of the British coastline is conducted using introduced algorithms and comparisons
between different algorithms and geometric measures are made. The discussion is presented in
Section 5, following with the conclusion in Section 6.

2. Methods

2.1. Related Algorithms for Polygon Simplification

The tool focuses on the polygon simplification, which is one of the major branches in the field
of map generalization. As defined in the GIS literature [33], polygon simplification deals with the
graphic symbology, leading to a simplification process of a polygonal feature that results in a multiscale
spatial representation [34]. According to documentations of ArcGIS software [35] (ESRI 2020) and
open-sourced platforms such as CartAGen [36,37], the geometric unit of a polygonal feature to be
simplified is categorized by its points, bends, and other areal units (such as triangles and convex
hulls), respectively.

The most common point-removal algorithm is probably the Douglas–Peucker (DP) algorithm [38],
which can effectively maintain the essential shape of a polyline by finding and keeping the characteristic
points while removing other unimportant ones. This algorithm runs in a recursive manner. Starting
with a segment by linking two ends of a polyline, it detects the point with the maximum distance to
that segment. If the distance is smaller than a given threshold, the points between the ends of the
segment will be eliminated. If not, it keeps the furthest point and connects it with each segment’s end
and repeats the previous steps on the newly created segments. The algorithm stops when all detected
maximum distances are less than the given threshold. The DP algorithm can be applied by partitioning
a polygon into two parts (left and right or up and down). One way to objectively partition a polygon is
to use the segment linking the most distant point pair, such as the diagonal line of a rectangle. In this
way, each part of a polygon can be processed as a polyline on which the DP algorithm can apply.

Evolved from point-removal approach, Visvalingam and Whyatt [10] put forward a triangle-based
method (VW) to conduct the simplification. Each triangle is corresponding to a vertex and its two
immediate neighbors, so that the importance of a vertex can be measured by the size of its pertaining
triangle. The polygon simplification process is, therefore, iteratively removing those trivial vertices
(small triangles). This method was further improved by using the triangle’s flatness, skewness, and
convexity [39]. Later, Wang and Müller [40] proposed the bend simplify (BS) algorithm that defines
bends as basic units for polyline/polygon simplification to better keep a polyline/polygon’s cartographic
shape. Simply put, a line/polygon is made of numerous bends, each of which is composed of a set of
consecutive points with the same sign of inflection angles. The following simplification process then
becomes the recursive elimination of bends whose geometric characteristics are of little importance.

Another areal-unit-based algorithm is the hierarchical decomposition of a polygon (HD; [41]). It
decomposes a polygon object into a set of minimum bounding rectangles or convex hulls. The algorithm
also works in a recursive way. At each iteration, it constructs a convex hull for each polygon component,
then extracts the subtraction/difference between the polygon component and its convex counterpart
and uses it in the next iteration until the polygon component is small enough or its convex degree
is larger than a preset threshold. Finally, all derived convex hulls are stored in a tree structure and
marked with a corresponding iteration number. Based on the structured basic geometries, we can
derive the original polygon using the following equation:

Polygon =
n∑

k=0

(−1)k ak (1)

where k is the iteration number and ak is the convex hull set at iteration k.
The hierarchical decomposition algorithm provides a progressive transmission of a polygon object.

According to the equation, it can obtain a polygon object at different levels of detail by adding or
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subtracting a convex hull set at related iteration. Note that the present study considered only a convex
hull for further illustration.

2.2. Polygon Simplification Using Its Inherent Scaling Hierarchy

This study relied on the head/tail breaks method to conduct the generalization based on a
polygonal feature’s scaling hierarchy. Head/tail breaks were initially developed as a classification
method for data with a heavy-tailed distribution [26]. Given data with a heavy-tailed distribution, the
arithmetic mean split up the data into the head (the small percentage with values above the mean,
for example, <40 percent) and the tail (the large percentage with values below the mean). In this way,
it recursively separated the head part into a new head and tail until the notion of far more smaller
values than large ones was violated. The number of times that the head/tail division can be applied,
plus 1, is the ht-index [27]. In other words, the ht-index indicates the number of times the scaling
pattern of far more small elements than large ones recurs, thus capturing the data’s scaling hierarchy.
In sum, data with a heavy-tailed distribution inherently possesses a scaling hierarchy, which equals
the value of the ht-index: the number of recurring patterns of far more small things than large ones
within the data.

With the scaling hierarchy, the map generalization can be conducted using the head/tail breaks by
recursively selecting the head part as the generalized result in the next level until the head part is no
longer heavy-tailed [5]. It is simply because the head is self-similar to the whole data set that possesses
a strikingly scaling hierarchy. Let us use the Koch snowflake to illustrate how head/tail breaks work for
polygon simplification. Figure 1 shows the original snowflake, which contains 64 equilateral triangles
of different sizes. More specifically, there were 48, 12, 3, and 1 triangle(s), with edge lengths of 1/27, 1/9,
1/3, and 1, respectively. The edge length of each triangle obviously followed a heavy-tailed distribution.
Therefore, we could conduct the polygon simplification using head/tail breaks based on the edge

length. The first mean is m1 =
1×1+3× 1

3+12× 1
9+48× 1

27
64 = 0.08, which split the triangles into 16 triangles

above m1 and 48 triangles below m1. Thus, those 16 triangles represent the head part (16/64 = 0.25,
<40%) and were selected to be the first generalized result (Figure 1). The rest could be done in the

same manner. The second mean m2 =
1×1+3× 1

3+12× 1
9

16 = 0.21 helped to obtain a further simplified result
consisting of the new head with four triangles (Figure 1). Finally, there was only one triangle above the

third mean m3 =
1×1+3× 1

3
4 = 0.5, which was the last simplified result (Figure 1). It could be observed

that the three levels of generalization were derived during the head/tail breaks process, which was
consistent with the scaling hierarchy of all triangles.
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mathematical model under fractal thinking rather than a real polygon. The question then arises of 
how we can detect such a scaling pattern of an ordinary polygon whose scaling hierarchy is much 
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Figure 1. (Color online) The simplification process of the Koch snowflake guided by head/tail breaks.
(Note: The blue polygons in each panel denote the head parts, whereas the red triangles represent the
tail part, which needed to be eliminated progressively for generalization purpose).

As the above example shows, head/tail breaks offered an effective and straightforward way of
simplifying a polygon object that bears the scaling hierarchy. However, the Koch snowflake is just a
mathematical model under fractal thinking rather than a real polygon. The question then arises of how
we can detect such a scaling pattern of an ordinary polygon whose scaling hierarchy is much more
difficult to perceive than the Koch snowflake. Here we introduced three geometric measures: x, d, and
the area of any polygon object relying on the aforementioned two algorithms.
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Prior studies (e.g., [5,42]) have proposed the mentioned three measures based on the DP algorithm.
As Figure 2a shows, x is the distance of the furthest point C from the segment linking two ends of a
polyline (AF); d is the length of segment AF; and area equals the area of triangle ACF (x*d/2). In this
study, we computed those three measures for VW, BS, and HD methods too, according to their own
types of areal simplifying units. Taking the HD method as an example, as we know that the polygon
will be decomposed into a set of convex hulls, the three measures can then be defined as Figure 2b
illustrates: x is the furthest point C from the longest edge of a convex hull (AE); d is the length of
longest edge AE; and area is the area of the convex hull ABCDE.

All three measures of four algorithms are derived in a recursive manner. Jiang et al. [5] showed
that the measures x and x/d based on the DP method exhibit a heavy-tailed distribution. Thus, all the
three measures of the DP method applying on the polygon feature are with a clear scaling hierarchy.
For the other three algorithms, the size of the derived areal simplifying unit tends to be long-tailed
distributed as well (see Figure A1 in Appendix A). Here we used the HD method again to exemplify:
given that the original polygon was complex enough, the areas of all obtained convex hulls inevitably
had scaling hierarchy, as do the other two measures since they were highly correlated with area. For a
more intuitive description, the Koch snowflake was used again as a working example.

Figure 3 shows the decompositions of the Koch snowflake according to Equation (1). The process
stops at Iteration 2 as all the polygon components are in the shape of triangles, the convex degree
of which is 1. In total, there were 67 convex hulls. It can be clearly seen that there were more small
convex hulls than large ones. If we apply head/tail breaks on the area of these convex hulls, it can be
found that the scaling pattern recurs twice. Note that the Koch snowflake was far less complex than a
cartographic polygon, which normally had more than 10 iterations. In this regard, we could detect the
scaling pattern of decomposed convex hulls of a polygon object through x, d, and area based on the
HD algorithm. This principle also works for VW and BS methods.
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3. Development of a Software Tool: PolySimp

There are currently few tools with which to readily conduct the polygon simplification using
four algorithms from the fractal perspective. To address this issue, we developed a software tool
(referred to as PolySimp) in this study to facilitate the computation of introduced three measures and
the implementation of generalization (Figure 4). The software tool was implemented with Microsoft
Visual Studio 2010 with Tools for Universal Windows Apps. The generalization function was carried
out by ArcEngine data types and interfaces of NET Framework 4.0. The software tool is designed to
perform the following functions. The first is an input function. The tool should be capable of (a) loading
a polygonal data and (b) presenting results to the inbuilt map viewer. The data files can be prepared
in a format of Shapefile, which is the mostly widely used format in the current GIS environment.
The second function is the output function, which is to generate the polygon simplification result
based on the selected criteria; that is, the algorithm, the type of measure, and the level of detail to be
generalized. When the generalization is completed, the result is shown in the second panel on the
right-hand side. This software tool can be found in the Supplementary Materials.
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inherent scaling hierarchies.

As for algorithmic considerations, the software tool conducts polygon simplification by applying
the head/tail breaks method to each of the three metrics, respectively. The flow charts in Figure 5 present
the entire procedure of how the tool implements the functions. Given a series of the values for each of
the three measures (x, d, and area) via four algorithms, we firstly generated those simplifying units; i.e.,
points, bends, triangles, or convex hulls. For the areal units, we made sure that the derived simplifying
units were at the finest level for the sake of scaling hierarchy computation. As VW can associate each
triangle with each point, we set only the rules for BS and HD algorithms: for BS, we detected the bend
as long as the sign of inflection angle changed, so that the smallest bend could be a triangle; for HD,
we set the stop condition on decomposing a polygon whereby every decomposed polygon component
must be exactly convex, regardless of how small it is. Then, we kept those simplifying units whose
values larger than the mean (in the head part), removing those with values smaller than the mean
(in the tail). We believed that they were the critical part of a polygon and recursively keeping them
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could help to maintain the core shape at different levels. The process was continuous until the head
part was no longer the minority (>40%); the head part recalculated every time a simplified polygon
was generated. Note that when integrating the convex hulls in the head part using the HD method,
whether a convex hull is added or subtracted depends on its iteration number (see Equation (1)).
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4. Case Study and Analysis

The British coastline was selected as a case study to illustrate how PolySimp works. As the shape
of the British coastline (in part or in whole) has been widely used as case studies for DP, BS, and VW,
we used it to demonstrate how the scaling hierarchy can be applied for polygon simplification and
make comparisons accordingly. We derived the scaling hierarchies out of DP, BS, VW, and HD with
better source data that contained 23,601 vertices (approximately 10 times more than the one used
by [5]) using PolySimp. Both numbers of simplifying units for DP and VW were 23,601, which was
consistent with the number of vertices; for BS and HD, there were 10,883 bends and 10,639 convex
hulls, respectively (Figure 6). Table 1 shows the average running time of each level of detail between
different simplification methods. It is worth noting that deriving convex hulls and reconstructing the
simplified polygon for the HD algorithm was more costly than the other three, since it requires many
polygon union/difference operations. After experimenting with the source data by calculating the three
parameters of those simplifying units for each algorithm, we did the scaling analysis and found that
all of them bore at least four scaling hierarchical levels, meaning that the pattern of far more small
measures than large ones recurred no fewer than three times (Table 2). In other words, we observed a
universal fractal or scaling pattern of the polygonal feature across four simplifying algorithms.
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Figure 6. (Color online) Basic geometric units of a part of the British coastline (referring to the red box
in the right panel) for each polygon simplification algorithm derived by PolySimp. (Note: Panels on
the left show a clear scaling hierarchy of far more small ones than large ones, represented by either dot
size or patch color).

Table 1. Average running times (in seconds) required to simplify the British coastline at a single level
by different methods using PolySimp. (Note: Configurations of computer used to perform experiments.
Operating system: Windows 10 x64; CPU: Intel®CoreTM i7-9700U @ 3.60 GHz; RAM: 16.00 GB).

DP BS VW HD

Time (x) 1.06 4.32 0.25 103.92
Time (d) 1.12 4.43 0.19 75.67

Time(area) 1.08 4.31 0.24 34.83

Table 2. Ht-index of three parameters for each algorithm on the source data of the British coastline.
(Note: 40% as threshold for the head/tail breaks process).

DP BS VW HD

Ht (x) 6 9 10 6
Ht (d) 5 6 8 7

Ht (area) 4 6 7 5

The scaling hierarchical levels correspond with levels of detail of the coastline. The top five
levels of simplified polygons from four algorithms are presented in Figure 7. Due to different types of
geometric units, the number of source vertices retained at each level differs dramatically from one
algorithm to another (Table 3). To be specific, the BS method maintains the most points (on average,
almost 45% of points are kept at each level), followed by VW (36%), HD (35%), and DP (23%). For each
algorithm, it should be stressed that the number of points dropped more sharply if we used area to
control the generalization, leading to the fewest levels of details. In contrast, using parameter x can
generate most levels. Not only the number of points, but also do the generalized shapes differ between
each other. Despite the simplified results at the fifth level, the polygonal-unit-based methods (especially
VW and HD) can help to maintain a smoother and more natural shape than the point-unit-based
algorithm (DP).
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through four algorithms in terms of the polygonal shape based on x (a), d (b), and area (c); and the
corresponding number of points (d) respectively.

Table 3. Point numbers at the top 5 levels according to parameters x, d, and area through DP, BS, VW,
and HD algorithms, respectively (Note: # = number, NA = not available).

Level 1 Level 2 Level 3 Level 4 Level 5

#Pt(x)-DP 2969 583 133 34 12
#Pt(d)-DP 4074 829 173 45 NA

#Pt(area)-DP 505 48 10 NA NA
#Pt(x)-BS 14,913 6883 2706 1023 395
#Pt(d)-BS 14,957 6970 3037 1238 485

#Pt(area)-BS 13,234 5086 1816 638 159
#Pt(x)-VW 8112 2762 990 346 119
#Pt(d)-VW 8866 3124 1078 378 124

#Pt(area)-VW 7233 2178 661 192 62
#Pt(x)-HD 6899 2162 743 260 127
#Pt(d)-HD 8262 2814 827 311 112

#Pt(area)-HD 2509 483 159 91 NA
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5. Discussion

To demonstrate the polygon simplification tool based on the underlying scaling hierarchy,
we applied the tool on the British coastline. The study brought the predefined three geometric
measures—x, d, and area—from the DP method to the other three methods; i.e., VW, BS, and HD
methods, respectively. Each of the three measures in four algorithms is heavy-tailed distributed. Such
a scaling pattern implies that the fractal nature does not exist only in the mathematical models (such as
the Koch snowflake), but also in a geographic feature. With the fat-tailed statistics, head/tail breaks can
be used as a powerful tool for deriving the inherent scaling hierarchy and help to partition the bends,
triangles, and convex hulls into the heads and tails in a recursive manner. Those areal elements in
the head are considered critical components of the polygon and then selected for further operations.
Consequently, we found that most of the simplified shapes are acceptable at top several levels, which
supports the usefulness of fractal-geometric thinking on cartographic generalization. Based on the
findings, we further discussed the results and insights we obtained from this study.

For a more in-depth investigation, we computed the area (S), the perimeter (P), and the shape
factor (P/S) for each simplified result. Figure 8 shows how they change respectively regarding each
algorithm with different parameters. With three types of computed metrics (S, P, and P/S), we could
measure and compare the performance of different simplification methods guided by the underlying
scaling hierarchy. Ideally, the curve of each metric would be flat at each level of detail, meaning that the
simplified polygon shapes are maintained to the maximum extent of the original one. In other words,
a steep curve could indicate an unpleasant distortion (e.g., level 3 of the DP method in Figures 7c
and 8c). In general, we could observe from Figure 8 that VW and HD methods could capture a more
essential shape across different levels than DP and BS, irrespective of the metric type. It should be
noted that the metric curve of BS appeared to be flatter than that of VW or HD in some cases (e.g.,
Figure 8i); however, the simplified result at each level using the BS method kept many more points
(about 50%) than that using either VW or HD (Table 3). In this connection, BS was less efficient. On the
opposite, the large slopes of the metric curves of DP may often be caused by the dramatic drop of
points. Therefore, we conjectured that the results of VW and HD algorithms achieved a good balance
between the number of characteristic points and the core shape of the polygon, leading to a better
performance in this study.

ISPRS Int. J. Geo-Inf. 2020, 9, 594 11 of 16 

algorithm with different parameters. With three types of computed metrics (S, P, and P/S), we could 
measure and compare the performance of different simplification methods guided by the underlying 
scaling hierarchy. Ideally, the curve of each metric would be flat at each level of detail, meaning that 
the simplified polygon shapes are maintained to the maximum extent of the original one. In other 
words, a steep curve could indicate an unpleasant distortion (e.g., level 3 of the DP method in Figures 
7c and 8c). In general, we could observe from Figure 8 that VW and HD methods could capture a 
more essential shape across different levels than DP and BS, irrespective of the metric type. It should 
be noted that the metric curve of BS appeared to be flatter than that of VW or HD in some cases (e.g., 
Figure 8i); however, the simplified result at each level using the BS method kept many more points 
(about 50%) than that using either VW or HD (Table 3). In this connection, BS was less efficient. On 
the opposite, the large slopes of the metric curves of DP may often be caused by the dramatic drop of 
points. Therefore, we conjectured that the results of VW and HD algorithms achieved a good balance 
between the number of characteristic points and the core shape of the polygon, leading to a better 
performance in this study.  

 
Figure 8. (Color Online) The shape variation of simplified results of the British coastline at five levels 
of details, indicated by the polygon’s area (Panels a–c), perimeter (Panels e–g), and shape factor 
(Panels h–j). 

Based on the comparison of the results, the shapes of such a complicated boundary are best 
maintained using the VW and HD methods with x, even at the last level. Area turns out to be the 
worst parameter in this regard because it leads to fewer levels of details and improper shapes (Figures 
7 and 8). Presumably, area works as x times d so it weakens the effect of any single measure. To 
explain why, we again used the Koch snowflake. Figure 1 shows that the generalization process is 
guided by d, and it would be the same result if using x. However, using the area will result in a 
different series of generalization since more triangles will be eliminated in the first recursion (Figure 
9); this explains why the number of vertices dropped more significantly than the other two measures. 
As x is a better parameter than d, we conjectured that the height captured more characteristics of an 
irregular geometry than its longest edge. This warrants further study. 

Figure 8. (Color Online) The shape variation of simplified results of the British coastline at five levels
of details, indicated by the polygon’s area (Panels a–c), perimeter (Panels e–g), and shape factor
(Panels h–j).



ISPRS Int. J. Geo-Inf. 2020, 9, 594 11 of 15

Based on the comparison of the results, the shapes of such a complicated boundary are best
maintained using the VW and HD methods with x, even at the last level. Area turns out to be the worst
parameter in this regard because it leads to fewer levels of details and improper shapes (Figures 7
and 8). Presumably, area works as x times d so it weakens the effect of any single measure. To explain
why, we again used the Koch snowflake. Figure 1 shows that the generalization process is guided by d,
and it would be the same result if using x. However, using the area will result in a different series of
generalization since more triangles will be eliminated in the first recursion (Figure 9); this explains
why the number of vertices dropped more significantly than the other two measures. As x is a better
parameter than d, we conjectured that the height captured more characteristics of an irregular geometry
than its longest edge. This warrants further study.
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It deserves to be mentioned that all algorithms work in a recursive way. The process of each
algorithm can be denoted as a tree structure, of which a node represents a critical point or an areal
element of a polygonal feature. Despite the node difference, the tree structures between two algorithms
are also fundamentally different. The tree from the DP algorithm is a binary tree [43], since a line
feature is split iteratively into two parts by the furthest point and two ends of the base segment.
Thus, each node can have at most two children. Other algorithms, however, produce a N-ary tree
without such a restriction, for that the number of children of each parent node is dependent on how
many bends, triangles or concave parts belong to the node. In this respect, the areal-unit-based
simplifying algorithms generate a less rigid and more organic tree than the point-based one, which is
more in line with the complex structure of a geographic object that is naturally formulated. Therefore,
the simplification results from VW and HD are more natural and smoother than that from DP.

Using the proposed approach, the simplified results can automatically serve as a multiscale
representation because each level of detail can be retained in a smaller scale map recursively. Consider
the example of the British coastline that is generalized using the HD method with x; we calculated
the scaling ratio of this example using the exponent of x of all convex hulls of the original polygon
data. The exponent value was 1.91 so the scaling ratio could be approximately set to 1/2. It should
be noted that the idea originated from MapGen [44]. Figure 10 shows the resulting map series, from
which we could see that the simplified result at each level fit well with the decrease of scale. In this
connection, we further confirm that the fractal-geometric thinking leads us to an objective mapping or
map generalization [24], wherein no preset value or threshold is given to control the generalization
process. Namely, the generalization of a polygonal feature can be done through its inherent scaling
hierarchy, and the scaling ratio of the map series, objectively obtained from the long-tailed distribution
of geometric measures (e.g., the power law exponent), can be used to properly map the simplified
results. Thus, we believe that the fractal nature of a geographic feature itself provides an effective
reference and, more importantly, a new way of thinking and conducting map generalization.
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Figure 10. (Color online) A multiscale representation with the scaling ratio of 1/2 of the simplified
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6. Conclusions

Geographic features are inherently fractal. The scaling hierarchy endogenously possessed by
a fractal can naturally describe the different levels of details of a shape and can thereby effectively
guide the cartographic generalization. In this paper, we implemented PolySimp to derive the scaling
hierarchy based on four well-known algorithms: DP, BS, VW, and HD, and conducted the polygon
simplification accordingly. We extended the previous study by introducing the predefined three
geometric measures of DP to the other three algorithms. As results, the software tool could facilitate
the computation of those metrics and use them for obtaining a multiscale representation of a polygonal
feature. Apart from the generalization, we found that computed measures could also be used to
characterize a polygonal feature as a fractal through its underlying scaling hierarchies. We hope
this software tool will showcase the applicability of fractal way of thinking and contribute to the
development of map generalization.

Some issues require further research. In this work, although PolySimp can generalize a
single polygon into a series of lower level details, the applicability of the tool to multi-polygon
simplification, especially for those polygons with a shared boundary, was not considered yet. This will
be further improved in order to not only maintain the core shape of a polygon, but also to retain its
topology consistency. Moreover, we envisioned only a multiscale representation of a two-dimensional
polygon. It would be very promising in future to use PolySimp to compute the scaling hierarchy of
a three-dimensional polygon and conduct the cartographic generalization accordingly by applying
head/tail breaks.

Supplementary Materials: The executable program and sample data are available online at: https://github.com/
dingmartin/PolySimp.

Author Contributions: Conceptualization, Ding Ma; Data curation, Wei Zhu; Formal analysis, Ding Ma and Ye
Zheng; Funding acquisition, Ding Ma and Zhigang Zhao; Methodology, Ding Ma and Wei Zhu; Supervision,
Renzhong Guo and Zhigang Zhao; Visualization, Wei Zhu; Writing—original draft, Ding Ma; Writing—review &
editing, Zhigang Zhao. All authors have read and agreed to the published version of the manuscript.
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Appendix A. The Scaling Hierarchy of Geometric Units Derived from DP, BS, and
VW Algorithms

This appendix supplements Section 2.2 by illustrating the scaling pattern of geometric units
of a classic fractal—Koch Snowflake. Three types of geometric elements (i.e., characteristic points,
bends, and triangles) are derived respectively from DP, BS, and VW methods. Figure A1 shows the
scaling hierarchical levels for each type of geometric element with respect to parameter x, wherein the
number of levels for DP is three, for BS is two, and for VW is three. Hence, we can spot similar scaling
patterns of far more smalls than larges across three methods. Those “larges”—geometric elements in
red or green—represent the most essential part and can thus constitute the shape of the snowflake at a
coarser level.
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