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Abstract: Our research presents a complete R&D cycle—from the urban terrain generation and feature
extraction by raw LiDAR data processing, through visualizing a huge number of urban features, and till
applied thematic use cases based on these features extracted and modeled. Firstly, the paper focuses
on the original contribution to algorithmic solutions concerning the fully automated extraction of
building models with the urban terrain generation. Topography modeling and extraction of buildings,
as two key constituents of the robust algorithmic pipeline, have been examined. The architectural
scheme of the multifunctional software family—EOS LIDAR Tool (ELiT) has been presented with
characteristics of its key functionalities and examples of a user interface. Both desktop, and web
server software, as well as a cloud-based application, ELiT Geoportal (EGP), as an entity for online
geospatial services, have been elaborated on the base of the approach presented. Further emphasis
on the web-visualization with Cesium 3D Tiles has demonstrated the original algorithm for efficient
feature visualizing though the EGP locations. Summarizing presentation of two thematic use-cases
has finalized this research, demonstrating those applied tasks, which can be efficiently resolved with
the workflow presented. A necessity of a conclusive workflow elaboration for use cases, which would
be based on the actual semantics, has been emphasized.

Keywords: LiDAR; building model; DEM-G/AFE classifying algorithm; ELiT software; Geoportal;
3D Tiles; thematic use cases; 3D LiDAR point cloud

1. Introduction: Initialization of 3D City Models in Urban Studies through Lidar Data Processing

1.1. Common Issues

Seeking innovative solutions in urban studies primarily implies to implement novel approaches,
technologies, and techniques applied in the information systems and remote sensing domains. Thus,
the urban remote sensing and the relevant data processing and modeling for urban studies, can hardly
be overvalued. The current global urban monitoring and mapping with usage of the Earth Observing
means is the dominant approach that guarantees to avoid the shortage of reliable spatial data of any
scale and resolution for urban areas of any size and locations [1–3].

These days 3D City Models are employed in applications in a wide variety of subject domains
in both human geography, and urban studies, as well as in environmental science and landscape
architecture [4–6]. In addition to the mentioned major sciences, we can easily indicate the relevant
usage of these models in applied fields of physical geography, municipal planning, civil engineering,
agricultural design, forestry, environmental policy, ecology, regional economics, demography,
sociology, and in other domains. These modelled entities can demonstrate overall performance
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in up to thirty use cases, that cover more than one hundred applications [7]. Innovative Web-GIS
tools intended to create three-dimensional city models and analyze a distribution of their spatial
sets afterwards can contribute with this technique to the areas like urban disaster/catastrophe
management, health care, telecommunications, facility management, classification of processes in
different hierarchical urban geosystems, and social/human /environmental monitoring for the smart
city concept implementation [8,9]. In our opinion, such an approach may substantially contribute
to outlining adequate ontological frameworks that would combine the urban information and the
relevant knowledge due to a standardized modelled presentation of actual environment for a given
city in its various scopes, while, the techniques produced on the base of this approach do assist in
making city efficient models [10,11].

A 3D City Model possesses the commonly accepted status as a geospatial entity of the certain
standards (e.g., Open Geospatial Consortium ones) [1,4–6,8,11–15]. Thus, it can only be a result of
a geographical information system (GIS) processing pipeline. A GIS has had a historically close
relation with urban studies and as well as with many other affiliated subject fields, because both these
subject areas were to the certain extent implemented as quantitative trends in the general geography.
Nonetheless, despite understandable GIS-advantages in the contemporary urban studies and continued
rapid increase of the relevant social/environmental information the results are stored digitally in
numerous different software packages, which use heterogeneous data types and formats. These formats
are often defined exclusively according to local necessities and temporary needs of a given project.
Moreover, a recurring usage of this data is often impossible exactly, because of missing information
about a way in which data are stored, their representation and structure, finalized quality, the date
to which the information refers, the scale employed, and due to several other factors. All mentioned
circumstances normally lead to widely isolated geodatabases used in urban studies, if only the relevant
standardized procedures are not involved. An example of such key procedure can be an introduction
of the CityGML standard [16–18].

We have mentioned above the key importance of the urban remote sensing (URS) as of an
information source for generation of three-dimensional models possessing the topology, geometry and
texture of urban features. The URS techniques can be spaceborne, airborne, and terrestrial platforms,
that employ multispectral and hyperspectral tools, as well as radar ones [19]. Light detection and
ranging (LiDAR/lidar) technology is a number of methods measuring ranges or distances due to
time differences between transmitting/receiving laser impulses [3]. The data obtained with lidar
remote sensing as 3D point clouds are normally dense and of high accuracy, and quite long before this
technique was stated to be the most preferable one for the efficient urban feature extraction [20–23].
With drastically increasing requests for highly accurate 3D city models and corresponding digital
elevation models (DEMs) and due to enlarging availability of airborne lidar (ALS)/terrestrial (mobile)
lidar (MLS)/drone lidar (UAV-LS) data, three-dimensional urban features, and buildings, first of
all, have become the most prominent entities of urban environment modeled with lidar pipeline
processing [3,24–27].

Obviously, 3D city models as representations of a 3D solid volume of urban environment can
be obtained from alternative sources [7], but exactly LiDAR data have been recognized as the most
preferable ones according to relatively low cost, evident universality, and high precision [28–37].

3D LiDAR point clouds accumulated after the surveys provided over urban areas are the origin for
applying the automated feature extraction (AFE) technique, when the points from different reflective
objects are isolated from each other, in other words—filtered. Two main classes of points resulted after
applying filtering procedure as the ground class, and the non-ground one, while the latter becomes a
source for building model extraction [25,28,35,38–43]. The ultimate AFE result can be accepted as a set
of building models, which is possible to place within the general frameworks of 3D city models by
choosing both an appropriate modeling approach, and a way of their presentation in the variety of
virtual city models [44,45].



ISPRS Int. J. Geo-Inf. 2020, 9, 650 3 of 36

Approaches and methods that extract urban features and buildings in any alternative ways
are of great interest, as it is very promising for various applications of 3D city models. The key
range of these applications can, for instance, consist of urban planning, population estimation, urban
disaster management, energy sector, planning of infrastructural networks, outlining different smart city
projects, and solutions with 3D city models due to visibility analysis in urban environment. Automated
feature extraction from the point clouds collected over urban areas is an extremely challenging task
for its developers, surveyors, and other researchers, since it means 3D automatic mapping with a
corresponding 3D scene generation, which should represent a space of the highest complexity. What is
more, exactly LiDAR surveying technique has become for approximately three latest decades an
efficient alternative data source for automated building detection, extraction and reconstruction with
quite different methodologies and algorithms [3,46,47]. Thus, the building and other man-made feature
extraction from point clouds together with the relevant digital elevation model (DEM) generation
is one of the most challenging research and development aims for proliferating urban studies as
well as for support of making decisions for the urban environment by means of digitalization and
information networks.

The presentation of the models of buildings within the frameworks of 3D city models in various
zooms of a 3D Scene implies the necessity of powerful visualizing tools’ usage, that should be feasible
for specification of a web-geoinformation platform, and be able for streaming huge geospatial 3D
datasets, basing on the WebGL technology. Cesium 3D Tiles seems to be the most preferable 3D
Web-GIS platform, that suggests a virtual globe for visualizing the massive geospatial dynamic
data volumes [17,48,49]. Several open-source solutions have been already provided for converting
various models into 3D Tiles, what allows substantial optimization for modeled results streaming and
rendering [50].

Within the frameworks of our research and software development activity we accept a common
definition of the urban remote sensing with LiDAR as that technology, which can be used to acquire
the primary data for further processing, and generate the derivative information about the topographic
surface, an urban vegetation belt, and various features of the human infrastructure (buildings, bridges,
roads, powerlines, etc.) in a selected area of interest (AOI) [3,9,11,19–21,23,26,51]. Such understanding
of this technology can be associated with either block, or district scope, as well as with a whole city one.
We have already presented in several papers published some key characteristics of our multifunctional
approach to airborne\terrestrial\UAV lidar data processing with purposes of fully AFE and DEM
generation [8,9,52–54].

1.2. Automated Extraction of Building Models and DEM Generation

Traditionally the urban remote sensing has dealt with spectral imageries and with the
photogrammetric point clouds. Since high positioning accuracy became available for lidar hardware
almost three decades ago, and due to drastically lowering this hardware cost, that has been seen for
recent year, the relevant surveying technique is gradually becoming preferable for modeling according
to the urban monitoring necessities [21,23,25,55].

Significant advantages for such solution may be defined by that circumstance, according to
which LiDAR sensors of various hardware platforms can deliver point datasets with huge ranges of
point densities (e.g., varying from only a few up to several thousand points). Even with the lowest
values of these densities range, it may be possible to extract urban features, their exact boundaries,
and topographic characteristics. Those models can be created, which correctly simulate building
facades, and roof structures. A number of relevant techniques for surveyed lidar data processing
have been developed according to necessities of urban topography generation and 3D building
reconstruction [56–68].

In some of our previous works we have already generally classified the existing AFE-methods on
the base of a primary data source [52–54]. The first way implies a treatment of the high-resolution
airborne imageries with supplementary including DEMs into an algorithmic work-flow [11]. Although
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with such method some substantial results have been received, some references can be found, according
to which the “exclusively aerial imagery” solution may be accepted as that one, which does not
always perform well enough in the urban areas with dense housing, and detected skewed errors are
primarily caused by landscape gaps, shadows, and contrasts in different urban configurations [60,61].
Thus, the AFE procedures based exclusively on the first approach may not be fully effective in the
robust applications. The second way straightforwardly involves lidar data and techniques, and it
can obtain the definitely improved AFE-output, if compared to the imagery-only methods [26,51].
Methods and procedures applied within the third way in a common case combine both aerial imageries,
and various types of lidar surveys (ALS/MLS/UAV-LS) in order to use combined information from all
data sources [62,63].

One more structuring of the automated feature extraction methods can be provided on the base of
the building rooftop detection, segmentation and reconstruction [58]. Thus, the model-driven AFE
for building roofs is provided, when either a predefined catalogue of roof templates-primitives does
exist [11,46,63] (e.g., it may be the CityGML rooftop catalogue [16]), or some formalized description for
of the features to be extracted is provided, e.g., a determination of the parametrized shapes in a 3D
space with 3D Hough transform methods [64]. Another interesting solution within the model-driven
paradigm is referred to in [65], where 3D models of prototypical roofs are based CityGML LOD2
templates, what has given an opportunity to perform through sparse point clouds [65].

The data-driven AFE procedures are often named as generic approaches [30], which often
mean the feature extraction directly from digital elevation/digital surface models (DEM/DSM) [41,65].
The data-driven methodology may also be defined as a variety of polyhedral-delineating methods,
since the feature model produced may consist either from few, or from many polyhedrons [40,58,66].
Since this text is not a review paper, we can mention with only few additional references, that in our
opinion, just the data-driven methods, and those ones, which combine model-driven and data-driven
approaches, do provide the majority of effective solutions in automated feature extraction from LiDAR
surveyed data [58,67–69].

It directly proceeds from the primary basics of remote sensing with Lidar [3,19], as well as
this point of view has been proved in a separate reference concerning the definite advantages of
DEM producing with Lidar results instead of photogrammetry [70], that a generation of a digital
elevation/digital surface model is an inalienable part of a whole AFE-pipeline, even if the filtering
technique is considered as a dominant component of the relevant workflow [71]. It seems to be
understandable, that in the most cases a Lidar DEM is resulted not in a set of urban features, but in
an aggregate of those ones, which are purely topographic [72]. Nonetheless, in this case modeled
topographic surface can be used as a scene basic layer for man-made discrete features extracted.

1.3. Some AFE and DEM Creation Problematic Issues

While we presented in a brief manner earlier the original algorithmic flowchart of building
detection, extraction, and reconstruction within the high polyhedral modeling frameworks of building
simulation by ALS data processing, we emphasized that ground may have its original characteristics
that refute ground/non-ground feature distinguishing depending on the certain location and given
terrain conditions [52,54]. Normally the following features often refute filtering/classifying algorithms:
low vegetation belt; low walls, which are along sidewalks; bridges; nonstandard buildings; hill cut-off

edges; complex mixed land covering, especially—by man-made features; areas combined with low
and high-relief terrains. All these features cause the lack of reliable accuracy estimation upon LiDAR
data processing for AFE. If the feature extraction belongs to “coarse” research techniques by default
and should be applied, first of all, to large geospatial datasets [73], the finalized requirements to the
derivative data output have to be sooner overrated, than underrated. Introducing the two-branched
DEM generation—AFE classifying algorithm in our text pursues this goal besides all the other: to meet
enhanced requirements to the algorithmic output accuracy.
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While finalizing the literature review, it would be reasonable also to examine some other
problematic issues addressed in our research in the AFE/DEM creation workflow, if accomplished
through LiDAR data processing. The separation while processing ground points from non-ground
ones is mostly titled as a filtering procedure [74]. For almost all lidar pipelines, ground detection and
filtering are a united mandatory step to determine which ones of the LiDAR returns are from the
bare ground surface, and which ones are from non-ground surfaces, which understandably belong to
the discrete features. Thus, a ground surface we can define in a similar way as a continuous feature.
Distinguishing the ground from the non-ground can be normally a task of significant difficulty in
regions with the high topographic variability. Moreover, it is necessary to take into account that a
reliable DEM can only be constructed, if non-ground points are removed before the interpolation
provision through an initial grid [71].

The urban topography is the physical basis for the various urban feature allocation. Proceeding
from following references that highlight just this subject area [56,70,75], it is necessary to mention,
that the earth surface topography possesses two key premises useful for its reconstruction on the
base of ground points presented in a 3D LiDAR point cloud: (1) this surface is both continuous, and
piecewise-smooth one. It is presented throughout a whole scanned area and over it, with each its
point georeferenced (X, Y—two flat georeferencing coordinates, and the vertical coordinate Z, normally
associated with surface | feature height); (2) there are no other scanned points at some significant
distance under the surface, despite some noise points and outliers caused by mirroring from other
surfaces, vertical wells, rock walls, etc. Even if there are some abnormal ground areas (e.g. vertical and
overhanging ones), they are bound continuously with the dominant, more horizontal surface, where
“into the underground” direction has been defined uniquely.

According to several references the key characteristics of the issued ground surfaces can be
classified into four such sets based on general properties of topographic surfaces [76–78]. All four
key parameters imply crucial significance exactly for an urban terrain generation, when non-ground
features usually are densely presented in the neighborhood. Thus, a key premise is to distinguish
ground points from those ones of neighboring urban features, and this premise has to be completed in
that segment of a whole AFE workflow, which filters prescribed point classes out. Four mentioned
parameters are as follows: (1) the lowest absolute heights (altitudes); (2) the steepness of topographic
surface; (3) the altitude difference of ground surface; and (4) the homogeneity of topographic surface.
All these characteristics are applied withing the framework of our two-branched algorithmic solution
suggested in this text.

The finalized problematic issue relates to the existing wide range of building sizes may cause
problems for some filters employed in the classifying procedures [76]. Topographic filters based
on the running window algorithms sometimes have problematic situations removing large or small
constructive features. This situation may appear, because the classifying filters distinguish points
proceeding from a comparative analysis between the value measured and the value estimated within a
certain outlined neighborhood. If a large construction is completely placed within a running window,
the cloud points appearing in the middle of a corresponding footprint may not be taken as a part of
this construction, because there may be no significant difference between two types of values—the
measured and the estimated ones.

The main goal of this paper is to outline the research contribution to the generation of building
models and their further application by presenting the relevant complete R&D cycle—from raw 3D
lidar point cloud processing for AFE purposes, and up to thematic use cases’ implementation on the
web-portal. First of all, presented research implies consideration of the high polyhedral modeling
technique for the fully automated AFE with a DEM generation for urban areas. Thus, two key
constituents of the whole workflow are examined with further making an emphasis on some aspects
of the urban feature web-visualization and brief reviewing two thematic use cases. The original
geoinformation web- and cloud-based software platforms developed for the listed purposes are
described in our paper too.
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2. Approach and Methods: Urban Topography and Building Model Extraction from Airborne 3D
LiDAR Point Clouds

2.1. High Polyhedral Modeling and Two-Branched DEM Generation/AFE Algorithmic Solution

We have already outlined in our earlier publications two of our somewhat alternative AFE solutions
as the high polyhedral modeling (HPM) of buildings and the low polyhedral one (LPM) [52–54]. These
two modeling techniques are key constituents of the authors’ lidar data processing work-flow, but in
general they may identify two substantial mainstreams in various existing AFE approaches. Although
the case is that feature extraction techniques earlier applied, as a rule, were not targeted to set up
themselves primarily according to existing urban configurations, while our the HPM methods presented
briefly in [52,53], and the LPM ones introduced in [53,54] in details do within the multifunctional
R&D approach resulted in the relevant web-software elaborated. The multifunctionality of our
AFE-technique implies not only its applicability to different urban configurations (e.g., high-rise
buildings of city central parts, and low-rise buildings of suburbs and rural areas), but also various
functional software tools, what is described below.

A text introduced in this paper chapter concerns our own original both conceptual, and algorithmic
solutions just within the high polyhedral modeling frameworks. It implies the production of building
models, which surfaces consist of a big number of polyhedrons, and therefore the relevant modeled
results can be accepted as heavyweight models. It means, an HPM-building model may be generated
from up to more, than hundred thousand of points. Once we attempted to prove, that for the HPM
frameworks the point cloud classification procedure is the dominant one, and it is not directly associated
with clustering, while for the LPM operations the point cloud segmentation through clustering is the
key one [54]. The LPM building models generated can be composed of not so many facets, and the
number of points prescribed for one only model generation is limited by a number of approximately
five thousand. A reasonable number may be obtained by adaptive thinning techniques at the cost
of details.

Upon the implementation of our original ground filtering/point classifying algorithm two
alternative algorithmic approaches have been considered, evaluated, and updated, which elements in
one way or another are presented in the following references [40,56,70,75–81]: (1) The choice of the
thinned network of the antecedent ground points. The set of relatively large parcels, within which we
can easily select at least one ground point, is considered. (2) The parcels of the non-ground points
have to be filtered out from the network of the points densely located. The first approach may hardly
classify properly those points that are located around the common edge of the data spatial extent.
It requires the more, the better those overlapping areas of classified parcels, which have to be processed
independently. If there is in the spatial extent selected within a large area with no points at all, this large
parcel may be mistakenly classified as the ground. The second approach requires the very accurate
differentiation the connected ground parcels from the non-ground features located on the topographic
surface. It is normally caused by the smooth surface transition from the ground to the non-ground
features (front entrance to a building; contiguity of roofs with the topography; embankments, the walls
that are not vertical ones; etc.). All abnormal topographic features mentioned above should also be
taken into account.

The first algorithmic approach has been chosen after detailed analysis as a more reliable one.
Its formalized view within our general Lidar point cloud classifying approach is presented on
the following flow-chart (Figure 1). This flow-chart mirrors our original two-branched urban
DEM generation (DEM-G)/automated feature extraction algorithmic solution, which consists of
the Non-Ground (AFE) algorithmic (filtering/classifying) branch (the left one in Figure 1) and the
Ground (DEM-G) algorithmic branch (the right one). According to the consequent steps in an overall
filtering/classifying workflow the Ground branch has to be described the first, notwithstanding we
have placed it to the right, taking into account by way of example the specificity of kindred the TEXAS
(terrain extraction and segmentation) algorithmic workflow [82].
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2.2. Ground (DEM-G) Classifying Algorithmic Branch

According to the flowchart of our original algorithm shown in Figure 1 the step-by-step description
of its Ground branch may be like follows with respect to a descending numeration of the relevant
flow-chart blocks for this branch.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 35 
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Figure 1. (a) The upper part of the flowchart due to the two-branched digital elevation models generation
(DEM-G)/automated feature extraction (AFE) algorithmic solution within the high polyhedral modeling
(HPM) frameworks. Only airborne lidar (ALS) data are processed according to this flowchart. (b) The
lower part of the flowchart due to the two-branched DEM-G/AFE algorithmic solution within the HPM
frameworks. Only ALS data are processed according to this flowchart.
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• Ground points (block 2.1 of the Ground branch—Figure 1):
It implies an input of that LiDAR point cloud for processing, which contains some ground points
by default;

• Preliminary filtration of points (block 2.2 of the Ground branch):
The ground classifying algorithms are normally used for analysis of the point mutual location,
thus either their semi-coincidence, or complete coincidence would negatively impact classification
results. Therefore, point semi-coincidence (or duplication) may distort a point array drastically,
and one of two points duplicated have to be marked as a “noise” point, while a set of such
points—“doubles" may form together an outlier.

• Introduction of the dense net of the points (block 2.3):
It should be taken by default, that all points lying on the topographic surface are lower, than any
other points related to those features, for which the topography is the base. Thus, it is necessary for
ground classifying to keep the lowest points only, and these points have to be bound to relatively
small ground parcels. Normally, even upon the smallest lidar point density (1–2 points per square
meter) we have to select the lowest point within a parcel of 2 m × 2 m, and using the sliding
window method.

• Due to the Consistency (Point Density) Filtration (block 2.4):
All the points selected by now within both algorithmic branches (refer to Figure 1a,b) belong to
reactively smooth, un-transparent features (either to ground, or to building roofs). They have
almost uniform distribution of their density along the whole data extent. That allows to build a
triangulated irregular 2-D network (TIN) throughout all these points. All those edges, that are too
long, or that have some pitch according to the normal to the topographic surface should be removed
from this TIN. This procedure determines and excludes those small abnormal topographic parcels
(topographic sinks and gaps, shaft wells, sharp small peaks), which break the network smoothness
with respect to this network unit height distribution;

• Acceptance of the antecedent (reference) ground points (block 2.5):
Those points left after block 2.4 completion are named as the reference points. These points should
not expose sharp sinks, thus each of them should initiate a starting node of a newly smoothed
surface construction, and this surface can be large enough. The antecedent ground points can be
chosen by default in the following way. The common data extent should be partitioned for the
parcels large enough to include ground points, but each surface area raised above neighboring
parcels (“a hill”) and delineated by surface breaks, should completely include such parcel, which,
“is large enough”. All neighboring parcels mentioned are located for a half of each size shift
one relatively to another; thus, they intersect one another for a half of its area. The key issue is
that there should not be parcels crossed by the common area spatial extent edge upon a whole
surface partition. Such parcels should be ignored, since the point presence within these areas
cannot be taken by default. Normally, the lowest point has to be selected within the all point
parcels obtained upon former algorithmic steps. This point is selected after the removal of 0.3% of
lower points that considered as random noises/fluctuations. The parcel size of 30–50 m along each
its edge allows to classify efficiently even a sharply crossed topographic area, upon a condition
that there are no big buildings within it. In case, when large building constructions are present
(approximately with the roof size of 50 m × 50 m and more), the parcel size should be enlarged
up to a size of the biggest building so that to avoid an evident spatial contradiction. We have to
take into account that those parcels, which are either with broken terrain, or even with crossed
topographic surface ones, as well as those ones with buildings present and of small area, may not
be classified as ground points. The total length of each whole data extent edge for any side of a
parcel as a partitioning result should at least trice exceeds a length of the side of this parcel, where
antecedent ground points are located. Otherwise, the points selected may be localized within a
small area only, and this area cannot be the base for a whole local topography construction, while
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these points cannot be the reference points.
The next algorithmic block (block 2.6) is the only one which branches out for “two sub-blocks”.

• Step-by-step Accurate Definition of the Ground Skeleton Frame (block 2.6.1, the right sub-block of
the sixth block—Figure 1):
Thus, a TIN is constructed through the reference points, and its facets characterize the topographic
slope on some local parcel. For each point selected upon the third algorithmic block the nearest facet
should be found, while z-coordinate of this facet is not taken into account. The distance–height
between the point and the facet should be measured, as well as an elevation of this point above
the highest point of this facet. This distance–height is negative if the point is below the facet.
The height of the highest point, which belongs to this facet, is measured too. The lowest point
among all those ones, which belong to this facet, is selected. All selected points, which become
the reference ones, should not be higher above the facet surface more than for a certain value,
and should not be more distant from the facet, than for a certain value. Upon these measuring
procedures both the point distance to the facet, and its height above the surface of the facet should
be accepted with equal weighting coefficient of 0.5. Such acceptance allows smoothing drastic
slopes of the reference surface obtained from the reference points (refer to block 2.5), on which
these slopes tend to appear along this surface edges. The points selected are consequently added
to the reference TIN, and the next iteration is completed until then, when all points are being
successfully gathered. The total number of iterations should not exceed some threshold value
defined. Those points that are too close to the points already added should be ignored. Thus,
we could avoid the topographic breaks in an approximating TIN. In this way, the ground surface
built through the almost lowest ground points is defined more precisely by the lowest points
newly added step by step, while the approximating procedure can be completed through the
smooth topographic elevations, but it cannot be—through the topographic breaks and walls.

• Accurate Definition of the Ground Skeleton Frame by the Network of More Densely Located
Points (block 2.6.2, the left sub-block of block 2.6):
Following parameters for “2.2–2.6 ground” classifying algorithmic blocks should be entered
for corresponding processing into the relevant Macro Library dialog (MLD) with further
implementation in our desktop application ELiTCore—Figure 2.
After the completed topographic skeleton-frame of the ground surface has been built as a
continuous one on the point network of low density, this frame can be made to become even
denser by applying the same method of a sliding window of 0.5 m × 0.5 m for making a network
denser. The same algorithm, that has been applied in the third algorithmic block, is employed
once again, if the point density value is acceptable for provision of this procedure. Since our
accepted size of the sliding window as 2 m × 2 m contains 16 cells of 0.5 m × 0.5 m, a total number
of algorithmic iterations is not too big in this case.

• “Dense” grid smoothing (block 2.7):
Despite expectations that continuous topographic skeleton-frame might be built precisely and
accurately up till now, it may include some abnormal topographic deviations (which are, as a
rule, of lower altitude, than necessary), because they may not be filtered out in the fourth block.
A procedure of “dense” grid smoothing for that topographic skeleton-frame, which has been
already obtained as a compacted (“highly dense”) one, allows to eliminate these deviations in the
same manner, as it has been done in block 2.3.

• Smoothed grid enhancement (block 2.8 of the Ground branch—Figure 1):
After the smoothed grid has been obtained with the corresponding topographic skeleton-frame,
this frame should be enhanced by the neighboring points. These points are both those ones from
the network of the lowest points of that sliding window 0.5 m × 0.5 m cell mentioned, and all
other points, which lie beyond this window edge, if their density is satisfactory.
Nonetheless, before immediate enhancement of an obtained grid, it may be necessary either to
build through the topographic frame mentioned above some another interpolated grid, or apply
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exactly this direct TIN of the skeleton-frame for other features’ classification, if this classification
requires some additional information. It may be a case, when precise classification requires some
knowledge about feature allocation in relation to the earth surface. If it is not provided, the further
processing may appear to be a cumbersome one.

• Filtering out of the “lower than ground” points (block 2.9):
By default, all points that are lower, than those ones classified as “the ground”, should be defined
as the “lower noise” (topographic sinks, shaft wells, other negative mirroring of laser sensing).
Customized input parameters for “2.7–2.9 ground” classifying algorithmic blocks should be set
up and entered for corresponding processing into the relevant MLD in the ELiTCore software,
just as it has been done for blocks 2.2–2.6 (Figure 2).

• Removal of the small trees and shrubs from the ground (block 2.10):
This one before last algorithmic block of the Ground branch finally refines the topographic surface
modeled through blocks 1–9. Thus, the next derivative results are conclusively obtained in the
last block of this algorithmic brunch.

• Smoothed, enhanced, and refined grid as a DEM (block 2.11):
In this way an “urban DEM” (urban terrain) is created, which we understand as a synonym of a
digital terrain model, which represents the bare earth ground with uniformly spaced z-values
within any “urban area”.

2.3. Building Extraction (BE) Classifying Algorithmic Branch

The Non-Ground branch, the left brunch of a two-branched algorithmic flowchart (Figure 1) can
be also defined as the building extraction (BE) classifying branch due to a subject of its algorithmic
content. The two-branched algorithm presented exposes key details of a point cloud classification as
a fundamental basic of the high polyhedral modeling of buildings. Both branches, the ground and
non-ground ones, belong to one logically united algorithmic workflow, and they are separated in the
text exclusively for the better perception by a reader. That united workflow gives an opportunity to
provide combined datasets of building models placed on a DEM of different scales as a final processed
result obtained in a fully automated mode, while according to well-known references those CityGML
models, that contain both terrain and buildings can hardly be overvalued [83].

In general, several robust classifying approaches exists. Only for example, one straightforward
approach may be like follows. We emphasized in the previous subsection the significance of choosing
a proper preprocessing method for raw LiDAR data, while obtaining a grid. If this grid surface is a
satisfied one, then the next algorithmic procedure may be related to removal of points of some heights
below a certain value (probably, 2–3 m). Normally, it is the ground peaks, some human infrastructural
and other features (bridges, roads, and vehicles), low belt vegetation (shrubs, bushes, etc.). Thus,
all these points are eliminated from a LiDAR dataset, while those points that left and primarily consist
of buildings and high vegetation belt are kept for further processing. Then different segmentation
procedures can be applied to these remaining points.

Proceeding from our own processing experience, we can state, that there may be two types of
mistakes upon point cloud classification procedures: (1) A feature is not classified to a class it should
belong to. In a case of building classification with the high polyhedral modeling it may be caused by
some buildings having a roof, that may be not a set of smooth surfaces. For example, there may be
some steeples on the roofs, or their decorated relief (e.g., Gothic architecture); (2) The features of other
class are mistakenly classified as a given class features. Upon building classification, the high features
with smoothed roofs and other smoothed surfaces, that have their facets large enough, can produce the
classification mistakes exactly of this, the second type. The actual features may be mistakenly classified
as buildings, but they really may be big trucks, a forest segment of smoothed geometric shape and
with the dense foliage not allowing for lidar scanning to pass through. Other similar cases are also
feasible. Almost all mistakes mentioned can be corrected applying some supplementary improving
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criteria of the applied classification. These criteria should be further elaborated, and without these
parameters a whole classification workflow described below is the preliminary one only.

In this text, we consider the presented classifying algorithm applied to those points, which belong
to building roofs; thus, it is the straightforwardly modified version of our basic feature extraction
algorithm [52–54]. The algorithmic blocks presented in the branch described below are shown in
Figure 1 above. The building classification follows the ground one; thus, it is understandably based on
those points, which are above the ground. We can accept as a template of the topographic ground
level, either a level of that TIN surface, which has been built on the reference ground skeleton-frame,
or a level of the surface built on an interpolated grid.

According to the flowchart of the two-branched algorithm shown in Figure 1, the step-by-step
description of its Non-Ground branch (the first, left, algorithmic brunch) may be like follows with
respect to a descending numeration of the flow-chart corresponding blocks for this branch:

• Non-ground Points (two belts of vegetation, buildings, other infrastructural features) (block 1.1 of
the Non-Ground branch—Figure 1):
It implies an input of that Lidar point cloud for processing, which contains at least some non-ground
points by default;

• Classification of separate building roofs, trees, and power lines: classification of building roofs
(block 1.2 of the Non-Ground branch):

• Removal of those points that are both below, and not high enough above the ground (block 1.3):
It is understandable, that the first step to remove “abnormal” points would be a step to eliminate
points, that are below some height threshold value. The topographic altitude of 1.5–2 m cannot be
accepted to be a reliable threshold value, which would indicate the building roofs. These points
should be removed.

• Removal of the point outliers such as small area parcels (block 1.4) and initial filtering out of:
Spatially isolated sets of points (“outliers”) that possess relatively small areas (e.g., up to 15 m2)
should be eliminated also, since they do not allow to identify definitely a building in comparison,
for example, with a big truck.
At this point of the Non-Ground branch some customized input parameters for “1.2–1.4
non-ground” classifying algorithmic blocks should be set up and be input for processing into the
relevant MLD, just as it has been illustrated for blocks 2.2–2.6 above (Figure 2).

• Introduction of the dense point net (block 1.5):
In the majority of cases the roof surface is not a transparent one. Therefore, most of the roofs
of low-rise buildings may belong to the lowest points among all non-ground points delineated
within some small parcel selected in a point cloud, while the roofs of high-rise buildings may
belong to the highest non-ground points. Those roofs that are too transparent for a LiDAR beam
may not be found at all. The selection of each lowest point for a given parcel applying a method
of sliding window (a cell) of 0.5 m × 0.5 m would provide the whole algorithmic workflow by this
block results with necessary precision. It expedites processing, eliminates excessive number of
points, and makes a whole point set more uniform. If a point net is not dense enough, the sliding
window matrix may be increased up to 1 m × 1 m, or even to the size of 2 m × 2 m. Unfortunately,
the output result reliability goes drastically down in such a case. To apply a cell size which is even
bigger, than 2 m × 2 m seems to become completely useless.

• Initial filtering out of due to the altitude thresholds (block 1.6):
The easiest way to remove main part of those drastic topographic outliers is to enter the certain
altitude thresholds: to select one lowest point through the net with cells of twice longer edges,
than an initial net has; it means—through the twice thinned net in comparison with initial one;
in this way, the lowest point is one from four others that belong to this cell selected; a TIN is
being constructed through this thinned point net; those points from an initial net are added
to an obtained TIN, which are topographically close to that derivative surface, that would be
constructed through this TIN obtained.
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• Initial filtering out according to the point net smoothing values (block 1.7 of the Non-Ground
branch—Figure 1):
A TIN has to be built on the base of points selected in previous algorithmic blocks. All those edges
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of triangles that are longer than 1.5 m within X, Y plane, and longer than 4 m in 3D space should be
removed from this TIN. After the edge removal the number of TIN facets is substantially decreased.
For each of the facets (a “core” facet) left, the angles, each of them makes with neighboring facets,
should be considered. Normally the number of neighboring facets changes from 0 to 3. If more
than half of derivative angles significantly differ from 0 or from 180 degrees, this “core” facet
should be removed. The interactive process of facet removal for satisfactory reliability of the
output results should be thricely repeated. Interconnected parcels, which include not fewer, than
two facets, and with an area not smaller, than one cell of the initial net (0.25 m2), are selected
from that TIN content that has been left after that edge removal. Within the processing in this
algorithmic block, the accepted angle between two facets stays within a range from −20 till +20
degree, and from 160 till 200 degrees, either we take in account a negative value of an angle, or not.
Bounded parcels with a number of facets fewer than five should be removed.
At this point of the Non-Ground branch some customized input parameters for “1.5–1.7
non-ground” classifying algorithmic blocks should be set up for input due to processing into the
relevant MLD as it has been shown earlier for blocks 2.2–2.6 (Figure 2).

• Secondary filtering out according to the point net smoothing values (block 1.8):
The requirements to the value of the angle between two facets can be made stronger, after initial
filtering out of all topographic breaks presented earlier. Filtering out of the previous block is
repeated iteratively with allowable angle between the facets of the following range: from −20 to
+20 degrees, and from 160 till 200 degrees. Bounded parcels with the number of facets fewer than
5 should be removed.

• Search for the roof continuous planar segments (block 1.9):
A TIN has to be built on the base of points selected after completing the secondary filtering.
All edges with a too long projection on the plane X, Y are removed from this TIN. If the point
density is 2 and more per square m, the facet edges, which are longer than 1.5 m, all should be
removed. The parcels of interconnected facets with a total area of 15 m2, and which consist of
fewer than 40 facets, should be removed. In this way, we eliminate the pints, which occasionally
complete a smoothed surface within a small parcel. An increase of the minimal distance between
independent parcels and making less strict requirements due to the number of facets within
an interconnected parcel may help with processing of some thinned point net of the low point
density. From the other side, such solution may substantially increase the probability of the wrong
classifying results through those parcels, which occasionally appear to be smoothed ones.

• Smoothing extension of the surfaces (block 1.10):
We have delineated only some from roof surfaces with cut edges and probably without some
invisible roof components upon previous algorithmic blocks (refer to Figure 1). Thus, upon this
eleventh algorithmic block we should extent smoothly each isolated roof parcel for account of
points in its neighborhood. This procedure consists of several iterations until either the newly
generated roof surface reaches the spatial limits defined, or the maximally allowed number of
iterations is completed. Thus, we can obtain an enlarged smoothed roof area by combining several
roof parcels in one joint as an output result.
At this point of the Non-Ground branch input parameters for “1.8–1.10 non-ground” classifying
algorithmic blocks should be set up for input into the relevant MLD as it has been done for selected
sets of blocks above in both branches.

• Roof planar segments’ refinement by capturing of neighboring points (block 1.11):
The finalized procedure of the first algorithmic branch is the enhancement of the roof surfaces
by all those points that are on insignificant height from the derivative roof surface. In this way,
all those points, earlier removed from building point sets upon previous intentional point thinning
are classified as the building ones.

• Roof planes and building facades (due to the Basic HPM algorithm [54]) extracted (block 1.12):
An overall algorithmic output consists of 3D city models of building features as well as of an
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urban surface, which is of high precision (an edge of a grid cell is not more, than 50 cm)—it is
represented by a concluding block of the flowchart (Figure 1). Even an attempt of a reconstruction
of the “smart urban environment” upon the Smart City concept implementation may be provided
on the base of this approach [9].

2.4. Multifunctioal Web- and Cloud-Based Software for DEM-G/AFE Purposes

2.4.1. ELiTCore Desktop and Web-Based ELiT Server

The ELiT (EOS Lidar Tool) is a Web-Based platform titled as ELiT Server (a landing page is
available on https://eos.com/eos-lidar/), and a cloud-based application that applies to AWS instance
resources—ELIT Geoportal (EGP). The latter is a type of web portal used to find, access, and process
LiDAR geospatial information, both primary, and derivative one. This cloud platform also provides
the associated geospatial services (summarizing, display, editing, analysis, etc.), widely using various.
Web resources and options (http://ELiT-portal.eos.com/). The precursor software for these two sets
of LiDAR data processing/displaying tools is the desktop ELiTCore software, to which, although
only in terms of embedded MLD, we have already referred to above (Figure 2). This software has
even to a certain extent broader functionality, but it can generate only the heavyweight polyhedral
models within the HPM framework. The whole AFE-algorithmic pipeline explained above has been
firstly implemented just in the ELiTCore package. The “building extraction” (BE) functionality based
exclusively on the HPM algorithms has been developed for the standalone application for provision of
detection, extraction, and reconstruction of heavyweight models according to general workflow of the
classifying algorithm introduced in this text and due to the HPM AFE basic algorithm. It results in a
topographic grid as a continuous feature generation exactly according to the Ground branch of the
classifying algorithmic solution, and in a set of urban features which are the discontinuous objects,
which are generated proceeding from the Non-Ground algorithmic branch (Figure 1).

A general architectural scheme of a whole family of the ELiT software (a desktop, a web-based
server, and a cloud-based Geoportal) is outlined in an illustration below (Figure 3). Implemented
web-GIS approach does not contradict to existing samples of implementation of the web-geoinformation
tools [84], and similarly to them our solution implies involvement of PostgreSQL/PostGIS as that
database management system, which is object oriented.

Thus, the most of computing and processing within the presented in this text architectural software
structure is applied to transform raw points into 3D-models. It is necessary to emphasize that these
processing is hidden from a user (except some exclusions in the ELiTCore desktop), since it is in
the pipeline of a higher level. Therefore, a user should only input data and a necessary set of the
building modeling characteristics. According the architectural scheme depicted, which is also an
operational one, the ELiT Server performs transmitting procedures between the algorithmic Core and a
web-client, while providing such procedural sets as data management (data uploading, downloading
by users, etc.), task management, and interactions between the Core and ELiT Geodatabase. Finally,
a client provides the user interface and the building model/topographic surface visualization (Figure 3).
An open specification for visualizing huge massive volumes of geospatial data Cesium 3D Tiles, already
mentioned in the literature review completed due to this text, is employed for this display, but only in
our web-based, and cloud-based applications, while the ELiTCore software supports routine desktop
visualizing options (visuals of building extraction and change detection functionalities in Figure 3).

The purpose of all ELiT products is both AFE operations, and topographic grid modeling with
further display of urban environment in a chosen area. Processed results are outputted in the different
formats (.KML, .gLTF, .DAE, .B3DM), but the main inner format is .OBJ. Modeled urban features
are produced with their boundary representation, and a whole picture is a set of buildings with
their bounding walls, edges, vertices, and with their topological relations according to non-housing
man-made constructions and infrastructural networks. Our urban feature models possess all necessary
characteristics of 3D city models, but while many other 3D models seem to be predominantly used for
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display, we dare say, that ELiT 3D city models can be increasingly employed in a number of domains
within a large range of tasks beyond the direct visualization.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 16 of 35 
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Four key functionalities of ELiT Server are as follows (Figure 3):

• The building extraction (BE) functionality (a sub-page Building Extraction in the Tools page of
the Server) provides the high polyhedral modeling according to building detection, extraction,
and its reconstruction through that algorithmic solution, which has been presented in detail in
the previous section of this text. Finalized building modeling is primarily targeted to high-rise
buildings frequently located in city downtowns. The BE-tool of ELiT Server provides generation of
heavyweight models, consisting of numerous polyhedrons, which is why they may be described
as “heavy ones”. Finalized visualization of these models is provided by the Cesium 3DTiles
library with a certain level of detail (LOD), while a primary Lidar point cloud can be visualized
too. As a rule, a BE-model mandatory possesses its spatial, geometric, and semantic attributes.
Thus, massive urban environment of a city can be simulated as the heavyweight models with
minor details (Figure 4).

• The building extraction rural area tool (BERA)—a sub-page building extraction rural area in the
Tools page) completes the low polyhedral modeling introduced in some of our previously published
methodological texts [9,53,54]. The BERA functionality accomplishes the hierarchical segmentation
of point clouds, and separation of extracted planes with further building reconstruction mainly in
rural areas and in urban suburbs. Made “lightweight building models” have substantially fewer
facets, than heavyweight ones, and a number of points processed for such model are limited by a
number of few thousand only. Accepted number may be reached by adaptive thinning at the cost
of some minor details. It is possible to produce even “pitched roofs” of low-rise buildings by the
BERA-tool with the LPM-technique (Figure 5).

• The change detection functionality (CD)—a sub-page Change Detection, which is on the Tools ELiT
page, detects urban alterations of various scales in an AOI selected. Changes in the architectural
morphology of a city usually happen through certain spatial extent over some significant period of
time, if only it is not any drastic event of environmental or social destruction. The CD functionality
indicates locations of changes in georeferenced space and shapes of buildings and infrastructures
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as 3D models. Normally two point clouds (the initial, and the second one temporally) are
compared. The BE-functionality is the only one that is used to determine the difference between
two input point clouds, which is computed as the BE-modeled delta of features, which belongs to
each from these two clouds, correspondingly.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 17 of 35 
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Figure 5. Visualization of flat, gable, and pitched roofs that belong to a set of LPM-building models
generated for an urban area of Tartu-city, Estonia. The visual is presented from the ELiT Server
web-interface. A free global map, Open Street Map (OSM) as a global world map, is used as
a ground-basis.

• The DEM generation functionality (DEM-G)—a sub-page in the Tools page accomplishes a
generation of a grid of a topographic surface by making a DEM/DSM, that mirrors a particular
terrain according to the Ground branch of an algorithmic solution introduced in the previous
section of this text (Figure 1). By this functionality a user creates a gridded surface from sample
data, what is known as the interpolation. Thus, initial irregularly spaced height points are obtained,
from which uniformly spaced elevations are interpolated. A digital elevation model we accept as
a synonym of a digital terrain simulating the bare earth surface with regularly spaced z-values
of heights. In this way it is possible to provide topographic modeling for the ground surface of
various genetic types, e.g., like that post-glacial topography in the visual below (Figure 6).
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2.4.2. ELiT Geoportal: Visualizing Urban Features with Cesium 3D Tiles

Once we have already emphasized the efficiency of such robust solution for both the geoinformation
web-software, and for its applied services promotion as a Geoportal can be [85]. The ELiT Geoportal (EGP)
may be outlined as a type of web portal, which is used for finding, accessing, and processing geographic
information obtained from Lidar surveying sources. A Geoportal, as a geospatial entity is also targeted to
provide the relevant services (initial data storage, derivative data visualization, editing, analysis, etc.) via
the Internet. The final goal of any Geoportal as of a geospatial entity is usually to support web-software
marketing, which main core is conversion of occasional visitors of this site to its warm leads. What is more,
the geoportals are accepted to be the key application of any distributed web-geoinformation system [86].

While developing the EGP as a unique geospatial web-resource intended to store, process and
visualize the massive geospatial information content (http://ELiT-portal.eos.com/), we understandably
select displaying issues as the key ones, and apply for this purpose to CesiumJS (an open source Java
Script library for 3D globe creation, https://cesium.com/), and to 3D Tiles as to that data structure, which
makes possible the hierarchical rendering of large datasets with various discrete building models.
There are already up to thirty various locations with urban territories of different sizes presented
for the time being on the ELIT Geoportal. All feature modeled results have been obtained on the
base of processing the opensource lidar data, e.g., USGS projects, by our cloud-based software, while
employing AWS resources for computing. Key characteristics of the processed 25 locational projects
with models according to CityGML LOD 1/LOD2 are presented in Table 1.

Thus, we have to resolve a problematic issue of the 3D Tiles structure creation and its optimization,
while visualizing these generated features through huge urban territories. A hierarchical structure
of a tileset, as a 3D Tiles key issue, is characterized by JS object notation (JSON)—a JS-based text
format of data interchange [50]. A tileset describes an octree of interrelations for all tiles (a spatial
index). With respect to the 3D Tiles specification a .glTF file format is used by .B3DM as its payload for
transmitting not only 3D geometry of buildings, but also for delivering all that information necessary
for the visualization. Thus, it implies “.B3DM = .glTF + attributive information”.

For all visualized data, the correct georeferencing is mandatory to possess for a common coordinate
system, which is a geographic and Cartesian coordinate system (ECEF—epsg:4978). Even if data are
processed not with AWS resources on the Geoportal, but by ELiT Server on the localhost, the results
of all functionalities—BE, BERA, and CD are displayed by the ELiT Viewer on the similar basis. It is
necessary to emphasize that only those local coordinate systems can be employed for visualizing,

http://ELiT-portal.eos.com/
https://cesium.com/
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which can be converted into the ECEF-coordinates by affine transformations. The latter are prescribed
by the transforming matrix either in a tileset, or in a .glTF file. A size of .B3DM files may possess key
meaning for visualizing efficiency. It directly impacts overloading of a client’s RAM. Firstly, we have
attempted to enhance the existing Cesium simplified algorithm of 3D Tiles structure building [87],
trying to parallelize it, but failed. Then we simply tested this Cesium solution (titling it as (1)-Solution):

1. Start with a bounding box (a root tile) that encompasses all the Geometry. 2. Save relationship
between a tile and each Geometry. 3. Add a tile to process queue. 4. Split that bounding box evenly
into child quads. 5. For each child quad, repeat until you have n triangles per quad.

It seems like an efficient solution because data are packed very densely into .B3DM files.
Nonetheless, such algorithmic solution may cause the existence of following problematic issues:

(1) In a common case, partitioning of tiles with their associated bounding volumes for two different
datasets are completely independent procedures with no connections between them. Thus, it is
evident that for joining these two already partitioned tilesets we would have either to rearrange
completely their tree data structures, or to combine these tilesets with partial overlapping only.

(2) It is necessary to select a proper type of a bounding volume as well as an effective approach for
its hierarchical organization.

(3) A necessity to update a tileset (or several of them with new feature units), 3.1; a user updates
tilesets in local, or in regional scales, 3.2; it is necessary to update tilesets in a global scale (within
a whole Globe), 3.3.

Probable solution for the second problematic issue is as follows. Since we are dealing basically
with a certain type of feature models—with models of buildings that correspond to the 3D City GML
LOD1/LOD2 standards—it is preferable to select a bounding volume as an “oriented bounding box”,
a bbox, that precisely fits a 3D Scene spatial georeferenced extent.

The evident solution for meeting challenges of the first and the third problematic issues is in both
cases an update of 3D Tiles structure, what only can allow to keep the spatial coherence. An overall
update of a whole structure is, as a rule, unacceptable one, because it is too resource consuming.
Otherwise, it can be resolved by adding/removing a particular unit in the existing 3D Tiles, or by
joining two tilesets. There are up to three different options in this aspect.

The first option: it is necessary to select the biggest possible bbox, which may be of a size up to
the size of the Globe. The second one: tiles should be matched in such a way, in which they would
possess the same location and size for any initial datasets. It can be obtained by georeferencing to the
coordinate origin of the ECEF system. The third option implies the generation of the 3D Tile structure
and the content of tilesets (.B3DM files) dynamically. Then, it seems reasonable to implement in our
visualizing work-flow some methods from existing and earlier reported techniques [88,89].

At this work-flow point it is necessary to define, if a spatial reference of a bbox to a regular net may
help in mentioned above adding/removing a unit to/from existing tilesets, or in joining two tilesets.
We create a reference of regular tile partitioning to a net 2ˆn, where n is a level of tile partitioning.
Referencing to a regular net allows to substitute numerous mathematical operations of division and
multiplication for shift operations. It is possible to define a dependency between a tile partitioning
level and a LOD (level of detail) of model visualization. The tiles have to be indexed. Each tile has its
size (2ˆn) and a cell index according to the coordinate origin. A cell index depends on a partitioning
level (on a tile size upon a given level). Each tile index can be defined by a partitioning level and
by a cell index (level, i, j, k). Thus, any two tiles of a different tile structure describe the same area,
if they have the same tile index. Taking into account both “(1)-Solution” presented above and the
technique presented in references [89,90] we have elaborated the original algorithmic approach targeted
to visualize and to render efficiently huge tilesets of modeled results presented in Table 1. It has helped
to split a calculation into independent parts so that to execute it in parallel mode. Tileset properties for
each location imply storing geometric characteristics of buildings (e.g., height and footprint area) in
tiles. The visual presents one of the EGP locations (#11) rendered with 3D Tiles (Figure 7).
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Table 1. Geoportal Key Characteristics of the processed locational projects with the ELiT building models according to CityGML level of detail (LOD) 1/LOD2 standards.

# Project ID in ELiT
Geodatabase Project Name of Opensource Lidar Data Geoportal Location Name Total Lidar Points

Average Lidar
Points Density

(PPSM)

LAS Files
Number

City GML
LOD1/LOD2

Number

1 6657 USGS_LPC_MD_PA_SandySupp_2014_LAS_2016 Baltimore, MD, USA 12,994,969,727 4.47 1697 51,302
2 6610 Barcelona Barcelona, Spain 67,211,545 0.73 25 10,947
3 6611 Barcelona (Filtered) Barcelona, Spain 319,694,346 1.1 76 112,902
4 5026 West_Midlands_Birmingham_etc Birmingham, UK 941,594,643 1.57 2088 470,349
5 5119 USGS_LPC_CO_SoPlatteRiver_Lot5_2013_LAS_2015 Denver, CO, USA 33,660,346,453 5.18 6084 4939
6 5114 USGS_LPC_MI_WayneCo_2017_LAS_2018 Detroit, MI, USA 6,877,405,127 0.51 5798 86,553
7 5117 ARRA-MI_4SECounties_2010 Detroit, MI, USA 8,438,736,403 0.11 6318 3159
8 5123 USGS_LPC_MI_31Co_Oakland_2016_LAS_2019 Detroit, MI, USA 8.543,602,713 0.49 8366 21,082
9 5122 USGS_LPC_IN_WT_B9_Lake_2013_LAS_2016 Gary, IN, USA 3,809,037,151 0.24 1304 1309

10 5110 USGS_LPC_IN_MarionCo_2011_LAS_2016 Indianapolis, IN, USA 1,852,560,049 0.38 978 38,183
11 5120 Lyon_ Lyon, France 997,975,464 5.06 286 16,846
12 5117 KS_Area3-NortheastA_2012 Kansas-City, MO, USA 5,209,425,053 1.13 562 32,728
13 6609 Leeds_ Leeds, UK 77,338,830 7.96 42 3849
14 5118 USGS_LPC_CA_LosAngeles_2016_LAS_2018 Los Angeles, CA, USA 62,358,249,705 0.6 26,996 3,119,061
15 6612 Madrid_ Madrid, Spain 427,768,563 0.79 142 126,403
16 5023 USGS_LPC_FL_PalmBeachCo_2016_LAS_2019 Miami, FL, USA 7,056,565 1.16 18,312 956
17 5111 KS_JacksonCo_2006 Miami, FL, USA 1,636,615,433 1.04 3414 85,188
18 5025 FL_MiamiDadeCo_2007 Miami, FL, USA 9,094,836,110 1.34 2442 68,188
19 5115 WI_WisconsinCo_2006 Milwaukee, WI, USA 2,502,208,232 0.19 26,996 1755
20 5121 USGS_LPC_MN_Phase4_Metro_2011_LAS_2016 Minneapolis, MN, USA 8,617,642,240 10.96 3070 48,997
21 6656 Moncton_ Moncton, NB, Canada 2,734,944,967 15.55 176 4872
22 5112 USGS_LPC_LA_UpperDeltaPlain_2017_LAS_2018 New Orleans, LA, USA 46,224,930,331 4.72 9570 424,053
23 5109 KS_JohnsonCo_2006 Overland Park, KS, USA 1,206,071,706 0.97 2694 22,028
24 5021 USGS_LPC_DE_DelawareValley_2015_LAS_2017 Philadelphia, PA, USA 38,973,363,102 5.16 6924 5890
25 5113 USGS_LPC_UT_Wasatch_L4_2013_LAS_2016 Salt Lake City, UT, USA 14,496,166,437 11.27 2750 76,835
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3. Results: Presenting Urban Features and DEM on the Geoportal with Thematic Use Cases

3.1. Visualising Geoportal Locations

Our original algorithmic solution for creating the 3D Tiles structure for those urban feature
locations maintained on the ELiT Geoportal is titled as (2)-Solution (for comparing with “(1)-Solution”
we have referred to above). “(2)-Solution” produces a comparable in efficiency with “(1)-Solution” of
the 3D Tiles structure, but our solution has been managed to be parallelized. This approach implies
that hierarchical data structure (a tile content) is split, what results in a non-uniform overlapping
quadtree. The content and the algorithmic sequence of our (2)-Solution and “its advanced option”
(there are two options in it—“initial”, and “advanced” ones) within it are like follows:

An algorithmic input: sets of models with plain facets. The coordinate system is prescribed for
each model as the EPSG code; a list of vertexes, and a set of facets (vertex indexes that define a facet)
are prescribed for this model too. Models are stored either in a file system, or in a database.

1. A bbox has to be defined for each model. For these purposes, each vertex should be transformed
into a coordinate system with EPSG: 4979 (ECEF), and a minimal/maximal coordinate value is
defined (parallelized computing).

2. For each bbox its size is defined along each axis and a center of this bounding volume. On the
base of a size defined we outline a partitioning level and a position in a tileset. A connection
between a tile index and a model identifier is stored (parallelized computing).

3. A supplementary step. It is necessary to limit a rank of a partitioning level, not fewer than nine,
in this way we obtain a tile size (an edge of a square) not fewer than 512 m.

4. Obtained indexes of tiles and their size values are used for computing a quadtree of tile partitioning
(tileset.json).

5. It is necessary to employ a dependency between indexes of tiles and identifiers of models, so that
to compute .B3DM files (parallelized computing for each tile).

6. The parameters of the first testing package for analysis of “the advanced option” algorithmic
results are set for a square edge of 512 m (a size of 1 tile is 0.262144 km2): (1) a number of tiles:
2533; (2) latency time (for a whole data): about one and a half minute; (3) a size of .B3DM files:
minimum—3 Kb, (4) maximum—1185 Kb. We can see that this testing package is applicable for
an urban are of 664 km2, thus a quite large city can be completely visualized.

7. The parameters of the second testing package for analysis of the algorithmic results of this
option are set for a square edge of 1024 m (a size of 1 tile is 1.0486 km2): (1) a number of tiles:
719; (2) latency time: about a half of a minute; (3) a size of .B3DM files: minimum—3 Kb,
(4) maximum—2589 Kb.

8. It can be seen that this testing package is applicable for an urban area of 753 km2; thus, even a
larger urban territory can be visualized with this tile structure.

3D Tiles structures for all 25 locations described with their quantitative properties in Table 1
have been built within both (1)- and (2)-Solutions frameworks. Brief analysis of these tile structures
efficiency according to optimized rendering is provided further in this text.

The ELiT Geoportal is also enhanced now with a Terrain content for several EGP locations.
A corresponding DEM is computed strictly according to algorithmic solutions with the ELiT DEM-G
functionality, while a Terrain is displayed employing Cesium Terrain Provider (Figure 8).
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3.2. Thematic Use Cases

Two completed use case pipelines have been elaborated and implemented on the EGP recently:
1. Population Estimation with Building Geometries—Use Case Population (UCP). 2. Estimation of
Energy Consumption by Buildings for Heating and Cooling—Use Case Energy (UCE). Both use cases
presented on the Geoportal demonstrate the possibility of their application either in a block, or in a
district scope, as well as in a whole city one. Nonetheless, in most projects a particular AOI should be
selected. An acceptable size of this text may not allow to introduce both techniques of these use cases
implementation in details; thus, we present here only some brief abstract provisions.

3.2.1. Use Case Population

The UCP can hardly be overvalued, because of well-known public scarcity of actual population in
various urban configurations in a certain AOI. Moreover, municipalities do not have, as a rule, more or
less reliable tools for evaluating population data within a period between two censuses, while this
period may last up to ten years in average. Thus, at least approximate population estimations in an
AOI are crucially necessary for optimizing preparedness for urgent event in a city, or for enhancement
of urban disaster management, what has been evidently confirmed by the course of events in urban
areas all over the world upon the contemporary pandemic phenomenon.

Having created the UCP-methodology of population estimation with building geometry,
we applied to various econometric and GIS 2D analyses methods, which are mainly based on
building footprints and census tracts [90,91]. We also accepted that well-known fact, according to
which the urban remote sensing takes its dominant place within a whole relevant pipeline, and LiDAR
data processing was highly appreciated exactly for this purpose [92].

The step-by-step building space-metric method (BSMM) of population estimation with building
model geometries has been developed just for purposes of this research. If introduced very briefly,
the key content of this method consists in the following (what we describe on the example of the EGP
location of Boston-city, Massachusetts, USA (Figure 9).

1. Building models of City GML LOD1 standard have been generated from the USGS opensource
data project (point clouds of .LAZ format) as sets of .OBJ files and .JSON files. The latter store various
relevant metadata. 2. Our own building footprints extracted within the HPM pipeline, which also
includes the two-branched classifying algorithm (Figure 1), have been compared with those ones
from the OSM resource. Those footprints that matched have been selected as benchmarks for further
UCP-processing. Then, a part of benchmarks has been filtered out by a minimal footprint area. 3. All
building heights and their volumes have been computed for the BSMM-implementation. 4. Then
we have to obtain the most actual census information, if available, and find out, if (1) census tract
boundaries either coincide, or intersect the boundaries of these sets of identified benchmarks; (2) census
tracts either coincide, or intersect feature parcels obtained from available maps of the urban land-use
over the city of Boston. 5. Analyzing information obtained from the thematic maps of urban land
use: selecting class of residential buildings versus few classes of non-residential ones. 6. Numbers
of storeys have been processed for all benchmark footprints as a quotient of a building height and
an average storey height in Boston (2.5–3.5 m). Characteristic values of storey heights have been
taken for each census tract from the relevant attributive information of the OSM-source and from
some other available municipal sources. Computed numbers of storeys have been compared with
actual values, if the latter were available, and have been corrected if necessary. 7. Generating in an
opensource GIS (QGIS) a point layer of centroids for all benchmark footprints associated with .OBJ
files obtained on Step 1. Bounding with these point features all semantics, both initial, and derivative
attributive information. 8. Within the frameworks of the BSMM-introduction a summarized volume
of residential buildings in a given census track is computed. Thus, on Steps 6–8 we obtain a layer
of census tracts with supplementary attributive information of building volumes (BV) for each of
them. This approach is titled as BSMM-BV. 9. Within the frameworks of the BSMM-implementation
a summarized number of building storeys (BS) in residential buildings for a given census track is
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computed. 10. Applying the BSMM-BV method for computing an approximate number of residents in
each residential building. 11. Applying the BSMM-BS method for computing a number of residents in
the same buildings. 12. Comparing between themselves results obtained on Steps 9 and 10, removing
extreme numbers (too many residents in a small house, only few of them in a large departmental
building), comparing results of both steps with at least some actual population numbers if available
through census tracts. 13. Choosing appropriate results and adding it to the attributive information of
City GML LOD1 models in the Scene (Figure 9).

It seems reasonable to summaries those initial data necessary for the UCP-implementation:

• LAZ point clouds;
• OSM-footprints converted into a single ESRI .SHP;
• three vector layers (.SHP) with 2010 Census data—a layer of census tracts, a layer of sets of city

blocks (a group of blocks), a layer of single blocks [93];
• the thematic vector layer of land use for the state of Massachusetts [94].

In addition to the EGP location of Boston, taking into account the available semantic information,
the population estimation with building geometries use case has been provided for the city of Chicago,
USA, and for Munster, Germany. That we can see in the Geoportal interface (Figure 9), where A list of
locations has been filtered by the Population checkbox turned on.
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3.2.2. Use Case Energy

This applied use case has been implemented with similar to the UCP technological scheme,
although evidently it has been based on other thematic basics [95–99]. Similar to the UCP workflow
all processing is completed at the EGP backend and visualized then at the frontend with Cesium JS
(Figure 10).

A use case aim is to define a value of average annual energy consumption (AAEC) of a building
due to both heating in winter, and cooling in summer. The assignable for energy consumption area
of a given building, a, has to be computer according to the European Union standards, and on the
base of the technique from [96,97]. Thus, the finalizing characteristic value of building energy can be
computed by dividing the actual energy consumption of a building by the determined assignable
area—kWh/m2a. For those EGP locations, where the UCE was implemented (Boston, Munster, and the
city of Lyon, France), its workflow was accomplished in the similar way: 1. Sets of .OBJ files and
.JSON files corresponding to 3D CityGML LOD1 models have been obtained for a given location
by opensource Lidar data (both .LAZ, and .LAS formats) processing with ELiT software. 2. On the
base of the UCP information sources, from which the urban land-use classes have been obtained,
and according to the empirical content of some existing references besides those already mentioned
above [100,101], we have made the following assumption. Upon a condition of all other equal factors
non-residential (commercial) buildings may consume the energy up to 15–30% fewer, that residential
ones. Thus, the key semantic attribute is Building Function Type. Due to the lack of semantic data we
have implemented our original technique of automated definition of building type by its topology and
geometry (ADBTG). For this purposes CityGML LOD2 models have been generated for those buildings
in a given LOD 1 location, which type could not be defined by existing semantic data. 3. Another
key attribute is constructionYear, according to an accepted regularity: the older a building, the more
energy it consumes [98,100]. 4. One more attribute—storeysAboveGround is either obtained from the
OSM-source, or calculated as the similar parameter, which is in the UCP. 5. If there is the information
(from OSM or form some municipal sources) assignable for some separate buildings, which concerns
values kWh/m2a and kWh/m2 year, it should be used for comparison of actual values versus calculated
ones. 6. Standard types of building in the UCE have been defined by the ELiT software in the automated
mode by the ADBTG technique, and this attributive information is prescribed to .OBJ/.JSON files (these
acronyms correspond to their German equivalents [97,98]: detached single family house—EFH; row or
twin house—RDH; small multifamily house—KMFN; big multifamily house—GMFN; multi-storey
buildings—HH). One more key semantic attribute—BuildingType is generated and associated with all
building models. 7. An assignable heating area and a heating volume are calculated for any building
in a given territory (either a whole EGP location, or an AOI), which preferably should contain at least
some actual values of actual energy consumption by buildings. 8. On the base of Steps 1–7 the semantic
matrix of the building energy consumption has been built. This matrix contains the AAEC classes
(A-G), which (1) are defined by a year of building construction, and (2) are divided for subclasses (e.g.,
subclass A-EFH) by the ADBTG building type (Step 6). 9. Each cell of this matrix obtain its default
kWh/m2 a value, in this way each cell of the matrix serves as a template for assigning the AAEC value
for a certain building in an area, in a case of complete absence of any relevant semantic information.
Thus, the UCE can be implemented either on the base of real attributive information, or by using this
semantic matrix. 10. In both cases a given EGP Scene of the location is visualized in the standard EU
legend of the building energy consumption.

In addition to the EGP location of Munster, the UCE has been provided for the city of Boston,
Massachusetts, USA, and for Lyon, France. That we can see in the Geoportal interface (Figure 10),
where A list of locations has been filtered by the Energy consumption checkbox turned on.
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4. Discussion

The first topic of discussion may be the usage of either the high polyhedral modeling algorithms,
including the classifying solution that has been examined in details in this text, or the low polyhedral
ones already introduced in our previous publications [53,54]. On the base of a point altitude from an
average DEM surface this classifying algorithm separates raw airborne LiDAR points for two categories.
The first one contains the ground points, that form our original building footprint. The second category
contains non-ground points, that are clustered with this building footprint. A relevant point cluster
normally would represent a single building or a tree.

Contrary to this workflow, the low polyhedral modeling approach is strongly associated with
“external footprints”, what means they are obtained from the third party’s sources, e.g., from the OSM
resources. These footprints are employed to extract 3D point clouds on roofs. An obvious advantage
of the HPM approach can be evidently seen then, because a lack of reliable footprint polygons is a
well-known fact. In particular, these features globally cover substantially fewer areas, than LiDAR
surveys do.

Another strong performance of the presented here combined (DEM-G + AFE) algorithmic solution
is that efficient one with many refining steps (set interactively—Figure 2), which produces both
continuous object (topography), and discrete ones (urban features) within a common algorithmic
workflow, what understandably provides additional failure tolerance for both algorithmic branches
(Figure 1). The presented two-branched classifying algorithm proves, that the HPM is mainly based on
the point cloud classification, otherwise the LPM—on its largescale segmentation and further clustering
into individual roof parcels. The examined classifying algorithm also provides some segmentation
of a small scale, but it resulted in numerous polygonal segments that represented quite a rough
surface of any building part while zoomed in (Figure 4). Contrary to it, the “LPM buildings” are the
sets of planes with smoothed facets (Figure 5). In any case, a whole urban area may be a subject of
differentiated application of some kind of “hybrid” HPM/LPM approach, when high-rise downtown
buildings are extracted by the high polyhedral modeling (building extraction functionality), while
low-rise ones of city outskirts and the nearest rural territories—by the LPM (building extraction rural
area functionality).

The presented overall architectural scheme of the ELiT software family, which combines a desktop,
a web-server, and a cloud application, may be accepted as an optimal solution for multifunctional
Lidar data processing for the purposes of urban studies (Figure 3). Either processing and modeling
with ELiTCore, or with ELiT Server, as well as with ELiT Geoportal (ELiT Cloud) can be defined as the
most preferable one for resolving various use-cases in an urban block, a district, or in a whole city
scope: applying of a particular software product in dependence of a defined modeling task.

Within the frameworks of a visualizing issue we have employed an open specification for
visualizing massive 3D geospatial web-content—Cesium 3D Tiles in our cloud-based application.
Rendering optimization with 3D Tiles has been implemented by comparison of two solutions that
differ in their algorithmic contents titled in this text above as “(1)-Solution” versus “(2)-Solution”,
which has been presented in details. The latter, (2)-Solution, is our original one that can be parallelized,
while (1)-Solution cannot. Moreover, there can be different counts of model numbers or a tile size in a
case of (2)-Solution. Let us title these counts as “the initial 3D Tiles option” (for one feature model in a
tile) versus “the advanced 3D Tiles option” (several feature models in a tile). It has been determined
that the optimal structuring parameters for “the advanced option” is a tile edge of 512 m, and one
tileset covers then up to 664 km2 of urban area. Parametric characteristics of the EGP locations (Table 1)
have served as a basis for a comparison of rendering for two options of our “(2)-Solution”. Since we do
not have an opportunity to provide more or less complete numeric analysis for such comparison in
this concluding text, therefore we emphasize only its few representative terms:

1. Understandably, the latency time (a complete page loading) is the longest one for the biggest
location—#14. It is up to 24 minutes with “the initial option”, and we have to take into account,
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that only LOD1 boxes could be constructed for this location due to extremely low average lidar
point density for it (0.6 points per square meter). Thus, applying “the advanced option” we have
accelerated rendering up to 10 min for all features of the location to be rendered.

2. It is noteworthy, that there is no a direct dependency between a number of models and the latency
of a given location page. Nonetheless, if existing this dependency is more evident for LOD1
locations, than for LOD2 ones.

3. The best improvements in rendering (only those locations were estimated, which would possess
some significant number of models, at least—several tens of thousands), while comparing “the
initial option” versus “the advanced one”, can be observed: for location #3 the latency time has
been reduced from 14 min to 6 min; for location #4: from 17 to 8; location #15 is being rendered
due to some reasons (probably, because of numerous LOD2 models present) even longer, than
location #4, despite it has fourfold fewer models; latency time for this location with “the initial
option” is 18 min, and it diminishes to 7 min with “the advanced option”.

4. Other locations, which demonstrate 2.5–4 times speeding up in rendering, are ##1, 6, and 17
(Table 1).

5. Most of other locations present either none, or only slight speeding up in rendering for “the
advanced one”, while we compare two “3D Tiles options”.

6. There are no evidences for any location, when “the initial 3D Tile option” would have had the
faster rendering, than “the advanced 3D Tile option” does.

5. Conclusions

The applied use-case implementation has finalized our multifunctional workflow of LiDAR data
processing, modeling, and analyzing for the Urban Studies domain. The elaborated and implemented
techniques for both the UCP, and the UCE imply backend processing that concerns LOD1/LOD2 model
generation, as well as processing from the side of frontend for visualizing thematic float data with
the 3D Tiles structure in a CesiumJS scene with further gradient coloring of the attributive geospatial
classes. Had we had statistically significant actual attributive information due to both use cases, such a
solution would have been accomplished as a unique technique for applied usage by municipalities.
Thus, this workflow of use cases is not conclusive, it still has to be validated, and we have to complete
a more refined workflow in future research.

Thus, we have presented a comprehensive multifunctional approach to the urban topography and
discrete features automated extraction on the base of Airborne LiDAR data processing. This research has
demonstrated its applicability for different datasets, that represent heterogeneous urban configurations.
Exactly this approach provides the implementation of our original, uniquely complete R&D cycle
(from the urban terrain generation and feature extraction by raw LiDAR data processing till applied
thematic use cases based on the models obtained):

• Raw LiDAR data initial preprocessing;
• Choosing an appropriate (due to the data nature and local urban configurations) solution—either

low polyhedral modeling, or high polyhedral one;
• If the latter is selected, not third party’s footprints are involved, but the original ones are extracted

according to the basic HPM algorithm;
• Provision of the completely original two-branched DEM-G/AFE classifying algorithm, following

by the urban topography generation and the feature extraction with customized setting up of
processing in particular algorithmic blocks;

• Enhancement of the existing architectural scheme of software family, shifting emphasis from a
desktop to its web- and cloud-components, what allows to process huge data volumes;

• Multifunctional application of software key functionalities: BE, BERA, CD, and DEM-G;
• Elaborating and establishing ELiT Geoportal as a cloud-based application within the frameworks

of a service-oriented web-technology;
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• Stuffing the Geoportal with the projects of 3D CityGML LOD1/LOD2 models;
• Accomplishing the original visualizing algorithmic solution, that consists of two options, based

on optimizing the Cesium 3D Tiles structure for more efficient rendering of urban features on the
Geoportal locations;

• Implementing practical thematic use cases for those locations, for which at least some semantic
georeferenced data are available: Population Estimation with Building Geometries and Estimation
of Energy Consumption by Buildings for Heating and Cooling;

• Upon these use cases’ realization some supplementary unique solutions have been provided, e.g.,
our original technique of automated definition of building type by its topology and geometry.

The presented steps have pieced the complete R&D cycle of LiDAR data processing and obtaining
derivative results outlined in this research.

Author Contributions: Conceptualization, Sergiy Kostrikov; methodology, Sergiy Kostrikov and Rostyslav Pudlo;
software, Rostyslav Pudlo, Dmytro Bubnov, and Vladimir Vasiliev; validation, Rostyslav Pudlo, Dmytro Bubnov,
and Vladimir Vasiliev; formal analysis, Sergiy Kostrikov, Rostyslav Pudlo, Dmytro Bubnov, and Vladimir Vasiliev;
resources, Vladimir Vasiliev; data curation, Rostyslav Pudlo and Dmytro Bubnov; writing—original draft
preparation, Sergiy Kostrikov and Rostyslav Pudlo; writing—review and editing, Sergiy Kostrikov, Rostyslav Pudlo,
Dmytro Bubnov, and Vladimir Vasiliev; supervision, Sergiy Kostrikov; project administration, Vladimir Vasiliev.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Esch, T.; Thiel, M.; Schenk, A.; Roth, A.; Muller, A.; Dech, S. Delineation of Urban Footprints from TerraSAR-X
Data by Analyzing Speckle Characteristics and Intensity Information. IEEE Trans. Geosci. Remote Sens. 2009,
48, 905–916. [CrossRef]

2. Esch, T.; Heldens, W.; Hirner, A. The Global Urban Footprint. In Urban Remote Sensing; Weng, Q.,
Quattrochi, D., Gamba, P.E., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 34–43.

3. Dong, P.; Chen, Q. (Eds.) LiDAR Remote Sensing and Applications; CRC Press: Boca Raton, FL, USA, 2018;
246p.

4. Leduc, T.; Moreau, G.; Billen, R. (Eds.) Usage, Usability, and Utility of 3D City Models; EDP Sciences: Nantes,
France, 2012; p. 320.

5. Billen, R.; Cutting-Decelle, A.F.; Marina, O.; de Almeida, J.P.; Caglioni, M.; Falquet, G.; Leduc, T.; Métral, C.;
Moreau, G.; Perret, J.; et al. 3D City Models and Urban Information: Current Issues and Perspectives; EDP Sciences:
Les Ulis, France, 2014; pp. 1–118.

6. Julin, A.; Jaalama, K.; Virtanen, J.-P.; Pouke, M.; Ylipulli, J.; Vaaja, M.; Hyyppä, J.; Hyyppä, H. Characterizing
3D City Modeling Projects: Towards a Harmonized Interoperable System. ISPRS Int. J. Geo-Inf. 2018, 7, 55.
[CrossRef]

7. Biljecki, F.; Stoter, J.; LeDoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D City Models: State of the Art
Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842–2889. [CrossRef]

8. Kostrikov, S.V.; Niemets, L.M.; Sehida, K.Y.; Niemets, K.A.; Morar, C. Geoinformation Approach to
the Urban Geographic System Research (Cases Studies of Kharkiv Region). 2018. Available online:
https://periodicals.karazin.ua/geoeco/article/view/12429 (accessed on 15 June 2020).

9. Kostrikov, S.V. Urban Remote Sensing with LiDAR for the Smart City Concept Implementation. 2019.
Available online: https://www.readcube.com/articles/10.26565%2F2410-7360-2019-50-08 (accessed on 16 June
2020).

10. Billen, R.; Zaki, C.; Servieres, M.; Moreau, G.; Hallot, P. Developing an ontology of space: Application to 3D
city modeling. In Usage, Usability, and Utility of 3D City Models; Leduc, T., Moreau, G., Billen, R., Eds.; EDP
Sciences: Nantes, France, 2012; pp. 1–14.

11. Brenner, C. Towards fully automatic generation of city models. Int. Arch. Photogramm. Remote Sens. 2000, 33,
1–8.

http://dx.doi.org/10.1109/TGRS.2009.2037144
http://dx.doi.org/10.3390/ijgi7020055
http://dx.doi.org/10.3390/ijgi4042842
https://periodicals.karazin.ua/geoeco/article/view/12429
https://www.readcube.com/articles/10.26565%2F2410-7360-2019-50-08


ISPRS Int. J. Geo-Inf. 2020, 9, 650 32 of 36

12. Zhu, Q.; Hu, M.; Zhang, Y.; Du, Z. Research and practice in three-dimensional city modeling. Geo-Spat. Inf.
Sci. 2009, 12, 18–24. [CrossRef]

13. Yin, X.; Wonka, P.; Razdan, A. Generating 3D building models from architectural drawings: A survey.
IEEE Comput. Graph. Appl. 2009, 29, 20–30. [CrossRef]

14. Kolbe, T.H. Representing and Exchanging 3D City Models with CityGML. 2009. Available online: https:
//link.springer.com/chapter/10.1007/978-3-540-87395-2_2, (accessed on 15 June 2020).

15. Goetz, M.; Zipf, A. Towards defining a framework for the automatic derivation of 3D CityGML models from
Volunteered Geographic Information. Int. J. 3-D Inf. Model. 2012, 1, 1–16. [CrossRef]

16. Open Geospatial Consortium. OGC City Geography Markup Language (CityGML) Encoding Standard 2.0.0;
Open Geospatial Consortium: Wayland, MA, USA, 2012.

17. Schilling, A.; Bolling, J.; Nagel, C. Using glTF for Streaming CityGML 3D City Models. 2016. Available
online: https://dl.acm.org/doi/10.1145/2945292. (accessed on 17 May 2020).

18. Biljecki, F.; Ledoux, H.; Stoter, J.E. Generation of multi-LOD 3D city models in CityGML with the procedural
modelling engine Random3Dcity. In Proceedings of the 1st International Conference on Smart Data and
Smart Cities, 30th UDMS, Split, Croatia, 7–9 September 2016. [CrossRef]

19. Weng, Q.; Quattrochi, D.; Gamba, P.E. (Eds.) Urban Remote Sensing; CRC Press: Boca Raton, FL, USA, 2018;
p. 387.

20. Haala, H.; Brenner, C. Extraction of buildings and trees in urban environments. ISPRS J. Photogramm. Remote
Sens. 1999, 54, 130–137. [CrossRef]

21. Maas, H.G.; Vosselman, G. Two algorithms for extracting building models from raw laser altimetry data.
ISPRS J. Photogramm. Remote Sens. 1999, 54, 153–163. [CrossRef]

22. Ackermann, F. Airborne laser scanning: Present status and future expectations. ISPRS J. Photogramm. Remote
Sens. 1999, 54, 64–67. [CrossRef]

23. Elaksher, A.F.; James, S.B. Reconstructing 3D buildings from lidar data. ISPRS Arch. 2002, 34, 102–107.
24. Pu, S.; Vosselman, G. Knowledge based reconstruction of building models from terrestrial laser scanning

data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 575–584. [CrossRef]
25. Haala, N.; Kada, M. An update on automatic 3D building reconstruction. ISPRS J. Photogramm. Remote Sens.

2010, 65, 570–580. [CrossRef]
26. Wang, R. 3D building modeling using images and LiDAR: A review. Int. J. Image Data Fusion 2013, 4, 273–292.

[CrossRef]
27. Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review.

Remote Sens. Environ. 2015, 158, 295–310. [CrossRef]
28. Ahokas, E.; Kaartinen, H.; Hyyppä, J. A quality assessment of airborne laser scanner data. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. 2003, 34, 1–7.
29. Dorninger, P.; Pfeifer, N. A comprehensive automated 3D approach for building extraction, reconstruction,

and regularization from airborne laser scanning point clouds. Sensors 2008, 8, 7323–7343. [CrossRef]
30. Lafarge, F.; Mallet, C. Creating large-scale city models from 3D-point clouds: A robust approach with hybrid

representation. Int. J. Comput. Vis. 2012, 99, 69–85. [CrossRef]
31. Teo, T.A.; Shi, T.Y. Lidar-based change detection and change type determination in urban areas. Int. J. Remote

Sens. 2012, 34, 968–981. [CrossRef]
32. Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W. Geomorphological change detection using object-based

feature extraction from multi-temporal LiDAR data. IEEE Geosci. Remote. Sens. Lett. 2013, 10, 1587–1591.
[CrossRef]

33. Fowler, R.A.; Samberg, A.; Flood, M.J.; Greaves, T.J. Topographic and Terrestrial Lidar. In Digital Elevation
Model Technologies and Applications: The DEM Users Manual, 2nd ed.; Maune, D.F., Ed.; ASPRS: Bethesda, MD,
USA, 2007; pp. 199–252.

34. Cao, L.; Coops, N.C.; Innes, J.L.; Dai, J.S.; Ruan, H.; She, G. Tree species classification in subtropical forests
using small-footprint full-waveform LiDAR data. Int. J. Appl. Earth Obs. 2016, 49, 39–51. [CrossRef]

35. Kada, M.; McKinley, L. 3D building reconstruction from LiDAR based on a cell decomposition approach.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 47–52.

36. Li, M.; Nan, L.; Smith, N.; Wonka, P. Reconstructing building mass models from uav images. Comput. Graph.
2016, 54, 84–93. [CrossRef]

http://dx.doi.org/10.1007/s11806-009-0195-z
http://dx.doi.org/10.1109/MCG.2009.9
https://link.springer.com/chapter/10.1007/978-3-540-87395-2_2,
https://link.springer.com/chapter/10.1007/978-3-540-87395-2_2,
http://dx.doi.org/10.4018/ij3dim.2012040101
https://dl.acm.org/doi/10.1145/2945292.
http://dx.doi.org/10.5194/isprs-annals-IV-4-W1-51-2016
http://dx.doi.org/10.1016/S0924-2716(99)00010-6
http://dx.doi.org/10.1016/S0924-2716(99)00004-0
http://dx.doi.org/10.1016/S0924-2716(99)00009-X
http://dx.doi.org/10.1016/j.isprsjprs.2009.04.001
http://dx.doi.org/10.1016/j.isprsjprs.2010.09.006
http://dx.doi.org/10.1080/19479832.2013.811124
http://dx.doi.org/10.1016/j.rse.2014.11.001
http://dx.doi.org/10.3390/s8117323
http://dx.doi.org/10.1007/s11263-012-0517-8
http://dx.doi.org/10.1080/01431161.2012.714504
http://dx.doi.org/10.1109/LGRS.2013.2262317
http://dx.doi.org/10.1016/j.jag.2016.01.007
http://dx.doi.org/10.1016/j.cag.2015.07.004


ISPRS Int. J. Geo-Inf. 2020, 9, 650 33 of 36

37. Landa, J.; Prochazka, D. Automatic road inventory using LiDAR. Procedia Econ. Financ. 2014, 12, 363–370.
[CrossRef]

38. Alharthy, A.; Bethel, J. Heuristic filtering and 3D feature extraction from LiDAR data. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2002, 34, 23–28.

39. Sithole, G.; Vosselman, G. Filtering of airborne laser scanner data based on segmented point clouds. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 34, 66–71.

40. Shan, J.; Sampath, A. Building extraction from 3D LiDAR Point Clouds based on clustering techniques.
In Topographic Laser Ranging and Scanning: Principles and Processing; Shan, J., Toth, C.K., Eds.; CRC Press: Boca
Raton, FL, USA, 2008; pp. 423–446. [CrossRef]

41. Lafarge, F.; Descombes, X.; Zerubia, J.; Pierrot-Deseilligny, M. Automatic building extraction from DEMs
using an object approach and application to the 3D-city modeling. J. Photogramm. Remote Sens. 2008, 63,
365–381. [CrossRef]

42. Chen, C.; Li, Y.; Li, W.; Dai, H. A multiresolution hierarchical classification algorithm for filtering airborne
LiDAR data. J. Photogramm. Remote Sens. 2013, 82, 1–9. [CrossRef]

43. Weinmann, M.; Schmidt, A.; Mallet, C.; Hinz, S.; Rottensteiner, F.; Jutzi, B. Contextual classification of point
cloud data by exploiting individual 3D neighbourhoods. ISPRS Int. Ann. Photogramm. Remote Sens. Spat. Inf.
Sci. 2015, 2, 271–278.

44. Dollner, J.; Buchholz, J. Continuous Level-Of-Detail Modeling of Buildings in 3D City Models. 2005. Available
online: https://dl.acm.org/doi/10.1145/1097064.1097089 (accessed on 10 March 2020).

45. Muller, P.; Wonkqa, P.; Haegeler, S.; Ulmer, A.; Gool, L.V. Procedural Modeling of Buildings. 2006. Available
online: https://dl.acm.org/doi/10.1145/1141911.1141931 (accessed on 3 July 2020).

46. Brenner, C. Building reconstruction from images and laser scanning. Int. J. Appl. Earth Obs. 2005, 6, 187–198.
[CrossRef]

47. Lin, H.; Gao, J.; Zhou, Y.; Lu, G.; Ye, M.; Zhang, C. Semantic decomposition and reconstruction of residential
scenes from LiDAR data. ACM Trans. Graph. 2013, 32, 61–66. [CrossRef]

48. Cesium, G.S. 3D-Tiles/3D-Tiles Overview. Available online: https://github.com/CesiumGS/3d-tiles/blob/

master/3d-tiles-overview.pdf (accessed on 18 July 2020).
49. Green, I.; Gervang, C.; Villa, I. Taking City Visualization into the Third Dimension with Point Clouds, 3D

Tiles, and Deck.gl. 2019. Available online: https://eng.uber.com/3d-tiles-loadersgl/ (accessed on 19 July 2020).
50. Chen, Y.; Shooraj, E.; Rajabifard, A.; Sabri, S. From IFC to 3D Tiles: An integrated open-source solution for

visualizing BIMs on Cesium. ISPRS Int. J. Geo-Inf. 2018, 7, 393. [CrossRef]
51. Du, S.; Zhang, Y.; Zou, Z.; Xu, S.; He, X.; Chen, S. Automatic building extraction from LiDAR data fusion of

point and grid-based features. ISPRS J. Photogram. Remote Sens. 2017, 130, 294–307. [CrossRef]
52. Kostrikov, S.; Pudlo, R.; Kostrikova, A. Three key EOS LiDAR Tool functionalities for Urban Studies.

In Proceedings of the 39th Asian Conference on Remote Sensing (ACRS 2018): Remote Sensing Enabling Prosperity,
Kuala Lumpur, Malaysia, 15–19 October 2018; AARS: Tokyo, Japan; Curran Associates Inc.: Red Hook, NY,
USA, 2019; Volume 3, pp. 1676–1685.

53. Kostrikov, S.; Pudlo, R.; Kostrikova, A.; Bubnov, D. Studying of urban features by the multifunctional
approach to LiDAR data processing. In Proceedings of the Joint Urban Remote Sensing Event JURSE 2019:
New Methodologies for Urban Investigation Through Remote Sensing, Vannes, France, 22–24 May 2019.
[CrossRef]

54. Kostrikov, S.V.; Bubnov, D.Y.; Pudlo, R.A. Urban Environment 3D Studies by Automated Feature Extraction
from LiDAR Point Clouds. 2020. Available online: https://www.researchgate.net/publication/342897712_
Urban_Environment_3D_studies_by_Automated_Feature_Extraction_from_LiDAR_Point_Clouds (accessed
on 20 July 2020).

55. Opitz, D.W.; Rao, R.; Blundell, J.S. Automated 3-D feature extraction from terrestrial and airborne Lidar.
In ISPRS Commission IV: Bridging Remote Sensing and GIS, Proceedings of the 1st International Conference on
Object-Based Image Analysis, Salzburg, Austria, 4–5 July 2006; ISPRS: Sydney, NSW, Australia, 2006.

56. Liu, X.; Zhang, Z. LIDAR data reduction for efficient and high quality DEM generation. In Proceedings of
the XXI Congress of the International Society of Photogrammetry and Remote Sensing (ISPRS 2008), Beijing,
China, 3–11 July 2008.

http://dx.doi.org/10.1016/S2212-5671(14)00356-6
http://dx.doi.org/10.1201/9781420051438.ch15
http://dx.doi.org/10.1016/j.isprsjprs.2007.09.003
http://dx.doi.org/10.1016/j.isprsjprs.2013.05.001
https://dl.acm.org/doi/10.1145/1097064.1097089
https://dl.acm.org/doi/10.1145/1141911.1141931
http://dx.doi.org/10.1016/j.jag.2004.10.006
http://dx.doi.org/10.1145/2461912.2461969
https://github.com/CesiumGS/3d-tiles/blob/master/3d-tiles-overview.pdf
https://github.com/CesiumGS/3d-tiles/blob/master/3d-tiles-overview.pdf
https://eng.uber.com/3d-tiles-loadersgl/
http://dx.doi.org/10.3390/ijgi7100393
http://dx.doi.org/10.1016/j.isprsjprs.2017.06.005
http://dx.doi.org/10.1109/JURSE.2019.8809063
https://www.researchgate.net/publication/342897712_Urban_Environment_3D_studies_by_Automated_Feature_Extraction_from_LiDAR_Point_Clouds
https://www.researchgate.net/publication/342897712_Urban_Environment_3D_studies_by_Automated_Feature_Extraction_from_LiDAR_Point_Clouds


ISPRS Int. J. Geo-Inf. 2020, 9, 650 34 of 36

57. Alexander, C.; Smith-Voysey, S.; Jarvis, C.; Tansey, K. Integrating building footprints and LiDAR elevation
data to classify roof structures and visualise buildings. Comput. Environ. Urban Syst. 2009, 33, 285–292.
[CrossRef]

58. Sampath, A.; Shan, J. Segmentation and Reconstruction of Polyhedral Building Roofs from Aerial Lidar Point
Clouds. IEEE Trans. Geosci. Remote. Sens. 2009, 48, 1554–1567. [CrossRef]

59. Yan, J.; Jiang, W.; Shan, J. A global solution to topological reconstruction of building roof models from
airborne LiDAR point clouds. ISPRS Int. Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 379–386.
[CrossRef]

60. Quackenbush, L.J. A Review of Techniques for Extracting Linear Features from Imagery. Photogramm. Eng.
Remote. Sens. 2004, 70, 1383–1392. [CrossRef]

61. Linares, S.; Picone, N. Application of remote sensing and cellular automata model to analyze and simulate
urban density changes. In Urban Remote Sensing, 2nd ed.; Weng, Q., Quattrochi, D., Gamba, P.E., Eds.; CRC
Press: Boca Ranton, FL, USA, 2018; pp. 268–287.

62. Flener, C.; Vaaja, M.; Jaakkola, A.; Krooks, A.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.;
Alho, P. Seamless mapping of river channels at high resolution using mobile LiDAR and UAV-photography.
Remote Sens. 2013, 5, 6382–6407. [CrossRef]

63. Habib, A.F.; Zhai, R.; Kim, C. Generation of complex polyhedral building models by integrating stereo-aerial
imagery and lidar data. Photogram. Eng. Remote Sens. 2010, 76, 609–623. [CrossRef]

64. Jochem, A.; Hцfle, B.; Wichmann, V.; Rutzinger, M.; Zipf, A. Area-wide roof plane segmentation in airborne
LIDAR point clouds. Comput. Environ. Urban Syst. 2012, 36, 54–64. [CrossRef]

65. Bormann, D.; Elseberg, J.; Lingemann, K.; Niichter, A. The 3D hough transform for plane detection in point
clouds: A review and a new accumulator design. 3D Res. 2011, 2, 1–13. [CrossRef]

66. Henn, A.; Groger, G.; Stroh, V.; Plumer, V. Model driven reconstruction of roofs from sparse 3D LiDAR Point
Clouds. ISPRS J. Photogramm. Remote Sens. 2013, 76, 17–29. [CrossRef]

67. Maltezos, E.; Ioannids, C. Automatic extraction of building roofs from Airborne LiDAR data applying and
extended 3D randomized Hough transform. In Proceedings of the XXIII ISPRS Congress, Prague, Czech
Republic, 12–19 July 2016; pp. 209–221. [CrossRef]

68. Maltezos, E.; Doulamis, A.; Doulamis, N.; Ioannidis, C. Building Extraction from LiDAR Data Applying
Deep Convolutional Neural Networks. IEEE Geosci. Remote. Sens. Lett. 2018, 16, 155–159. [CrossRef]

69. Lafarge, F.; Descombes, X.; Zerubia, J.; Pierrot-Deseilligny, M. Structural approach for building reconstruction
from a single DSM. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 135–147. [CrossRef] [PubMed]

70. Pfeifer, N.; Mandlburger, G. LiDAR data filtering and digital terrain model generation. In Topographic Laser
Ranging and Scanning: Principles and Processing, 2nd ed.; Shan, J., Toth, C.K., Eds.; CRC Press: Boca Raton, FL,
USA, 2018; pp. 456–490. [CrossRef]

71. Shan, J.; Sampath, A. Urban DEM generation from raw LiDAR data: A labeling algorithm and its performance.
Photogramm. Eng. Remote Sens. 2009, 75, 427–442. [CrossRef]

72. Polat, N.; Uysal, M.; Toprak, A.S. An investigation of DEM generation process based on LiDAR data filtering,
decimation, and interpolation methods for an urban area. Measurement 2015, 75, 50–56. [CrossRef]

73. Freeland, T.; Heung, B.; Burley, D.V.; Clark, G.; Knudby, A. Automated feature extraction for prospection and
analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga. J. Archaeol. Sci. 2016, 69,
64–74. [CrossRef]

74. Vosselman, G. Slope based filtering of laser altimetry data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2000, 33, 935–942.

75. Liu, X. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geogr. 2008, 32, 31–49.
[CrossRef]

76. Zhang, K.; Whitman, D. Comparison of three algorithms for filtering airborne LiDAR data. Photogramm. Eng.
Remote Sens. 2005, 71, 313–324. [CrossRef]

77. Meng, X.; Wang, L.; Silván-Cárdenas, J.; Currit, N. A multi-directional ground filtering algorithm for airborne
LIDAR. ISPRS J. Photogramm. Remote Sens. 2009, 64, 117–124. [CrossRef]

78. Meng, X.; Wang, L.; Currit, N. Morphology-based Building Detection from Airborne Lidar Data. Photogramm.
Eng. Remote. Sens. 2009, 75, 437–442. [CrossRef]

79. Chen, Q.; Gong, P.; Baldocchi, D.; Xie, G. Filtering Airborne Laser Scanning Data with Morphological
Methods. Photogramm. Eng. Remote. Sens. 2007, 73, 175–185. [CrossRef]

http://dx.doi.org/10.1016/j.compenvurbsys.2009.01.009
http://dx.doi.org/10.1109/TGRS.2009.2030180
http://dx.doi.org/10.5194/isprsannals-III-3-379-2016
http://dx.doi.org/10.14358/PERS.70.12.1383
http://dx.doi.org/10.3390/rs5126382
http://dx.doi.org/10.14358/PERS.76.5.609
http://dx.doi.org/10.1016/j.compenvurbsys.2011.05.001
http://dx.doi.org/10.1007/3DRes.02(2011)3
http://dx.doi.org/10.1016/j.isprsjprs.2012.11.004
http://dx.doi.org/10.5194/isprs-annals-III-3-209-2016
http://dx.doi.org/10.1109/LGRS.2018.2867736
http://dx.doi.org/10.1109/TPAMI.2008.281
http://www.ncbi.nlm.nih.gov/pubmed/19926904
http://dx.doi.org/10.1201/9781315154381-11
http://dx.doi.org/10.14358/PERS.71.2.217
http://dx.doi.org/10.1016/j.measurement.2015.08.008
http://dx.doi.org/10.1016/j.jas.2016.04.011
http://dx.doi.org/10.1177/0309133308089496
http://dx.doi.org/10.14358/PERS.71.3.313
http://dx.doi.org/10.1016/j.isprsjprs.2008.09.001
http://dx.doi.org/10.14358/PERS.75.4.437
http://dx.doi.org/10.14358/PERS.73.2.175


ISPRS Int. J. Geo-Inf. 2020, 9, 650 35 of 36

80. Anderson, E.S.; Thompson, J.A.; Austin, R.E. LiDAR density and linear interpolator effects on elevation
estimates. Int. J. Remote Sens. 2015, 36, 3889–3900. [CrossRef]

81. Bandyopadhyay, M.; van Aardt, J.A.N.; Cawse-Nicholson, K. Classification and extraction of trees and
buildings from urban scenes using discrete return LiDAR and aerial color imagery. In Proceedings of the
SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 29 April–3 May 2013; Volume 8731, pp. 05-1–05-9.
[CrossRef]

82. Magruder, L.A.; Leigh, H.W.; Soderlund, A.; Clymer; Bayer, J.; Neuenschwander, A.L. Automated feature
extraction for 3-dimensional point clouds. In Proceedings of the SPIE Defense, Security, and Sensing,
Baltimore, MD, USA, 17–21 April 2016. [CrossRef]

83. Ohori, K.A.; Biljecki, F.; Kumar, K.; LeDoux, H.; Stoter, J. Modeling Cities and Landscapes in 3D with CityGML.
In Building Information Modeling; Springer: Berlin/Heidelberg, Germany, 2018; pp. 199–215. [CrossRef]

84. Singh, P.; Chutia, D.; Sudhakar, S. Development of a web based GIS application for spatial natural resource
information system using effective open source software and standards. Int. J. Geogr. Inf. Sci. 2012, 4,
261–266. [CrossRef]

85. Kostrikov, S.; Vasiliev, V.; Pudlo, R.; Bubnov, D. Urban environment research through its simulation by lidar
data processing. In Proceedings of the REGION-2019: The Strategy for Optimal Development, Kharkiv,
Ukraine, 16–18 October 2019; pp. 34–37, In Ukrainian with English summary.

86. Beauont, P.; Longley, P.A.; Maguire, D.J. Geographic information portals—A UK perspective. Comput.
Environ. Urban Syst. 2005, 29, 49–69. [CrossRef]

87. Li, G. Optimizing Subdivisions in Spatial Data Structures. Available online: https://cesium.com/blog/2017/

03/30/spatial-subdivision/ (accessed on 4 August 2020).
88. Cigolle, Z.; Donow, S.; Evangelakos, D.; Mara, M.; McGuire, M.; Meyer, Q. Survey of Efficient Representations

for Independent Unit Vectors. J. Comput. Graph. Tech. 2014, 3, 1–30. Available online: http://jcgt.org/published/

(accessed on 1 August 2020).
89. Cozzi, P. Introducing 3D Tiles. Available online: https://cesium.com/blog/2015/08/10/introducing-3d-tiles/

(accessed on 29 July 2020).
90. Smith, S.K.; Mandell, M. A comparison of population estimation methods: Housing unit versus component

II, ratio correlation and administrative records. J. Am. Stat. Assoc. 1984, 79, 282–289. [CrossRef] [PubMed]
91. Lo, C.P. Population Estimation Using Geographically Weighted Regression. GIScience Remote. Sens. 2008, 45,

131–148. [CrossRef]
92. Dong, P.; Ramesh, S.; Nepali, A. Evaluation of small area population estimation using LiDAR, Landsat TM

and parcel data. Int. J. Remote Sens. 2010, 31, 5571–5586. [CrossRef]
93. MassGIS (Bureau of Geographic Information). MassGIS Data: Datalayers from the 2010 U.S. Census. 2012.

Available online: https://docs.digital.mass.gov/dataset/massgis-data-datalayers-2010-us-census (accessed on
5 February 2020).

94. MassGIS (Bureau of Geographic Information). MassGIS Data: Land Use (2005). 2009. Available online:
https://docs.digital.mass.gov/dataset/massgis-data-land-use-2005 (accessed on 9 March 2020).

95. Döllner, J.; Kolbe, T.; Liecke, F.; Sgouros, T.; Teichmann, K. The virtual 3D city model of Berlin—Managing,
Integrating and communicating complex urban information. In Proceedings of the 25th International
Symposium on Urban Data Management UDMS, Aalborg, Denmark, 15–17 May 2006.

96. Carrión, D. Estimation of the Energetic State of Buildings for the City of Berlin Using a Model Represented
in 3D City CityGML Model. Master’s Thesis, Technical University Berlin, Berlin, Germany, 2010; p. 178.

97. Carrión, D.; Lorenz, A.; Kolbe, T. Estimation of the energetic rehabilitation state of buildings for the city of
Berlin using a 3D city model represented in CityGML. In Proceedings of the ISPRS Conference: International
Conference on 3D Geoinformation, Berlin, Germany, 3–4 November 2010; Volume XXXVIII-4/W15, pp. 31–35.

98. Nouvel, R.; Schulte, C.; Eicker, U.; Pietruschka, D.; Coors, V. CityGML-based 3D city model for energy
diagnostics and urban energy policy support. In Proceedings of the 13th Conference of International Building
Performance Simulation Association, Chambéry, France, 26–28 August 2013; pp. 218–225.

99. Stzalka, A.; Eicker, U.; Coors, V.; Schumacher, J. Modeling energy demand for heating at city scale.
In Proceedings of the Fourth National Conference of IBPSA-USA, New York, NY, USA, 11–13 August 2010;
pp. 358–364.

http://dx.doi.org/10.1080/01431160500181671
http://dx.doi.org/10.1117/12.2015890
http://dx.doi.org/10.1117/12.2223845
http://dx.doi.org/10.1007/978-3-319-92862-3_11
http://dx.doi.org/10.4236/jgis.2012.43031
http://dx.doi.org/10.1016/S0198-9715(04)00048-1
https://cesium.com/blog/2017/03/30/spatial-subdivision/
https://cesium.com/blog/2017/03/30/spatial-subdivision/
http://jcgt.org/published/
https://cesium.com/blog/2015/08/10/introducing-3d-tiles/
http://dx.doi.org/10.1080/01621459.1984.10478042
http://www.ncbi.nlm.nih.gov/pubmed/12340389
http://dx.doi.org/10.2747/1548-1603.45.2.131
http://dx.doi.org/10.1080/01431161.2010.496804
https://docs.digital.mass.gov/dataset/massgis-data-datalayers-2010-us-census
https://docs.digital.mass.gov/dataset/massgis-data-land-use-2005


ISPRS Int. J. Geo-Inf. 2020, 9, 650 36 of 36

100. Jaffal, I.; Inard, C.; Ghiaus, C. Fast method to predict building heating demand based on the design of
experiments. Energy Build. 2009, 41, 669–677. [CrossRef]

101. Carneiro, C. Extraction of Urban Environmental Quality Indicators Using LiDAR-Based Digital Surface
Models. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2011.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.enbuild.2009.01.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction: Initialization of 3D City Models in Urban Studies through Lidar Data Processing 
	Common Issues 
	Automated Extraction of Building Models and DEM Generation 
	Some AFE and DEM Creation Problematic Issues 

	Approach and Methods: Urban Topography and Building Model Extraction from Airborne 3D LiDAR Point Clouds 
	High Polyhedral Modeling and Two-Branched DEM Generation/AFE Algorithmic Solution 
	Ground (DEM-G) Classifying Algorithmic Branch 
	Building Extraction (BE) Classifying Algorithmic Branch 
	Multifunctioal Web- and Cloud-Based Software for DEM-G/AFE Purposes 
	ELiTCore Desktop and Web-Based ELiT Server 
	ELiT Geoportal: Visualizing Urban Features with Cesium 3D Tiles 


	Results: Presenting Urban Features and DEM on the Geoportal with Thematic Use Cases 
	Visualising Geoportal Locations 
	Thematic Use Cases 
	Use Case Population 
	Use Case Energy 


	Discussion 
	Conclusions 
	References

