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Simple Summary: Measures of plant water status on kiwifruit were evaluated using Sentinel-2 (A/B)
for two seasons in Central Chile.

Abstract: For more than ten years, Central Chile has faced drought conditions, which impact crop
production and quality, increasing food security risk. Under this scenario, implementing management
practices that allow increasing water use efficiency is urgent. The study was carried out on kiwifruit
trees, located in the O’Higgins region, Chile for season 2018–2019 and 2019–2020. We evaluate the
time-series of nine vegetation indices in the VNIR and SWIR regions derived from Sentinel-2 (A/B)
satellites to establish how much variability in the canopy water status there was. Over the study’s site,
eleven sensors were installed in five trees, which continuously measured the leaf’s turgor pressure
(Yara Water-Sensor). A strong Spearman’s (ρ) correlation between turgor pressure and vegetation
indices was obtained, having −0.88 with EVI and −0.81 with GVMI for season 2018–2019, and lower
correlation for season 2019–2020, reaching −0.65 with Rededge1 and −0.66 with EVI. However,
the NIR range’s indices were influenced by the vegetative development of the crop rather than its
water status. The red-edge showed better performance as the vegetative growth did not affect it.
It is necessary to expand the study to consider higher variability in kiwifruit’s water conditions and
incorporate the sensitivity of different wavelengths.

Keywords: turgor; Sentinel-2; vegetation spectral indices; kiwi; SWIR/NIR; time-series

1. Introduction

In the current climate change scenario, food security and water availability are two of the
main challenges facing agriculture [1]. This makes it necessary to adopt strategies that allow for
climate-smart agriculture and thus efficient use of water [2]. The change in precipitation patterns due
to climate change in Chile has caused a prolonged drought called mega-drought [3]. Its beginning
dates back to 2007 when much of the Chilean territory was declared in agricultural emergency due to
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drought [4–6]. The prolonged decrease in precipitation has affected the entire hydrological system
in central Chile, depleting water reserves in mountains, aquifers, reservoirs, lakes and lagoons [7].
The analysis of the vegetative state in central Chile shows that during the 2019–2020 season it is facing
an extreme anomaly with respect to its normal condition (2000–2019), particularly critical for the
cropland and forest land cover types [8], which is affecting the production and quality of agricultural
crops. Today it is urgent to implement agricultural management practices that allow for the efficient
use of water to face the new water scenario.

As defined by Kirkham [9], water use efficiency (WUE) corresponds to the amount of dry matter
produced for each millimeter of water that the crop uses through evapotranspiration (ET). The yield
of a crop is regulated by its ET rate [10], which in terms of efficiency must be kept at a minimum
optimal value that does not affect the biomass production of the crop, as below this threshold, the crop
will be under stress. This threshold can be identified by measuring different components within
the soil-plant-atmosphere continuum (SPAC) [11]. In the countryside, the most common practice
is to measure the water potential of the leaf using the Scholander camera [12]. However, it is a
destructive method that requires time and field work, which limits synoptic measurement in space.
Different authors have monitored the water statuses of the plant, focusing on the turgor pressure of
the leaf [13–17], which corresponds to the pressure generated by water within the cell that compresses
the plasma membrane against the cell wall [18,19]. This force decreases during the day due to the loss
of water through evapotranspiration and is recovered at night. Zimmermann et al. [20] developed a
patch clamp sensor that continuously transmits turgor variation. Specifically, this technique measures
the attenuation of the clamping pressure applied externally on the sheet by the patch clamp sensor,
called patch pressure (Pp) [21]. The limitation of this method is the need to have enough sensors to be
able to make a spatial characterization of the turgor variation in the field.

The water status of crops can be evaluated using optical, thermal or microwave reflectance.
Optical reflectance has been widely used due to water absorption characteristics in the spectral
range 400–2500 nm [22,23]. However, canopy reflectance is also influenced by factors such as the
optical properties of the leaf, the geometries of observation of the sun, the reflectance of the soil,
the absorption of atmospheric water and, most importantly, the way in which the leaves are organized
on the tree [24–26]. The inversion of a radiative transfer model (RTM) provides one approach [22,27];
however, it requires knowledge of the parameters of the biochemical content of the leaf, which is
generally time consuming. A spectral index, through the combination of reflectance at different
wavelengths, has the potential to be used in regional scale applications using an empirical approach.
The first applications on vegetation have been based on recovering reflectance in the visible and
near infrared range (VNIR). Indices based on these regions have been used to assess the health
and photosynthetic vigor of vegetation [28–31]. Examples of these are the Normalized Difference
Vegetation Index (NDVI) [32] and the Enhanced Vegetation Index (EVI) [33], which incorporate the
blue band into the NDVI to reduce the saturation that occurs on surfaces with high albedo values
and by the dispersion of the atmosphere [33]. On the other hand, short-wave infrared reflectance
(SWIR) is the most sensitive to the variation in vegetation water content due to the higher absorption
coefficient [34–37]. It is typically combined with near infrared (NIR) reflectance to mitigate the impact
of other factors, such as canopy structure. Some representative indices of the water status of the
vegetation have been proposed. Hardisky et al. [38] first developed the Normalized Difference
Infrared Index (NDII) to evaluate the spetral respect of Spartina alterniflora to different physiological
changes, determining that the wavelength between 1.50–1.75 µm presented the best response to the
differences in the water content of the leaf. Gao [39] proposed the Normalized Difference Water Index
(NDWI) using two channels centered near 0.86 µm and 1.24 µm and determined that NDWI increases
as the layers of sheets increase, indicating that NDWI is sensitive to the total amount of water in stacked
sheets. Fensholt and Sandholt [40] developed the Shortwave Infrared Water Stress Index (SIWSI) using
MODIS band 2 (841–876 nm) and band 6 (1630–1650 nm). Xiao et al. [41] referred to the NDII as the
SPOT-4 satellite-based land surface water index. The new multispectral sensor (MSI) attached to the



ISPRS Int. J. Geo-Inf. 2020, 9, 641 3 of 18

Sentinel-2 (A/B) satellites provides opportunities for vegetation monitoring due to its higher spatial
resolution (10/20/60 m), a spectral range of 13 bands from 443 to 2190 nm, and a revisit capable of
covering the Earth every five days [42], allowing the use of high frequent time-series of satellite data
for environmental research. Some examples are the use of Google Earth Engine (GEE) and Sentinel-2
to mapping forestry vegetation [43], the use of Landsat data to monitor ecosystem change [44], and for
the mapping of bamboo throughout GEE [45]. Although simulation studies [46] have been carried
out to evaluate Sentinel-2 data’s usefulness to estimate the leaf area index (LAI) and chlorophyll,
its ability to assess the water content of the crop it has been less investigated. The objective of this
study is to evaluate the use of time-series of spectral indices derived from Sentinel-2 images, obtained
during the seasons 2018–2019 and 2019–2020 to detect turgor pressure in kiwifruit trees. Different
vegetative indicators obtained from wavelengths in the VNIR and SWIR and their relationship with
measurements of foliar turgor will be analyzed.

2. Materials and Methods

2.1. Study Area

El Carmen agricultural high school is located in the commune of San Fernando, O’Higgins
región, Chile (Figure 1). The species studied was kiwi (Actinidia deliciosa) Hayward variety, cultivated
in a loamy textured soil. The orchard under study was planted in 2009 and has an area of 6.5 ha,
divided into two barracks of 3 ha each with 3 irrigation subunits, with a 4.5 m × 3 m planting frame,
in a conduction system of New Zealand vineyard and a localized irrigation system with 36 lt/hr
micro-sprinkler. This area has a Mediterranean climate (Csb) [47] with moderate rainfall, and an
annual average of 383 mm/year in the last 10 years, concentrated in winter, with a prolonged dry
season of 7 to 8 months [48]. In addition, in this fruit tree, agricultural management was carried out to
enhance the yield and quality of the fruit, from the four stages of the phenological development of the
tree (Table 1 and Figure 2). However, irrigation was applied, supplying enough water to satisfy the
water demand of the crops, which was monitored by crop evapotranspiration [49], recovered from a
meteorological station located 700 m from the orchard. The irrigation supply had variations mainly
focused on enhancing the development of the fruit. During E1 and E2 a greater and more frequent
amount was applied than in E3 and E4. In these last stages, irrigation events were applied less
frequently and with a longer duration to avoid the development of new foliage that would compete for
nutrients with the development and maturation of the fruit [50]. The application of the water supply
in each season can be observed by recording the soil moisture at different depths using a Sentek probe
installed in the orchard (Figure 2).

Table 1. Description and approximate start dates of the main stages of agricultural management of
Kiwi var. Hayward. Source: Modified from Sabaini and Goecke [50], Sabaini [51].

Management Stage Start End Description

E1: Load regulation 15 September 15 November

It begins about 10 days before budding with the start
of floral differentiation. Flower buds develop until
flowering. Pruning and thinning work is carried out

E2: Pollination 15 November 7 January

It begins with the pollination of the flower. The fruit
develops and grows at high rates reaching 50% of its
weight and 70% of its final volume. In this stage the
vegetation reaches its highest water demand and the
temperature reaches its maximum
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Table 1. Cont.

Management Stage Start End Description

E3: Vegetation management 7 January 15 March

Green pruning is carried out, corresponding to the
removal of shoots and foliage in order to improve the
distribution and penetration of light in the crown

E4: Fruit harvest 15 March 15 April
The maturity and harvest of fruit is ensured, it is the
shortest stage and extends from the third week of March
to mid-April.

Figure 1. Study area of Kiwifruit orchard on El Carmen agricultural high school, San Fernando, Chile.

Figure 2. Variation of crop evapotranspiration and soil moisture content at different depths (15, 35, 55,
and 85 cm) in the kiwi orchard for the 2018–2019 and 2019–2020 season. Horizontal lines correspond
to the depths of soil moisture of the Sentek probe. Blank space between late April and early October
corresponds to the period without irrigation.
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2.2. Data

Sentinel-2

The Sentinel-2 mission of the European Space Agency (ESA) is composed of two twin satellites,
A and B, which have a multispectral sensor with 13 spectral bands at a spatial resolution of 10, 20
and 60 m depending on the spectral region (Table 2). In this study, 52 images captured between
5 February 2019 and 11 April 2020 were used. The images were downloaded and processed with the
sen2r package [52] in the R software [53].

Table 2. Spectral bands of the Sentinel-2 mission. The central wavelength corresponds to the sensors
on the Sentinel-2 satellites A and B. Source: Adapted from ESA [42].

Bands Spatial Resolution (m) Central Wavelength (µm) (A;B)

B1 - Coastal aerosol 60 442.7; 442.2
B2 - Blue 10 492.4; 492.1 *
B3 - Green 10 559.8; 559.0 *
B4 - Red 10 664.6; 664.9 *
B5 - Red Edge 20 704.1; 703.8 *
B6 - Red Edge 20 740.5; 739.1
B7 - Red Edge 20 782.8; 779.7
B8 - NIR 10 832.8; 832.9 *
B8A - Red Edge 20 864.7; 864.0
B9 - Water vapour 60 945.1; 943.2 *
B10 - SWIR - Cirrus 60 1373.5; 1376.9
B11 - SWIR 20 1613.7; 1610.4 *
B12 - SWIR 20 2202.4; 2185.7 *

Note: * band used in the study.

2.3. Patch Pressure (Pp) Yara Water-Sensor

The continuous monitoring of the vegetation water status was based on the technique developed
by Zimmermann et al. [20], who, using a pressure sensor, recovered the changes in the turgor of
the leaf. This technique measures the pressure transfer function of a leaf, called patch pressure (Pp),
which corresponds to the variation in the clamping pressure of the sensor as a result of the counter
force exerted by the leaf tissue. The Pp is inverse to the turgor pressure, so that the increase in the
magnitudes of Pp implies low values of leaf turgor and shows a decrease in the water status of
the plant [15].

The turgor pressure sensors (Yara Water-Sensor) were used, made up of two images that were
fastened to the plant leaf as indicated in Figure 3. One face had a rectangular cutout that housed a
pressure microsensor, which automatically and continuously transmitted a reading every five minutes
to a web server, without affecting the development of the plant. To monitor the water status of the
vegetation, Yara Water Sensors were installed in five kiwi trees (Table 3), in which the Pp was measured.
These sensors were attached to two or three leaves of each tree, which presented similar characteristics
(size, color, state of growth). The Pp measurements were made for the 2018 season, between 5 February
to 15 May 2019; for the 2019 season, between 12 October 2019 to 11 April 2020.

Table 3. Yara Water Sensors installed in each monitored tree.

Tree Number of Yara Water Sensors
2018–2019 2019–2020

A05 2 2
A13 2 2
A17 3 1
A31 2 2
A63 2 2
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Figure 3. (a) Yara Water Sensors installed in the field. (b) Transmitter that receives the signal from the
Yara Water Sensors installed on each leaf of the tree. (c) Foliage of the kiwi crop.

2.4. Spectrals Vegetation Indices

Nine vegetation indices based on the VNIR and SWIR spectral range derived from the Sentinel-2
satellite were used. Table 4 presents the vegetation indices, among which the enhanced vegetation
index (EVI) and the normalized difference infrared index (NDII) are highlighted. This last indicator is
found in the literature under various names, associated with a spectral variation in the SWIR and the
sensor used. [36] reviewed and determined the names of NDWI, NDII, and NBR for SWIR lengths of
(1) 1–1.3 µm, (2) 1.55–1.75 µm, and (3) 2.05–2.45 µm, respectively.

Table 4. Evaluated spectral vegetation indices derived from Sentinel-2.

Wavelength Vegetation Index Formula Reference

VNIR Enhanced Vegetation Index (EVI) 2.5(B8−B4)
((B8+6B4−7.5B2)+1) [33]

VNIR Red edge 1 (Rededge1) B5
B4 [54]

VNIR Leaf Chlorophyll Index (LCI) (B8−B5)
(B8+B4) [55]

VNIR Normalized Difference Vegetation Index (NDVI) (B8−B4)
(B8+B4) [32]

VNIR Chlorophyll Absorption Ratio Index (CARI) B5
B4

√
( B5−B3

150 670+B4+(B3−( B5−B3
1502 550)))2

( B5−B3
1502+1

)0.5 [56]

VNIR-SWIR Normalized Difference Infrared Index (NDII) (B8−B11)
(B8+B11) [38]

VNIR-SWIR Normalized burn ratio Index (NBR) (B9−B12)
(B9+B12) [57]

VNIR-SWIR Global Vegetation Moisture Index (GVMI) ((B9+0.1)−(B12+0.02))
((B9+0.1)+(B12+0.02)) [58]

VNIR-SWIR Simple Ratio MIR/NIR Ratio Drought Index (RDI) B12
B9 [59]

The vegetation indices were calculated with the s2_calcindices function from package sen2r [52].
We created a time-series per index, nine in total, having a length of 52 images each and five days
frequency. These time-series were procesed in R as stack layer using the package raster [60]. We then
extracted each index’s time-series at the pixel coordinated where the tree was mounted with the Pp.
To eliminate data with clouds, from the time-series of NDVI, dates with anomalous values outside
the range [0–1] were identified by implementing two criteria: (1) dates with NDVI values less than
0.2 were identified; (2) a visual inspection of the respective RGB composition was made. In Figure 4,
the 44 dates selected for the CARI index are presented, which correspond to the index having higher
spatial variability through the seasons.
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Figure 4. CARI time-series for selected dates.

2.5. Exploratory Analysis

The Pp data obtained from the different Yara Water Sensors for the 2018–2019 and 2019–2020
seasons were subjected to a cleaning procedure to remove anomalous data. The data from the Yara
Water Sensors that had a record lower than 30% were eliminated, and also those records that had at least
3 periods with discontinuities and oscillation of their magnitude of at least 100%. Then, outliers were
eliminated for a weekly period, defining a range between the weekly average ± two standard
deviations. In addition, the monthly outliers were removed by narrowing a range between the
monthly average ± two standard deviations.

Subsequently, the Pp records were summarized daily according to the Sentinel-2 revisit time
interval, by calculating the average of Pp every 15 min between 15:00–16:00 UTC, since Sentinel-2
passes over Chilean territory at ~15:30 UTC. Due to the fact that, between the 2018–2019 and 2019–2020
seasons, the kiwi trees lose their leaves, the sensors had to be reinstalled on new leaves from the
same tree. Thus, to avoid errors associated with sensor installation, the pressure measurements were
considered independent of each other and only the variation of each sensor in each season was
considered, which was determined by applying a standardization through the average and standard
(Equation (1)) [61].

zi =
xi − x̄

σ
(1)

where zi value is the standardized value of xi; an element of a data sample with mean x̄ and standard
deviation σ.

Regarding the analysis of the vegetation indices, those that presented the lowest correlation
between them were selected to avoid redundancy. The selection was based on a correlation matrix
based on Pearson’s coefficient [62]. Experimentally, the average correlation threshold was determined
for each index of r ≤ 0.7 and r ≤ 0.97, for indices based on VNIR and VNIR-SWIR, respectively. In order
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for the vegetation indices to be comparable with the Pp measurements, the values of each season were
standardized with Equation (1).

2.6. Correlation Analysis

To relate the Pp measurements with the Spectral indices, the average value of the values in the
existing Pp sensors in each tree was used (Table 3). The association of vegetation indices with temporal
changes in Pp was evaluated using Pearson’s coefficient (r) [62] and Spearman’s non-parametric
coefficient rho (ρ) [63]. Additionally, the relationship between both variables was evaluated using a
linear regression model, obtaining the metrics of the root mean square error (RMSE) and the coefficient
of determination (r2) [64,65].

3. Results

3.1. Exploratory Analysis

The analysis of the correlation matrix for the vegetation indices (Figure 5) determined that there
was a high relationship between the indices constructed with spectral bands at the VNIR-SWIR
wavelength, specifically with an r between [0.94–1]. Greater variability was obtained between the
indices belonging to the VNIR range with values of r between [0–0.99]. The CARI index stood out for
presenting the greatest heterogeneity, which would be explained by the spectral behavior of the green
band that is not found in the other indices. The indicators with the lowest correlation that represent
the VNIR and VNIR-SWIR spectral range were selected, corresponding to the CARI, EVI, Rededge1,
NDII and GVM1 indices, with average r values of 0.17, 0.70, 0.70, 0.96 and 0.97, respectively.

Figure 5. Correlation matrix between vegetation indices, value corresponds to Pearson’s correlation
coefficient (r).

Figure 6b shows the temporal variation in the vegetation indices between each stage of agricultural
management (E1, E2, E3 and E4) for each tree. The trend in the vegetation indices in both seasons is in
accordance with the phenology and crop management (Figure 2), since the magnitudes of the indices
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begin to increase from E1 until reaching the maximum photosynthetic vigor in E2, and from E3 the
values in both seasons have a decreasing trend. The spatial variability of the vegetation indices was
low, reaching a maximum standard deviation of 0.13, except for CARI, which reached values of 0.43 in
the 2018–2019 season. Figure 4 shows the CARI spatio-temporal series, where the spatial variability
achieved in the orchard is represented.

Figure 6. (a) Average patch pressure (Pp) for each tree (black line) and its standard deviation (red line).
(b) values of the vegetation indices for each tree grouped for each stage of agricultural management
through the average and standard deviation.

Regarding the Pp sensors (Figure 6a), the temporal dynamics present a differentiated behavior
between the stages of agricultural management. In E1 and E2, season 2019–2020, the Pp begins
with a decrease in its magnitude and then maintains its values, showing a stable behavior over time,
which indicates the maintenance of the hydric state of the leaf. On the other hand, in E3 and E4 there is
an increase in the magnitudes of Pp, evidenced by the loss of leaf turgor, which is related to a decrease
in its hydric state. However, the lack of data on trees for the 2019–2020 season and the variability
between sensors limits the reliability of the analysis.

The variability obtained between the sensors of each tree (Figure 6a and Table 5) indicates that
it is higher in E3 and E4, with values in the range [0.41, 0.63], followed by E1 and E2, with values
of 0.36 and 0.23, respectively. This behavior is related to a differentiated effect of the leaves due to
agricultural management, as in the stages where there was greater variability, destructive procedures
were carried out on the plant. Specifically, foliage removal tasks were carried out in E1 and E3, and the
fruit was harvested in E4. On the contrary, E2 had a non-destructive management corresponding to
flower pollination and fruit growth and development (Table 1).
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Table 5. Average of the standard deviation obtained from Pp in each tree and stage for the 2018–2019
and 2019–2020 seasons.

2018–2019 2019–2020
Tree E3 E4 E1 E2 E3 E4

A05 0.42 0.25 0.56 0.14 0.31 -
A13 1.34 0.64 0.11 0.04 0.12 0.05
A17 0.38 0.90 - - - -
A31 0.40 0.54 0.89 0.42 0.31 -
A63 0.30 0.14 0.51 0.22 1.43 -

Mean 0.54 0.49 0.52 0.20 0.54 0.05

3.2. Correlation Analysis

The linear regression model used for the Pp and the vegetation indices presented biases in the
residuals; therefore, the results of the Pearson correlation coefficient were not included in the analysis
and only the Spearman ρ coefficient and the root mean square error (RMSE). Spearman’s analysis for
the temporal dynamics of Pp and the vegetation indices (Figure 7a) of the 2018–2019 season presented
a strong relationship in most of the trees, with EVI and GVMI being the indices that obtained the
greatest association with an average value of ρ equal to −0.88 and −0.81, respectively. CARI, NDII and
RedEdge1 reached an average magnitude of ρ equal to −0.77, −0.76 and −0.74 (Figure 7a). Then, in the
second season, the magnitude of the association decreased for all the indices, resulting in a ρ equal to
−0.65, −0.66, −0.55 and −0.44 for Rededge1, EVI, CARI and NDII, respectively. The results indicate
that, in the 2019–2020 season, there was a lower relationship between the Pp and the vegetation
indices composed of NIR, based on the behaviors in E1 and E2, where the vegetation indices, with the
exception of Rededge1, showed an increase in magnitude, while Pp values tended to be constant
(Figure 8). It should be noted that the trees that presented the greatest variation between their Yara
Water Sensors, A13 and A63 for the 2018–2019 and 2019–2020 seasons, respectively, did not have a
significant relationship with the vegetation indices. Figure 7b shows the low Pp prediction capacity of
the vegetation indices using a linear model, with an average value of RMSE greater than 0.5 for most
of the indices of the first season and greater than 0.7 for the indices of the second season. This indicates
an important error in the estimation of Pp, considering that the magnitudes of Pp on average oscillate
between −1 and 2.

The performance of NDII and GMVI was expected to be higher, as unlike the other indicators,
these are composed of a band in SWIR, which is sensitive to the water content of the vegetation.
To improve understanding of this result, Figure 9a shows the time-series of the reflectivity of the
spectral bands used in the vegetation indices. The reflectivity in red obtained a slight increase from
E3, while in SWIR (1610 and 2190 nm) and in Red edge (704 nm) it had low variability, evidencing
the lower sensitivity to changes in vegetation. In Figure 9b the average spectral signature of the
five kiwi trees is shown for dates at each stage of development (E1-E4). It can be observed that the
spectral region that is sensitive to the development of vegetation is in the spectral range 740–1610 nm,
corresponding to spectral regions that are not absorbed by healthy vegetation; while regions that are
highly absorbed, 442–740 nm and 1610–2202 nm, remain with a low variation. Figure 9a,b indicate that
the reflectivity of the vegetation in NIR obtained the highest sensitivity by detecting the phenological
behavior of the crop. The behavior of most vegetation indices is mainly explained by NIR.
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Figure 7. (a) Spearman’s rho correlation coefficient (ρ) between Pp and vegetation indices. (b) Root
mean squared error (RMSE) between Pp and the linear fit of each vegetation index. Both statistical
analyzes have a significance of ρ < 0.05. The numbers in bold correspond to the average values of ρ for
each index.

Figure 8. Temporal relationship between patch pressure (Pp) and vegetation indices. Average magnitudes
per stage are shown.
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Figure 9. (a) Reflectivity of the spectral bands of the vegetation indices. The colored line corresponds
to the average of the trees and the vertical lines to the standard deviation. (b) Average of the spectral
signature of the trees for 5 November 2019 (E1), 5 December 2019 (E2), 3 January 2020 (E3) and
3 April 2020 (E4).

4. Discussion

Due to the fact that the irrigation supplied was regularly homogeneous and was applied to satisfy
the water demand of the crop, the changes in Pp would be explained mainly by the variation in the
hydric state of the leaf driven by a synergistic effect between agricultural management, crop phenology
and atmospheric demand. Starting at the generation of the fruit, from pollination (E2), the phloem
is mobilized from the reserves of the leaves towards the fruit, gradually causing a decrease in leaf
turgor [66]. This process is coupled with the greater water losses with the green pruning performed in
E3, which reduces the efficiency of the leaf to retain water and does not give in to atmospheric demand.
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Finally, the decline in turgor pressure worsens in mid-E4 with the arrival of leaf senescence that
generates a decrease in chlorophyll and recycling of foliar nutrients, followed by leaf dehydration [66].

The spectral signature of the kiwi crop, shown Figure 9b, is the average of the reflectance in the
kiwi crop pixels in four satellite images corresponding to each management stage’s date. Figure 9b
indicates that during the four stages of agricultural management, the vegetation maintains a high
absorbance in the visible and SWIR lengths, evidencing the behavior of healthy and well-watered
vegetation [67], being consistent with the irrigation supply. In this way, it is inferred that wavelengths
that kept their reflectivity level constant are more suitable for monitoring vegetation hydric status,
being these visible (442–665 nm), red edge (704 nm) and SWIR (1610 and 2190 nm). The Rededge1
index presented the best relationship with Pp in E1-E2, showing a low sensitivity with phenology,
specifically with vegetative development, indicating that it is more suitable for monitoring the water
status of the vegetation based on the turgor of the leaf. However, as the irrigation supply was applied
to satisfy the atmospheric demand, the vegetation did not experience water stress. Therefore, it is
necessary to include different irrigation treatments to improve the evaluation of the visible spectral
ranges (442–665 nm), red edge (704 nm) and SWIR (1610 and 2190 nm), in order to detect surplus or
stress situations in the vegetation and contribute to the development of applications to improve the
irrigation strategy of crops. Concerning other studies, Kim et al. [37] evaluated the spectral response
of leaves with hyperspectral sensors as their turgor decreased over 24 h, finding that most of the
variation in reflectance occurred in the wavelength of SWIR at 1470 nm. Studies that have identified the
potentiality of visibility have focused on explaining the water potential. Van Beek et al. [68] correlated
spectral indices with the water potential of the stem in Pear Orchards. They found that the higher
correlation was in the SWIR (1400–2400 nm), and visible range (500–700 nm) with R2 values of 0.51,
and 0.48, respectively, highlighting the advantage of this spectral range to assess the independent
hydric status of phenology. Lin et al. [69] used a set of Sentinel-2 bands to predict the water potential
of the stem in cotton through random forest, finding that the most important bands correspond to
SWIR (1610 nm) and red edge (704 nm).

The vegetation indices made up of NIR showed a close relationship with the vegetative growth
of the crop. The lower relationship obtained between Pp and the vegetation indices in the 2019–2020
season compared to the 2018–2019 season, indicates that the relationship between Pp and the vegetation
indices composed of NIR is based on the vegetative development of the crop and it is not related to
the hydric changes of the crop driven by phenology and agricultural management. This finding was
reported by [70] who analyzed the relationship between the reflectance of different spectral ranges
and a set of data from temperate and boreal forests of North America. These authors determined
that the bands that have the greatest sensitivity with the phenology of the vegetation correspond
precisely to the regions that are not used in the photosynthesis process. These are the infrared regions,
which are explained by the high correlation obtained between the concentration of canopy nitrogen
and the reflectance in the NIR region (800–1400 nm), compared to the low reflectance ratio in the
visible region. Further studies should focus on indices that are not sensitive to vegetative development
and should relate directly to the vegetation hydric status. In addition to SWIR, spectral bands in the
microwave [71,72] and thermal ranges [35,73–76] have been shown to have the qualities to identify
variations in surface water content.

It was evidenced that Pp, a variable used as a predictor of the hydric status of the vegetation,
is influenced by the agricultural management and phenology of the vegetation. Thus, the analysis
should consider irrigation treatments that isolate this response to assess Pp changes driven by the
water supply. Finally, in this study, the standardization of Pp was used as a method to remove
its magnitude and mainly evaluate its temporal variability. In this way, errors associated with the
installation of Yara Water Sensors between different seasons were reduced, which was of great help to
represent the behavior of a tree. However, a better analysis of Pp for irrigation applications should
include the magnitude to determine Pp ranges that are related to periods of water stress or surplus in
the vegetation.
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5. Conclusions

Nine time-series of vegetation indices in the VNIR and SWIR spectral ranges were used to explain
the changes in the hydric state of the leaf of five kiwi trees, recovered through the patch pressure of
the Yara Water Sensor. The following conclusions were obtained for the irrigation regimes to which
the kiwi orchard was subjected:

• From the nine vegetation indices studies, the CARI index was the one with the lowest temporal
correlation (r = 0.17) between indices over the kiwifruit trees, which would be explained by the
spectral behavior of the green band that is not found in the other indices.

• It was evidenced that continuous measurements of patch pressure (Pp) detected the temporary
changes in the leaf’s hydric state, which were attributable both to the phenological behavior of
the vegetation and agricultural management.

• The crop development highly influenced the performance of the vegetation indices through
the season, which explains most of the changes in the water status on the canopy of kiwifruit.
Nevertheless, the time-series of vegetation indices that obtained the highest Pp relationship were
EVI and Rededge1 for the 2018–2019 and 2019–2020 seasons, respectively.

• The Rededge1 index was less sensitive to vegetative development, and its capacity to monitor the
hydric status of the vegetation based on leaf turgor needs to be further investigated.

• Future research needs to address two main issues: (i) to be able to separate the temporal behavior
of Vis due to vegetation development to aisle the changes due to the variation of water status
in the plant, and (ii) explore with restricted levels of water supply on kiwifruit, which could be
implemented with controlled deficit irrigation treatments.
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Abbreviations

The following abbreviations are used in this manuscript:

CARI Chlorophyll Absorption Ratio IndeX
r2 Coefficient of determination
EVI Enhanced Vegetation Index (EVI)
ESA European Space Agency (ESA)
ET Evapotranspiration (ET)
GVMI Global Vegetation Moisture Index (GVMI)
LAI leaf area index (LAI)
LCI Leaf Chlorophyll Index (LCI)
NIR Near infrared (NIR)
NBR Normalized burn ratio Index (NBR)
NDII Normalized Difference Infrared Index (NDII)
NDVI Normalized Difference Vegetation Index (NDVI)
NDWI Normalized Difference Water Index (NDWI)
Pp Patch pressure (Pp)
r Pearson’s coefficient
RTM Radiative transfer model (RTM)
RMSE Root mean square error (RMSE)
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SWIR Short-wave infrared (SWIR)
SIWSI Shortwave Infrared Water Stress Index
RDI Simple Ratio MIR/NIR Ratio Drought Index
SPAC Soil-plant-atmosphere continuum
ρ Spearman’s non-parametric coefficient rho
BOA Bottom of the Atmosphere
VNIR Visible and near infrared
WUE Water use efficiency

References

1. Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014,
3, 153–165. [CrossRef]

2. Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.;
Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072.
[CrossRef]

3. Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.;
McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 megadrought in central Chile: Impacts on regional
hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [CrossRef]

4. Zambrano, F.; Lillo-Saavedra, M.; Verbist, K.; Lagos, O. Sixteen years of agricultural drought assessment
of the biobío region in chile using a 250 m resolution vegetation condition index (VCI). Remote Sens. 2016,
8, 530. [CrossRef]

5. Zambrano, F.; Wardlow, B.; Tadesse, T.; Lillo-Saavedra, M.; Lagos, O. Evaluating satellite-derived long-term
historical precipitation datasets for drought monitoring in Chile. Atmos. Res. 2017, 186, 26–42. [CrossRef]

6. Zambrano, F.; Vrieling, A.; Nelson, A.; Meroni, M.; Tadesse, T. Prediction of drought-induced reduction
of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices.
Remote Sens. Environ. 2018, 219, 15–30. [CrossRef]

7. Boisier, J.P.; Alvarez-Garretón, C.; Cordero, R.R.; Damiani, A.; Gallardo, L.; Garreaud, R.D.; Lambert, F.;
Ramallo, C.; Rojas, M.; Rondanelli, R. Anthropogenic drying in central-southern Chile evidenced by
long-term observations and climate model simulations. Elem. Sci. Anth. 2018, 6, 74. [CrossRef]

8. Zambrano, F.; Molina, M.; Venegas, A.; Molina, J.; Vidal, P. Impact of Megadrought on Vegetation
Productivity in Chile: Forest Lesser Resistant than Crops and Grassland. 2020. Available online: https:
//www.researchgate.net/publication/338801833_IMPACT_OF_MEGADROUGHT_ON_VEGETATION_
PRODUCTIVITY_IN_CHILE_FOREST_LESSER_RESISTANT_THAN_CROPS_AND_GRASSLAND
(accessed on 26 October 2020).

9. Kirkham, M.B. Principles of Soil and Plant Water Relations; Elsevier Inc., 2005. Available online: https:
//www.sciencedirect.com/book/9780124200227/principles-of-soil-and-plant-water-relations (accessed on
26 October 2020). [CrossRef]

10. Doorenbos, J.; Kassam, A.H. Yield Response to Water, FAO Irrigation and Drainage Paper 33; Food and
Agriculture Organization of the United Nations: Rome, Italy, 1986.

11. Nobel, P.S. Physicochemical and Environmental Plant Physiology; Elsevier Inc., 2009. Available online: https://www.
sciencedirect.com/book/9780123741431/physicochemical-and-environmental-plant-physiology (accessed on
26 October 2020). [CrossRef]

12. Scholander, P.F.; Hammel, H.T.; Bradstreet, E.D.; Hemmingsen, E.A. Sap pressure in vascular plants. Science
1965, 148, 339–346. [CrossRef] [PubMed]

13. Ehrenberger, W.; Rüger, S.; Rodríguez-Domínguez, C.M.; Díaz-Espejo, A.; Fernández, J.; Moreno, J.;
Zimmermann, D.; Sukhorukov, V.L.; Zimmermann, U. Leaf patch clamp pressure probe measurements on
olive leaves in a nearly turgorless state. Plant Biol. 2012, 14, 666–674. [CrossRef]

14. Fernández, J.E. Plant-based sensing to monitor water stress: Applicability to commercial orchards.
Agric. Water Manag. 2014, 142, 99–109. [CrossRef]

15. Rodriguez-Dominguez, C.M.; Hernandez-Santana, V.; Buckley, T.N.; Fernández, J.E.; Diaz-Espejo, A.
Sensitivity of olive leaf turgor to air vapour pressure deficit correlates with diurnal maximum stomatal
conductance. Agric. For. Meteorol. 2019, 272–273, 156–165. [CrossRef]

http://dx.doi.org/10.1016/j.ijsbe.2014.04.006
http://dx.doi.org/10.1038/nclimate2437
http://dx.doi.org/10.5194/hess-21-6307-2017
http://dx.doi.org/10.3390/rs8060530
http://dx.doi.org/10.1016/j.atmosres.2016.11.006
http://dx.doi.org/10.1016/j.rse.2018.10.006
http://dx.doi.org/10.1525/elementa.328
https://www.researchgate.net/publication/338801833_IMPACT_OF_MEGADROUGHT_ON_VEGETATION_PRODUCTIVITY_IN_CHILE_FOREST_LESSER_RESISTANT_THAN_CROPS_AND_GRASSLAND
https://www.researchgate.net/publication/338801833_IMPACT_OF_MEGADROUGHT_ON_VEGETATION_PRODUCTIVITY_IN_CHILE_FOREST_LESSER_RESISTANT_THAN_CROPS_AND_GRASSLAND
https://www.researchgate.net/publication/338801833_IMPACT_OF_MEGADROUGHT_ON_VEGETATION_PRODUCTIVITY_IN_CHILE_FOREST_LESSER_RESISTANT_THAN_CROPS_AND_GRASSLAND
https://www.sciencedirect.com/book/9780124200227/principles-of-soil-and-plant-water-relations
https://www.sciencedirect.com/book/9780124200227/principles-of-soil-and-plant-water-relations
http://dx.doi.org/10.1016/B978-0-12-409751-3.X5000-2
https://www.sciencedirect.com/book/9780123741431/physicochemical-and-environmental-plant-physiology
https://www.sciencedirect.com/book/9780123741431/physicochemical-and-environmental-plant-physiology
http://dx.doi.org/10.1016/B978-0-12-374143-1.X0001-4
http://dx.doi.org/10.1126/science.148.3668.339
http://www.ncbi.nlm.nih.gov/pubmed/17832103
http://dx.doi.org/10.1111/j.1438-8677.2011.00545.x
http://dx.doi.org/10.1016/j.agwat.2014.04.017
http://dx.doi.org/10.1016/j.agrformet.2019.04.006


ISPRS Int. J. Geo-Inf. 2020, 9, 641 16 of 18

16. Westhoff, M.; Schneider, H.; Zimmermann, D.; Mimietz, S.; Stinzing, A.; Wegner, L.; Kaiser, W.; Krohne, G.;
Shirley, S.; Jakob, P.; et al. The mechanisms of refilling of xylem conduits and bleeding of tall birch during
spring. Plant Biol. 2008, 10, 604–623. [CrossRef] [PubMed]

17. Zimmermann, U.; Bitter, R.; Marchiori, P.E.R.; Rüger, S.; Ehrenberger, W.; Sukhorukov, V.L.; Schüttler, A.;
Ribeiro, R.V. A non-invasive plant-based probe for continuous monitoring of water stress in real time: A new
tool for irrigation scheduling and deeper insight into drought and salinity stress physiology. Theor. Exp.
Plant Physiol. 2013, 25, 2–11. [CrossRef]

18. Beauzamy, L.; Nakayama, N.; Boudaoud, A. Flowers under Pressure: Ins and Outs of Turgor Regulation
in Development. 2014. Available online: https://academic.oup.com/aob/article/114/7/1517/2769111
(accessed on 26 October 2020). [CrossRef]

19. Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University
Press, 2013; Volume 9780521279, pp. 1–407. Available online: https://www.researchgate.net/publication/
287238047_Plants_and_Microclimate_A_Quantitative_Approach_to_Environmental_Plant_Physiology (accessed
on 26 October 2020). [CrossRef]

20. Zimmermann, D.; Reuss, R.; Westhoff, M.; Geßner, P.; Bauer, W.; Bamberg, E.; Bentrup, F.W.; Zimmermann, U.
A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water
status. J. Exp. Bot. 2008, 59, 3157–3167. [CrossRef] [PubMed]

21. Rüger, S.; Ehrenberger, W.; Arend, M.; Geßner, P.; Zimmermann, G.; Zimmerann, D.; Bentrup, F.W.; Nadler, A.;
Raveh, E.; Sukhorukv, V.L.; et al. Comparative monitoring of temporal and spatial changes in tree water
status using the non-invasive leaf patch clamp pressure probe and the pressure bomb. Agric. Water Manag.
2010, 98, 283–290. [CrossRef]

22. Jacquemoud, S.; Ustin, S.L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Estimating leaf
biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 1996, 56, 194–202.
[CrossRef]

23. Penuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The reflectance at the 950–970 nm region as an indicator
of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [CrossRef]

24. Chávez, R.O.; Clevers, J.G.; Herold, M.; Ortiz, M.; Acevedo, E. Modelling the spectral response of the desert
tree prosopis tamarugo to water stress. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 53–65. [CrossRef]

25. Knapp, A.K.; Carter, G.A. Variability in leaf optical properties among 26 species from a broad range of
habitats. Am. J. Botany 1998, 85, 940–946. [CrossRef]

26. Ourcival, J.M.; Joffre, R.; Rambal, S. Exploring the relationships between reflectance and anatomical and
biochemical properties in Quercus ilex leaves. New Phytol. 1999, 143, 351–364. [CrossRef]

27. Colombo, R.; Meroni, M.; Marchesi, A.; Busetto, L.; Rossini, M.; Giardino, C.; Panigada, C. Estimation of leaf
and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling.
Remote Sens. Environ. 2008, 112, 1820–1834. [CrossRef]

28. Bai, T.; Zhang, N.; Mercatoris, B.; Chen, Y. Jujube yield prediction method combining Landsat 8 Vegetation
Index and the phenological length. Comput. Electron. Agric. 2019, 162, 1011–1027. [CrossRef]

29. Karkauskaite, P.; Tagesson, T.; Fensholt, R. Evaluation of the plant phenology index (PPI), NDVI and EVI for
start-of-season trend analysis of the Northern Hemisphere boreal zone. Remote Sens. 2017, 9, 485. [CrossRef]

30. Raghavendra, B.R.; Mohammed Aslam, M.A. Sensitivity of vegetation indices of MODIS data for the
monitoring of rice crops in Raichur district, Karnataka, India. Egypt. J. Remote Sens. Space Sci. 2017,
20, 187–195. [CrossRef]

31. Xe, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications.
J. Sens. 2017, 2017. [CrossRef]

32. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with
ERTS. 1973. Available online: https://ntrs.nasa.gov/citations/19740022614 (accessed on 26 October 2020).

33. Huete, A.; Didan, K.; Miura, H.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and
biopyhsical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213.
[CrossRef]

34. Gerhards, M.; Schlerf, M.; Rascher, U.; Udelhoven, T.; Juszczak, R.; Alberti, G.; Miglietta, F.; Inoue, Y.
Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms. Remote Sens.
2018, 10, 1139. [CrossRef]

http://dx.doi.org/10.1111/j.1438-8677.2008.00062.x
http://www.ncbi.nlm.nih.gov/pubmed/18761499
http://dx.doi.org/10.1590/S2197-00252013000100002
https://academic.oup.com/aob/article/114/7/1517/2769111
http://dx.doi.org/10.1093/aob/mcu187
https://www.researchgate.net/publication/287238047_Plants_and_Microclimate_A_Quantitative_Approach_to_Environmental_Plant_Physiology
https://www.researchgate.net/publication/287238047_Plants_and_Microclimate_A_Quantitative_Approach_to_Environmental_Plant_Physiology
http://dx.doi.org/10.1017/CBO9780511845727
http://dx.doi.org/10.1093/jxb/ern171
http://www.ncbi.nlm.nih.gov/pubmed/18689442
http://dx.doi.org/10.1016/j.agwat.2010.08.022
http://dx.doi.org/10.1016/0034-4257(95)00238-3
http://dx.doi.org/10.1080/01431169308954010
http://dx.doi.org/10.1016/j.jag.2012.08.013
http://dx.doi.org/10.2307/2446360
http://dx.doi.org/10.1046/j.1469-8137.1999.00456.x
http://dx.doi.org/10.1016/j.rse.2007.09.005
http://dx.doi.org/10.1016/j.compag.2019.05.035
http://dx.doi.org/10.3390/rs9050485
http://dx.doi.org/10.1016/j.ejrs.2016.06.005
http://dx.doi.org/10.1155/2017/1353691
https://ntrs.nasa.gov/citations/19740022614
http://dx.doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.3390/rs10071139


ISPRS Int. J. Geo-Inf. 2020, 9, 641 17 of 18

35. Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of
Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review.
Remote Sens. 2019, 11, 1240. [CrossRef]

36. Ji, L.; Zhang, L.; Wylie, B.K.; Rover, J. On the terminology of the spectral vegetation index
(NIR − SWIR)/(NIR+SWIR). Int. J. Remote Sens. 2011, 32, 6901–6909. [CrossRef]

37. Kim, D.M.; Zhang, H.; Zhou, H.; Du, T.; Wu, Q.; Mockler, T.C.; Berezin, M.Y. Highly sensitive image-derived
indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis. Sci. Rep. 2015.
[CrossRef]

38. Hardisky, M.A.; Klemas, V.; Smart, R.M. The Influence of Soil Salinity, Growth Form, and Leaf Moisture on
the Spectral Radiance of Spartina alterniflora Canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83.

39. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]

40. Fensholt, R.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near- and
shortwave infrared data in a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121. [CrossRef]

41. Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B. Satellite-based modeling of
gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [CrossRef]

42. ESA. ESA - SENTINEL 2. 2015. Available online: http://www.esa.int/Applications/Observing_the_Earth/
Copernicus/Sentinel-2 (accessed on 26 October 2020).

43. Praticò, S.; Di Fazio, S.; Modica, G. Multi Temporal Analysis of Sentinel-2 Imagery for Mapping Forestry Vegetation
Types: A Google Earth Engine Approach; Springer: Cham, Switzerland, 2021; pp. 1650–1659. [CrossRef]

44. Vogelmann, J.E.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using Landsat time
series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012,
122, 92–105. [CrossRef]

45. Zhang, M.; Gong, P.; Qi, S.; Liu, C.; Xiong, T. Mapping bamboo with regional phenological characteristics
derived from dense Landsat time series using Google Earth Engine. Int. J. Remote Sens. 2019, 40, 9541–9555.
[CrossRef]

46. Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative
estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [CrossRef]

47. Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future
köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [CrossRef] [PubMed]

48. DGA. Pronóstico de Caudales de Deshielo Temporada de Riego 2019–2020; Technical Report; Dirección General de
Aguas. Ministerio de Obras Públicas: Gobierno de Chile, Santiago, Chile, 2019.

49. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiración del cultivo. arXiv 2006, arXiv:1011.1669v3.
50. Sabaini, C.; Goecke, P. Hacia la produccion de un kiwi hayward más homogenéo y dulce. Fruticola 2013,

2, 17–23.
51. Sabaini, C. Manejo Productivo del Kiwi Orientado a Obtener un Producto Rico y Homogéneo; Technical Report;

Fedefruta, ASOEX: 2012. Available online: https://www.asoex.cl/seminario-kiwis-agosto-2012/finish/
30-seminario-kiwis-agosto/223-manejo-productivo-del-kiwi-orientado-a-obtener-un-producto-rico-y-
homogeneo.html (accessed on 26 October 2020).

52. Ranghetti, L.; Boschetti, M.; Nutini, F.; Busetto, L. “sen2r”: An R toolbox for automatically downloading and
preprocessing Sentinel-2 satellite data. Comput. Geosci. 2020, 139. [CrossRef]

53. R Core Team. R: The R Project for Statistical Computing. 2020. Available online: https://www.r-project.org/
(accessed on 26 October 2020).

54. Cloutis, E.A.; Connery, D.R.; Dover, F.J.; Major, D.J. Airborne multi-spectral monitoring of agricultural crop
status: Effect of time of year, crop type and crop condition parameter. Int. J. Remote Sens. 1996, 17, 2579–2601.
[CrossRef]

55. Datt, B. Remote sensing of water content in Eucalyptus leaves. Aust. J. Bot. 1999, 47, 909–923. [CrossRef]
56. Kim, M.S.; Daughtry, C.S.T.; Chappelle, E.W.; Mcmurtrey, J.E.; Walthall, C.L. The Use of High Spectral

Resolution Bands for Estimating Absorbed Photosynthetically Active Radiation (A Par); Technical Report;
1994. Available online: https://ntrs.nasa.gov/citations/19950010604 (accessed on 26 October 2020).

57. Key, C.H.; Benson, N.; Ohlen, D.; Howard, S.; McKinley, R.; Zhu, Z. The Normalized Burn Ratio and
Relationships to Burn Severity. 2002. Available online: https://www.yumpu.com/en/document/view/
24226870/the-normalized-burn-ratio-and-relationships-to-burn-severity- (accessed on 26 October 2020).

http://dx.doi.org/10.3390/rs11101240
http://dx.doi.org/10.1080/01431161.2010.510811
http://dx.doi.org/10.1038/srep15919
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1016/j.rse.2003.07.002
http://dx.doi.org/10.1016/j.rse.2003.11.008
http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
http://dx.doi.org/10.1007/978-3-030-48279-4_155
http://dx.doi.org/10.1016/j.rse.2011.06.027
http://dx.doi.org/10.1080/01431161.2019.1633702
http://dx.doi.org/10.1016/j.isprsjprs.2013.04.007
http://dx.doi.org/10.1038/sdata.2018.214
http://www.ncbi.nlm.nih.gov/pubmed/30375988
https://www.asoex.cl/seminario-kiwis-agosto-2012/finish/30-seminario-kiwis-agosto/223-manejo-productivo-del-kiwi-orientado-a-obtener-un-producto-rico-y-homogeneo.html
https://www.asoex.cl/seminario-kiwis-agosto-2012/finish/30-seminario-kiwis-agosto/223-manejo-productivo-del-kiwi-orientado-a-obtener-un-producto-rico-y-homogeneo.html
https://www.asoex.cl/seminario-kiwis-agosto-2012/finish/30-seminario-kiwis-agosto/223-manejo-productivo-del-kiwi-orientado-a-obtener-un-producto-rico-y-homogeneo.html
http://dx.doi.org/10.1016/j.cageo.2020.104473
https://www.r-project.org/
http://dx.doi.org/10.1080/01431169608949094
http://dx.doi.org/10.1071/BT98042
https://ntrs.nasa.gov/citations/19950010604
https://www.yumpu.com/en/document/view/24226870/the-normalized-burn-ratio-and-relationships-to-burn-severity-
https://www.yumpu.com/en/document/view/24226870/the-normalized-burn-ratio-and-relationships-to-burn-severity-


ISPRS Int. J. Geo-Inf. 2020, 9, 641 18 of 18

58. Ceccato, P.; Flasse, S.; Grégoire, J.M. Designing a spectral index to estimate vegetation water content from
remote sensing data: Part 1: Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197. [CrossRef]

59. Pinder, J.E., III; Mcleod, K.W. Indications of Relative Drought Stress in Longleaf Pine from Thematic Mapper
Data. Photogramm. Eng. Remote Sens. 1999, 65, 495–501.

60. Hijmans, R.J. Geographic Data Analysis and Modeling [R Package Raster Version 3.3-13]. 2020. Available
online: https://rdrr.io/cran/raster/ (accessed on 26 October 2020).

61. Becker, R.A.; Chambers, J.M.; Wilks, A.R. The New S Language: A Programming Environment for Data Analysis
and Graphics; Wadsworth and Brooks/Cole Advanced Books & Software: Monterey, CA, USA, 1988.

62. Pearson, K. Notes on the history of correlation. Biometrika 1920, 13, 25–45. [CrossRef]
63. Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101.

[CrossRef]
64. Hahn, G.J. The Coefficient of Determination Exposed. Chem. Technol. 1973, 3, 609–612.
65. Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; 2006; p. 649. Available online: https://www.

scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1432882 (accessed
on 26 October 2020).

66. Keller, M. Phenology and Growth Cycle; 2020; pp. 61–103. Available online: https://www.sciencedirect.com/
science/article/pii/B9780128163658000026?via%3Dihub (accessed on 26 October 2020). [CrossRef]

67. Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; 2014; Volume 1,
pp. 333–378. Available online: https://www.amazon.com/Remote-Sensing-Environment-Resource-
Perspective/dp/0131889508 (accessed on 26 October 2020).

68. Van Beek, J.; Tits, L.; Somers, B.; Coppin, P. Stem Water Potential Monitoring in Pear Orchards through
worldview-2 Multispectral Imagery. Remote Sens. 2013, 5, 6647–6666. [CrossRef]

69. Lin, Y.; Zhu, Z.; Guo, W.; Sun, Y.; Yang, X.; Kovalskyy, V. Continuous Monitoring of Cotton Stem Water
Potential using Sentinel-2 Imagery. Remote Sens. 2020, 12, 1176. [CrossRef]

70. Ollinger, S.V.; Richardson, A.D.; Martin, M.E.; Hollinger, D.Y.; Frolking, S.E.; Reich, P.B.; Plourde, L.C.;
Katul, G.G.; Munger, J.W.; Oren, R.; et al. Canopy nitrogen, carbon assimilation, and albedo in temperate
and boreal forests: Functional relations and potential climate feedbacks. Proc. Natl. Acad. Sci. USA 2008,
105, 19336–19341. [CrossRef] [PubMed]

71. Soria-Ruiz, J.; Fernandez-Ordonez, Y.; McNair, H. Corn Monitoring and Crop Yield Using Optical and
Microwave Remote Sensing. Geosci. Remote Sens. 2009. [CrossRef]

72. Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity
of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study. Remote Sens. 2018, 10, 1396.
[CrossRef]

73. Ihuoma, S.O.; Madramootoo, C.A. Recent Advances in Crop Water Stress Detection. 2017. Available online:
https://www.sciencedirect.com/science/article/abs/pii/S0168169916310766 (accessed on 26 October 2020).
[CrossRef]

74. Clarke, T.R.; Moran, M.S.; Inoue, Y.; Vidal, A. Estimating crop water defficiency using the relation between
surface minus air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [CrossRef]

75. Vicente-Serrano, S.M.; Pons-Fernández, X.; Cuadrat-Prats, J.M. Mapping soil moisture in the central Ebro
river valley (northeast Spain) with Landsat and NOAA satellite imagery: A comparison with meteorological
data. Int. J. Remote Sens. 2004, 25, 4325–4350. [CrossRef]

76. Wang, K.; Li, Z.; Cribb, M. Estimation of evaporative fraction from a combination of day and night
land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter.
Remote Sens. Environ. 2006, 102, 293–305. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0034-4257(02)00037-8
https://rdrr.io/cran/raster/
http://dx.doi.org/10.1093/biomet/13.1.25
http://dx.doi.org/10.2307/1412159
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1432882
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1432882
https://www.sciencedirect.com/science/article/pii/B9780128163658000026?via%3Dihub
https://www.sciencedirect.com/science/article/pii/B9780128163658000026?via%3Dihub
http://dx.doi.org/10.1016/b978-0-12-816365-8.00002-6
https://www.amazon.com/Remote-Sensing-Environment-Resource-Perspective/dp/0131889508
https://www.amazon.com/Remote-Sensing-Environment-Resource-Perspective/dp/0131889508
http://dx.doi.org/10.3390/rs5126647
http://dx.doi.org/10.3390/rs12071176
http://dx.doi.org/10.1073/pnas.0810021105
http://www.ncbi.nlm.nih.gov/pubmed/19052233
http://dx.doi.org/10.5772/8311
http://dx.doi.org/10.3390/rs10091396
https://www.sciencedirect.com/science/article/abs/pii/S0168169916310766
http://dx.doi.org/10.1016/j.compag.2017.07.026
http://dx.doi.org/10.1016/0034-4257(94)90020-5
http://dx.doi.org/10.1080/01431160410001712990
http://dx.doi.org/10.1016/j.rse.2006.02.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Study Area
	Data
	Patch Pressure (Pp) Yara Water-Sensor
	Spectrals Vegetation Indices
	Exploratory Analysis
	Correlation Analysis

	Results
	Exploratory Analysis
	Correlation Analysis

	Discussion
	Conclusions
	References

