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Abstract: Mapping population distribution at fine resolutions with high accuracy is crucial to urban
planning and management. This paper takes Guangzhou city as the study area, illustrates the gridded
population distribution map by using machine learning methods based on zoning strategy with
multisource geospatial data such as night light remote sensing data, point of interest data, land use
data, and so on. The street-level accuracy evaluation results show that the proposed approach
achieved good overall accuracy, with determinant coefficient (R2) being 0.713 and root mean square
error (RMSE) being 5512.9. Meanwhile, the goodness of fit for single linear regression (LR) model and
random forest (RF) regression model are 0.0039 and 0.605, respectively. For dense area, the accuracy of
the random forest model is better than the linear regression model, while for sparse area, the accuracy
of the linear regression model is better than the random forest model. The results indicated that
the proposed method has great potential in fine-scale population mapping. Therefore, it is advised
that the zonal modeling strategy should be the primary choice for solving regional differences in the
population distribution mapping research.
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1. Introduction

People are the main body of geographical environment and social activities, and their distribution
pattern is an important subject in many research fields such as sociology, geography, environmental
studies, and so on [1,2]. Common population data mainly include two forms: demographic data and
spatialized data. Currently, using demographic data based on administrative units is the main way to
obtain population distribution information. Although the census data have the advantages of being
comprehensive, accurate, and authoritative [3,4], they have the disadvantages of low spatial resolution,
excessively long statistical period, and low update frequency. Therefore, the low spatial and temporal
resolution of census data is not conducive to effective urban governance. Compared with demographic
data, spatialized population data can express the true population distribution more intuitively and on
multiple scales, thereby effectively overcome the shortcomings of demographic data.

In recent years, the emergence of multi-source data such as point of interest (POI for short),
location check-in data, sharing-bikes’ trajectories, floating car GPS, and night light remote sensing
data provide time-efficient, fine-grained, and reliable data source for gridded population distribution
estimation, while machine learning technologies provide advanced methods for simulating gridded
population distribution. Hence, with the progress of data sources and research methods, it is
possible to accurately understand the urban population distribution in multiple scales and recognize
spatiotemporal patterns [5–7]. Guangzhou is one of the core cities of Guangdong-Hong Kong-Macao
Greater Bay Area. Due to the fast urbanization process, it is facing several threats, such as large
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population, high population density, traffic congestion, and irrational allocation of resources. To solve
the above problems, detailed population distribution information is essential basic information.

Research on the population distribution map can be traced back to 1930. American social geographer
Wright J.K. proposed the dasymetric method, which combined population distribution with land use
types to generate a population distribution map of Cape Cod, Massachusetts [8]. Based on the literature
review, approaches used to map populations differ in techniques (disaggregation or aggregation),
mapping unit (e.g., administrative units, enumeration units, geographical units, regular grid), ancillary
data used (e.g., topographic maps, land use/land cover vector data-sets, cadastral data, satellite
images, LIDAR data, etc.), and visualization methods (e.g., choropleth map, isolines, dasymetric map,
3D visualization) [9]. In this paper, we focus on the disaggregation mapping technique in grid unit.
Regarding the gridded population distribution data research, existing studies can be divided into
different scales such as global, country, city, and commune. In the 1990s, many global population
datasets were developed, such as the Gridded Population of the World (GPW), the Gridded Rural
Urban Mapping Project (GRUMP), LandScan, Worldpop, and so on. These global population datasets
employed different ancillary datasets with various approaches. In spite of these, datasets are important
for the data-poor regions; their accuracies in city or commune scale are still worth noting. The authors
developed an automatic and powerful method to improve the mapping accuracy of GPW dataset,
by detecting and mitigating major discrepancies and anomalies occurring in geospatial census data [10].
Their work illustrates the value and possible contribution of detailed, updated, and independent
remote sensing data to complement and improve conventional sources of fundamental population
statistics. In their work, global and consistent remote sensing-derived data reporting on built-up
presence was used to revise census units deemed as ‘unpopulated’ and to harmonize population
distribution along coastlines. The results show that the targeted anomalies were significantly mitigated
and that the baseline census database has improved, potentially benefitting other uses of the same
statistical base. There are also some scholars who tried to conduct high-resolution population research
at the national level [11–13]. However, there are relatively few detailed studies on small-scale areas
such as cities, due to the various urban fabric patterns and city complexity. As the basic unit of China’s
economic activities and social management, cities urgently need precise and accurate population
distribution information to improve the level of urban governance.

In summary, gridded population distribution is usually simulated in four different ways,
including spatial interpolation method, land use inversion method, night lighting modeling method,
and multi-source data fusion method. Each method has its advantages and drawbacks. The spatial
interpolation method uses interpolation algorithm to obtain gridded population distribution data by
taking census data as model input [14–16] and has been widely applied for the spatial decomposition
of census data [17–19]. The gridded population data can be interpolated directly, or based on the
information provided by other auxiliary data, thus it is divided into regional interpolation without
auxiliary data and regional interpolation with auxiliary data. Commonly used spatial interpolation
methods include point interpolation and area weight interpolation. The implementation steps of
the point interpolation method are as follows. First, control points in the study area are selected
and the density of the center point are used to symbolize the population density of each source area.
Then, an appropriate interpolation algorithm (such as Inverse distance weighted (IDW), Kriging, etc.)
is selected to generate population density raster map. Finally, the gridded population map is obtained
by overlaying population density raster map and the administrative boundary. This method is
relatively easy to implement, but it has severe limitations. First, the spatial resolution of model outputs
is generally coarse, mostly at tens of kilometers. Second, the model’s error is difficult to quantify. Third,
regional interpolation is affected by the error of the original region aggregation or decomposition
operation, and its accuracy largely depends on how to define the original region and the target region,
the degree of generalization during the interpolation process, and the characteristics of the partition
surface [20]. Therefore, the ability of spatial interpolation method to describe the real population
distribution is weak.
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The principle of land use inversion method is to give different weights to each land use type
according to the differences of population density between different land use types [18,21–23]. However,
the land use inversion method fails to reflect the population distribution difference in the same type of
land parcels, and ignores the randomness of population distribution. Since the launch of the DMSP/OLS
satellite in 1970s, the night light modeling method has become one of the mainstream methods for
simulation of gridded population distribution [24–26]. However, the application of DMSP/OLS
data is relatively rare, because the sensor stopped working in 2013 and the spatial resolution is too
low(1KM). The emergence of Suomi National Polar-Orbiting Partnership Visible Infrared Imaging
Radiometer Suite (NPP-VIIRS) data effectively overcomes the shortcomings of DMSP-OLS data in
spatio-temporal resolution [27], and such data are more suitable for the study of human social and
economic activities [28,29]. Sutton K. et al. used DMSP/OLS night light data to estimate the global
population based on a global scale, and found that the global population is about 6.3 billion [30].
However, spatial resolution of DMSP/OLS and NPP/VIIRS night light data sources are still to coarse
for population modelling in local scale. Nowadays, the world’s first professional luminous remote
sensing satellite designed by Wuhan University (Wuhan, China), Luojia 1-01 (LJ 1-01), was successfully
launched in June 2018. Compared to NPP-VIIRS data, LJ 1-01 data have a significant improvement
in spatial resolution and quantitative level, which provide a more refined data source for small-scale
population distribution simulations [31–33]. In essence, the night light modeling method simulates the
gridded population distribution in the study area by establishing a linear relationship between the night
light intensity and population density. However, the problems in the night light data seriously affect
the accuracy of the model outputs, such as pixel saturation, overflow, and low accuracy of population
retrieval in weak light areas. In order to improve the simulation accuracy, some scholars have tried
to combine night lighting data with land use data for research [34–36]. However, the improvement
in accuracy was not significant. Then, some scholars attempted to improve the simulation accuracy
by combining the night lights data, land use data, Point of interest (POI) data, and other types of
data [37–39]. With the continuous enrichment of social sensing data, some scholars attempt to depict
the dynamics of population distribution by using these data, such as taxi GPS data [40], mobile phone
data [41], tencent location service data [42], baidu heat map data [43], and so on. The multi-source
data fusion method has become one of the most popular method. Due to the limitations of these data,
including poor data availability, data heterogeneity, and so on, the conditions for producing gridded
population distribution dataset at a large-scale are not yet mature.

Essentially, the spatial decomposition of census data to grid unit is a regression process. Several
regression models have been proposed to create the weight layer, such as linear regression (LR),
geographically weighted regression (GWR), random forest regression, and so on [23,44]. In particular,
the random forest (RF for short), one machine learning method which was first systematically
proposed by Breiman [45], is becoming more and more popular in the study of models to produce
the weighting layer of population data, as it has several advantages including suitable for collinearity,
avoiding over-fitting, high calculation speed, and so on. The idea of RF algorithm is to use the bootstrap
resampling method to extract multiple samples from the original sample, model the decision tree
for each bootstrap sample, and then combine the results of multiple decision trees to obtain the final
regression result by voting. For the first time, scholars obtained 100 m grid population mapping
results in three undeveloped countries [46]. Due to the ease of training and interpretation, the random
forest method has received increasing attention in the population mapping research [42,47,48]. In the
process of random forest modeling, it is necessary to optimize several parameters for improving
the performance and effect of learning, such as the max number of features and the max depth of
trees, and so on [49,50]. In general, to avoid the impact of the initial data partition on the results,
cross validation (CV) and grid search were usually performed to reduce the occasionality and ensure
the validity and accuracy of the model training [51].

The uncertainty of modeling is also an important issue in the study of population distribution
mapping, which includes ecological fallacy, modifiable areal unit problem (MAUP), and so on.
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The MAUP is a classic problem in the Geographical Information Sciences, which has been long
acknowledged and explored. For any spatial resolution, as any set of boundaries, MAUP may
seriously hamper the strength of statistical results [52]. Sensitivity Analysis is a useful method to
explore the uncertainty of modelling. The authors tested the effect of different geometrical data
aggregation schemas—administrative regions and hexagonal surface tessellation—on global spatial
autocorrelation statistics, by using several datasets for two study-areas including Continental Portugal
(mixed urban-rural) and the Lisbon municipality (urban), and raised an important point, i.e., inferences
based on spatial analysis of areal data depend greatly on the method used to quantify the degree of
proximity between spatial units [52].

As we know, the relationship between population distribution and influencing factors is an
extremely complex nonlinear relationship. A variety of machine learning algorithms, including
random forests, neural network, and so on, can handle nonlinear relationship fitting well, while a
geographic detector model can handle the spatial heterogeneity of influencing factors. However,
most existing studies use a single model to the whole area. For regions with large population density
differences, a single or global model cannot accurately explain the mechanism of the spatial distribution
of internal population. The zonal strategy can effectively solve the shortcomings of the single model,
because it can perform secondary partition modeling on the study area according to the characteristics.
To this end, this article intends to illustrated the population map of Guangzhou city based on the idea
of zoning modeling and machine learning methods, by using multi-source spatial data such as land
use, POI, night lights, and so on. This article attempts to improve the study of mapping population
distribution, and provide important basic information for urban management.

2. Materials and Methods

In this section, the study area and data source are first introduced (see Sections 2.1 and 2.2).
Second, we needed to select the appropriate grid cell size to rasterize the initial influence factor data
based on various calculation formulas (see Section 2.3.1). Third, we identified main factors affecting
population distribution based on a geographic detector model (see Section 2.3.2). Finally, we simulated
gridded population distribution information of study area based on machine learning algorithms and
zonal strategy (see Sections 2.3.3 and 2.3.4). Moreover, we further evaluated the model accuracy by
using several metrics.

2.1. Study Area

Guangzhou, the capital of Guangdong province, lies between 112◦57′ E to 114◦3′ E longitude
and 22◦26′ N to 23◦56′ N latitude, and has an area about 7434 km2. The study case was conducted
in six central urban districts of Guangzhou city, including Yuexiu, Liwan, Tianhe, Haizhu, Huangpu,
and Baiyun. In order to ensure consistency with the caliber of population statistics in 2013, the Huangpu
district does not contain the street-level units of former Luogang district. These districts have the
highest population densities in Guangzhou city and serve as the political, cultural, and economic
centers of Guangzhou. According to the data provided by Guangzhou statistics bureau, the resident
population of Guangzhou was 15.3059 million in 2019 and the population density of the city was
close to 2059 person/km2. However, the study area covers approximately 20.9% of the total area of
Guangzhou city, and the recorded permanent resident population comprising 63.18% of the total
resident population of Guangzhou. The street-scale population density map of the study area in 2013
is shown in Figure 1.
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Figure 1. Population density map of the study area in 2013.

2.2. Data and Preprocessing

The research data used in the article is shown in Table 1.

Table 1. Data Source Information.

Data Acquisition Method Year

Administrative boundaries data Digitization based on Gaode map 2014
Census data Provided by Guangzhou Municipal Public Security Bureau 2013

Digital elevation model (DEM) data http://www.gscloud.cn/search 2009
Land use data http://www.resdc.cn/ 2015

Roads data Digitization based on Gaode map 2014
Point of interest (POI) data Collected from Baidu Map 2018

Night light data https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html 2016
Building area data Collected from Baidu Map 2015
Housing price data Collected from Lianjia’s website 2018

The spatial resolution of digital elevation model (DEM) data is 30 m, and the spatial reference
is GCS_WGS_1984. The land use data include six major categories of cultivated land, forest land,
grassland, water area, urban and rural, industrial and mining, residential land, and unused land,
with a spatial resolution of 30 m. With consideration of the proportions and potential for contribution
to population distribution, the urban construction and rural housing land use type was reclassified into
three subtypes including urban Land, rural land, and the other construction land. Road data includes
highways, national highways, provincial highways, urban roads, and county highways. There are
thirteen types of POI data, including catering facilities, public facilities, companies and enterprises,
shopping facilities, transportation facilities, finance and insurance, scientific, educational and cultural
facilities, commercial housing, life service facilities, sports and leisure facilities, medical service facilities,
government agencies and social groups, and accommodation facilities. After obtaining the POI data,
it is necessary to perform data cleaning work such as deduplication and correction before it can be
used normally. At last, all datasets were unified to the Albers project coordinate system. The reference
ellipsoid is Krasovsky_1940 ellipsoid.

http://www.gscloud.cn/search
http://www.resdc.cn/
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html


ISPRS Int. J. Geo-Inf. 2020, 9, 654 6 of 21

2.3. Methods

2.3.1. Rasterization of Initial Influence Factor Data

Grid cell size has an important influence on the quality of the population distribution simulation
results. The gridded population data with appropriate cell size can reveal the spatial varieties
of population distribution pattern more clearly. According to a previous research [53], the most
appropriate grid size is almost 10% of the smallest street’s area. ShaMian street is the smallest one in
our study case, and its area is 30,8348 square meters. Therefore, the cell size was set to 150 m in our
study case. The initial impact factor datasets are rasterized into 150 m. The calculation methods of
each factor in grid scale are shown in Table 2.

Table 2. Data Source Information.

Data Calculation Methods

Road Index (Ri) Ri =
ri
Ai

, ri denotes the road length in the grid cell i, Ai denotes the area of grid cell i

Land use Index (Li j)
Li j =

li j

li
× 100, li j denotes the area of land use type j in grid cell i, li denotes the total

area of land use polygons in grid cell i

Night light Index (Ni) The average value of night light intensity of grid cell i

Elevation Index (Ei) The average elevation value of grid cell i

Building Index (Bi) Bi =
bi
Ai
× 100, bi denotes the building area of grid cell i, Ai is the area of grid cell i

POI Index (Pi) The average density of each types of POI data in the grid cell i

House price index (Hi) The average house price in the grid cell i

2.3.2. Identification of Main Factors Based on Geographic Detector Model

The geographic detector was developed by Wang Jinfeng et al. [54]. It is a statistical method for
detecting spatial differentiation and revealing the driving factors behind it. Because this method does
not require linear assumptions, and has an elegant form and clear physical meaning, it is widely used in
the study of the influence mechanism of social economic, natural environment factors. The geographic
detector mainly includes four sub-detectors: factor detector, interactive detection, risk detector,
and ecological detector. This paper mainly uses the factor detector to calculate the explanatory
power of the influence factor on the population distribution, which is denoted as q value to
measure. The q value ranges from 0 to 1. The larger the q value, the stronger the explanatory
power of the factor. The initial influence factors (X) include X1 (Government agencies and
social organizations), X2 (Public utilities), X3 (Business residence), X4 (Medical service facilities),
X5 (Financial insurance facilities), X6 (Transportation facilities), X7 (Science, education and cultural
facilities), X8 (Sports and leisure facilities), X9 (Living service facilities), X10 (Catering facilities),
X11 (Companies), X12 (Accommodation service facilities), X13 (Shopping facilities), X14 (Night light
intensity), X15 (Index of urban land use), X16 (Altitude), X17 (Building area), X18 (Index of arable
land), X19 (Index of wood land), X20 (Road network density), X21 (Index of rural land), X22 (Index of
other construction land), X23 (Index of waters), and X24 (Index of grass land).

First, the Create Random Points tool in ArcGIS 10.2 (ESRI Inc., Redland, USA) was used to
randomly generate 3000 sample points in the study area. Then, the extract multi values to Points tool
was used to extract the population density values of the corresponding sample points and the index
values of each factor. Finally, the GeoDetector2015 software (Wang Jinfeng et al. [54], Beijing, China)
was used to calculate the explanatory power (q value) of the influence factor (X) for the population
density (Y).

The analysis results of the geographic detector model are shown in Figure 2. The results show
that, except for the water area index and grassland index, the significance level of remain factors is 0.05.
In other words, except for the water area index and grassland index, remain factors have obvious
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impact on population density. From the explanatory power ranking results, socioeconomic factors
have a greater impact on the spatial distribution of population in the study area than natural factors.
Among socio-economic factors, except for building area and road network density, the explanatory
power values of other impact factors are all above 0.1, indicating a significant impact on the population
density. Among the natural factors, except for the urban land use index, the explanatory power q of
other influencing factors is relatively small. To improve the model accuracy, five factors including
grassland index, water area index, urban land index, rural land index, and other construction land
indexes are removed. The final impact factors of population distribution include 20 indicators including
cultivated land index, forest land index, night light intensity, elevation, POI impact intensity index,
building area, road index, and so on.
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The sample features are presented numerically, and the numerical ranges between some different
features are quite different. In addition, the dimensions of different features are inconsistent. In order
to eliminate the influence of non-uniform dimension and extreme value, the data are normalized.
There are 106 records in the street sample dataset after min–max normalization, and each record
includes 20 feature values. The grid sample dataset has a total of 48,648 records, and each record
contains 20 feature values.

2.3.3. Simulation of Gridded Population Distribution with Single Modeling Strategy

Linear Regression Model

The linear regression model based on land use data and night light remote sensing data is currently
a widely used method of spatialization of population data. For this reason, based on NPP/VIIRS
night light data and land use data, this paper establishes a linear regression model of the population
distribution grid in the study area to realize the spatialization of population data.

The model is built as follows:

Pi =
n∑

j=1

a j × Si j + k×Mnl + b (1)

where Pi denotes the population data of the i-th street (town); a j represents the initial coefficient of
population distribution for the j-th land use type; Si j represents the j-th land use type index of the
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i-th street (town); n represents the type of land use selected; k represents the coefficient of night light
intensity; Mnl represents the average night light intensity value of each street; and b is the constant term.

Random Forest Regression Model

In this research, the street scale data set is used as the training set, and the grid scale data set is
used as the development set. The machine learning library used for modeling is scikit-learn 0.21.3,
which is a suit of free software released and maintained by scikit-learn international community. First,
the model is training using the algorithms selected in the article, taking the population density of
each street as the dependent variable, and the influence factors identified by the geographic detector
model as the independent variable. During the training process, the best model parameters such as
the maximum depth and features of the decision tree were obtained by GridSearchCV function in
the scikit-learn which is conducted to try every possibility through loop traversal in all candidate
parameter selections. To improve the predictive accuracy and control overfitting [55,56], K-fold cross
validation (CV) was used to obtain model parameters. Therefore, 10-fold CV was performed, and the
determinant coefficient (R2) score was used to determine the overall accuracy of the model. Then,
the optimal model is applied to the grid scale dataset to predict the population density value of each
grid cell. Next, the population density is multiplied by the cell area to obtain the population of each cell,
and the populations of each cell are merged into the street administrative unit. Finally, the accuracy
of model result is evaluated through error indicators such as mean relative error (MRE), root mean
square error (RMSE), R2 and so on, taking the demographic data of each street as the true value.

2.3.4. Simulation of Gridded Population Distribution with Zonal Modeling Strategy

Using the population concentration division method, the study area is subdivided to improve the
simulation accuracy. The calculation method of population concentration is shown in Equation (2):

JDDi =
(Pi/Pn) × 100%
(Ai/An) × 100%

=
Pi/Ai
Pn/An

(2)

where JDDi represents the population concentration degree of a certain street (town); Pi and Pn

represents the population of the street (town) and the total population of the area respectively; and Ai
and An represent the area of the street (town) and the total area of the area.

The study area is divided to two partitions according to the classification criteria of population
concentration. In order to ensure that each region has a sufficient sample size for machine learning
modeling, referring to the Chinese population agglomeration classification standard [57], the study
area is divided into two subareas: dense area and sparse area. The dense area contains 54 streets and
the average population density is 37,647 people/km2. The non-populated area contains 52 streets and
the average population density is 3594 people/km2. The specific zoning results are as follows as shown
in Figure 3.

Different model factors were selected for two subareas. For dense area and sparse area,
linear regression model and random forest model are both executed. Models suitable for each
subarea are selected according to the simulation accuracy and merged to population distribution map
for the entire study area.
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3. Results

3.1. Simulation Results Based on Global Linear Regression Model

The population density of each street (town) in the study area was taken as the dependent variable,
while the urban land index (X1), arable land index (X2), forest land index (X3), rural land index (X4),
other construction land index (X5), grassland index(X6), and the average night light intensity (X7)
were selected as the independent variables. The model is calculated through linear regression analysis,
and is shown in Equation (3):

Y = 10250.41X1 − 17485.5X2 − 9795.53X3 + 1131.15X4 − 3585.8X5 + 858.03X6

+29487.86X7
(3)

The value of coefficient of determination (R2) is 0.59, which means that the population density in
one street unit is explained in 59% by the land use indices and night light intensity index. The variance
analysis results of model are shown in Table 3.

Table 3. Variance analysis results.

df SS MS F Significance F

Model 7 62,369,873,618.10 8,909,981,945 19.7687925 2.74802 × 10−16

Residual 99 44,620,237,303.76 450,709,467.7
Total 106 1.0699 × 1011

Based on the multiple linear regression Equation (3), the grid calculator in ARCGIS software is
used to generate the population distribution data of the study area. The result is shown in Figure 4.
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It can be seen from Figure 4 that the population is gradually decreasing from the center of the
city to the surrounding area. Because the simulation results are too much affected by the spatial
pattern of construction land and the intensity of night lights, the population of the construction
land area is overestimated, and the spatial differentiation of population distribution is not obvious.
In particular, the northern part of Renhe town is close to Guangzhou Baiyun International Airport
(Guangzhou, China) and the industrial area is concentrated, resulting in obvious outliers in population
estimates, which are inconsistent with the actual situation. In order to verify the accuracy of the
simulation results, a linear fit was performed between the simulated population of the street (town) and
the census data. It was found that the goodness of fit (R2) is only 0.0039, and the RMSE is 1,007,871.35.
The simulation results in most of the street (town) had a huge deviation from the true value. In a word,
the simulation accuracy is very poor. Through comparison of previous studies and analysis, it is found
that the reasons for the large deviation of the model estimation may be roughly as follows:

(1) The research area is the downtown area of Guangzhou city, where the factors affecting population
distribution in the area are very complicated. It is impossible to accurately simulate the
characteristics of population distribution only by relying on land use and night light data.

(2) The spatial resolution of land use data is low, which is only 30 m. At the same time, the resolution
of land use types in this study is not detailed enough, which has only five categories. Since the
study area is the central urban area of Guangzhou city, the construction land is the dominant
land use type in the area. Therefore, in the process of gridded population distribution mapping,
simulation result is deeply affected by the spatial distribution pattern and area of the construction
land, which easily leads to overestimation and large deviations from actual census data. As we
known, previous studies also demonstrate that the higher the resolution of land use data and the
more detailed land use types can improve the accuracy of population simulation.

(3) The time of night light data, land use data, and statistical population data are inconsistent.
The population census data used in this study case are from 2013, while the land use data and
the night light data are from 2015 and from 2016, respectively. The inconsistency between the
modeled data and the real data will inevitably lead to a decrease in model accuracy.
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3.2. Simulation Results Based on Global Random Forest Model

In order to reduce the simulation error and improve the simulation accuracy, the selection of the
factors affecting the spatial distribution of the population is optimized, and the random forest model is
adopted to realize the spatialization of population data in the study area. Considering the error factors
of the global linear regression model, the independent variables of random forest model were updated
to 20 indicators including cultivated land index and woodland index, night light intensity, altitude,
POI influence intensity, building area, road network density, and average house prices. Based on the
street (town) scale, the training feature database was built. Due to the inconsistent dimensions of the
influencing factors, the data was standardized to eliminate the influence of inconsistent dimensions
and extreme values.

As the number of streets being used to fit the model is only 106, 10-fold CV was chosen. It means
that 9-fold samples were adopted into the model to obtain the proper parameters and the accuracy was
assessed using the remaining samples. The 10-fold cross validation and grid search were conducted to
find the proper parameters in the RF model (Table 4). When the max depth of the decision tree was 9
and the number of estimators was 500, the determinant coefficient (R2) of the CV score reached the
maximum value of 0.7250. Finally, we built a random forest model by setting the maximum depth of
subtrees to 9, and the number of estimators to 500.

Table 4. The ten-fold cross validation for the proper parameters in the random forest.

n_estimators
max_depth

2 3 4 5 6 7 8 9 10

200 0.6558 0.7189 0.7212 0.7215 0.7206 0.7210 0.7219 0.7204 0.7185
300 0.6558 0.7208 0.7197 0.7221 0.7201 0.7198 0.7199 0.7195 0.7180
400 0.6591 0.7217 0.7219 0.7239 0.7225 0.7212 0.7221 0.7222 0.7211
500 0.6599 0.7233 0.7236 0.7245 0.7245 0.7235 0.7239 0.7250 0.7227
600 0.6581 0.7210 0.7226 0.7219 0.7228 0.7213 0.7214 0.7234 0.7211
700 0.6586 0.7211 0.7222 0.7220 0.7226 0.7210 0.7211 0.7231 0.7213
800 0.6568 0.7203 0.7221 0.7213 0.7223 0.7212 0.7206 0.7218 0.7207
900 0.6567 0.7208 0.7219 0.7212 0.7220 0.7209 0.7206 0.7218 0.7208

1000 0.6554 0.7202 0.7220 0.7209 0.7214 0.7206 0.7201 0.7210 0.7203

Based on the parameters set above, the model training was carried out with the street (town) data
set as the training set. Subsequently, the generated random forest regression model is applied to each
grid cell to predict the population density. Finally, the simulation result is obtained by multiplying the
population density and cell area. The simulation result is shown in Figure 5.
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As shown in Figure 5, the population distribution in the study area presents an obvious “core-edge”
pattern, i.e., the population is highly concentrated in the center of the study area, while the population
density in the edge area is small. Among them, the northeast of Yuexiu district, Liwan district and
Tianhe district has the largest population, and an aggregation effect is obvious. It is worth mentioning
that the coefficient of determination (R2) of the random forest model result is 0.605, and the RMSE is
6497.02. At the same time, the average relative error of all streets (towns) in the study area is close to
32.16%. Compared with the global linear regression model, it can be seen that the simulation accuracy
by using the random forest regression model has been significantly improved. However, for regions
with large population density differences, a global model cannot accurately explain the mechanism of
the spatial distribution of population.

3.3. Simulation Results by Using Zonal Strategy

3.3.1. Simulation Results for Dense Area

Dense area is located in the center of the city, and the population distribution is more affected
by social and economic factors than natural environmental factors. To this end, sixteen impact
factors were selected for population distribution modeling in dense area, including the road network
density (X1), building area (X2), average house price (X3), catering facilities (X4), public facilities
(X5), companies (X6), shopping facilities (X7), transportation facilities (X8), financial insurance (X9),
scientific, educational and cultural facilities (X10), commercial residential buildings (X11), life service
facilities (X12), sports and leisure facilities (X13), medical service facilities (X14), government agencies
and society groups (X15), and accommodation facilities (X16).

The stepwise regression method was used to establish a multiple linear regression model for
dense area. The model is shown as follows:

Y = 51753.187X11 + 26819.234X2 − 20028.002X6 + 19690.791X5 (4)

The random forest model was performed in the same way of global RF modelling as mentioned
above. Ten-fold cross validation and grid search were conducted to find the proper parameters in the
RF model for dense area. It is found that when the max depth of the decision tree was 10 and the
number of estimators was 600, the determinant coefficient (R2) of the CV score reached the maximum
value. Therefore, the random forest model was built, by setting the maximum depth of subtrees to 10,
and the number of estimators to 600. Subsequently, the generated random forest regression model is
applied to each grid cell to predict the population density in dense area. Finally, the simulation result
is obtained by multiplying the population density and cell area. The two simulation results for dense
area are shown in Figure 6, and their accuracy is shown in Table 5.
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Table 5. Model accuracy in dense area.

Model R2 MRE RMSE

LR 0.343 29.28% 16,068.09
RF 0.445 26.12% 12,385.07

3.3.2. Simulation Results for Sparse Area

Compared with dense area, the factors affecting population density distribution in sparse area are
more complex. On the one hand, it can be seen from the land use classification map that, due to the
wide distribution and large area of cultivated land and forest land in sparse area, they should not be
ignored in the modelling of population distribution. On the other hand, it can be seen from the digital
elevation model that the elevation spatial differences in sparse area are obvious. Therefore, the natural
environment and socio-economic factors should be fully considered in the process of selecting factors
affecting the spatial distribution of population. Twenty impact factors are used as the main factors
for spatial modeling of population in sparse area, including cultivated land index (X1), forest land
index (X2), altitude (X3), building area (X4), road network density (X5), night light intensity (X6),
housing price (X7), and point of interest (X8–X20).

The stepwise regression method was used to establish a multiple linear regression model for
dense area. The model is shown as follows:

y = 3747.097X19 + 2635.488X14 + 5723.723X4 − 4189.312X10 + 6198.014X17

−7990.993X8 + 7751.247X18 + 4081.011X16 − 4301.300X12

+2524.483X9 − 3200.836X11

(5)

The random forest model was performed in the same way of global RF modelling as mentioned
above. Ten-fold cross validation and grid search were conducted to find the proper parameters in
the RF model for sparse area. It is found that when the max depth of the decision tree was 7 and the
number of estimators was 600, the determinant coefficient (R2) of the CV score reached the maximum
value. Therefore, the random forest model was built, by setting the maximum depth of subtrees to 7,
and the number of estimators to 600. Subsequently, the generated random forest regression model is
applied to each grid cell to predict the population density in sparse area. Finally, the simulation result
is obtained by multiplying the population density and cell area. The two simulation results for sparse
area are shown in Figure 7, and their accuracy is shown in Table 6.
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Table 6. Model accuracy in sparse area.

Model R2 MRE RMSE

LR 0.847 13.09% 692.45
RF 0.752 15.67% 779.93

3.3.3. Simulation Results for Whole Area

By merging the random forest simulation results of dense area and the linear regression simulation
results of sparse area, the ultimate simulation result for whole study area is obtained (see Figure 8).ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 15 of 22 
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Figure 8. Population distribution map in the study area.

Comparing the simulation results by using the zonal model (Figure 8) with the simulation results
by using the global LR model and global RF model (Figures 4 and 5), it can be found that the simulation
results based on zonal model strategy can reflect the spatial characteristics of the “core-periphery”
population distribution in the study area more clearly. Taking the actual street population as the true
value, the simulation accuracy of zonal model and global model were evaluated by using the goodness
of fit. The results are shown in Table 7.

Table 7. Model accuracy in the whole area.

Model R2 MRE (%) RMSE

Zonal Model 0.713 12.87 5512.90
Global Linear Regression 0.004 235.98 1,007,871.35

Global Random Forest 0.605 32.16 6497.02

It can be seen from Table 7 that the simulation accuracy of zonal modeling is better than that of
non-zonal models. Because the simulation accuracy of the single linear regression model is too low,
it will not be discussed here. Next, the relative errors of the zonal model and the single random forest
model were analyzed. The results are shown in Table 8.



ISPRS Int. J. Geo-Inf. 2020, 9, 654 15 of 21

Table 8. Error statistics for models in the whole area.

Model RE (%) Amount of Street Percentage (%)

Zonal Model

<−50% 4 3.77
−50%∼30% 20 18.87
−30%∼0 35 33.02
0∼30% 20 18.87

30%∼50% 13 12.26
>50% 14 13.21

Random Forest

<−50% 0 0
−50%∼30% 13 12.26
−30%∼0 31 29.25
0∼30% 21 19.81

30%∼50% 8 7.55
>50% 33 31.13

It can be seen from Table 8 that in the results of the zonal model, the proportion of streets with a
simulation error within 30% is 51.89%, while the single random forest model is 49.06%. The difference
between the two models is not obvious. However, in the modeling results, the proportion of streets with
a relative error greater than 50% is 31.13% based on a single random forest model, which is obviously
higher than the zonal model. Compared with the global random forest model, the proportion of streets
with a relative error percentage greater than 50% in the zoning modeling results has decreased from
31.13% to 16.98%. In summary, the mapping results obtained based on the zonal modeling strategy
are more in line with the actual situation, which can significantly improve the accuracy of population
distribution mapping. Thematic maps are drawn for the relative error percentage values of each street
produced by two models. The thematic maps are shown in Figure 9.
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It can be seen from Figure 9 that, the accuracy of simulation results in the region including Baiyun
district, the east of Tianhe district, and Huangpu district are lower than other regions. The relative
error percentages of streets in these area are mostly exceeding 50%. Among them, Tonghe street in
Baiyun district has the highest MRE in the global random forest model result, while Sanyuanli street in
Baiyun district has the highest MRE in the zonal model result. Although different models were applied
to different subareas in this paper, due to the obvious differences in the natural environment and
social-economic development level between two subareas. However, in the dense area, whether global
random forest or zonal model, the model accuracy is relatively low. A reasonable estimation is that as
densely populated areas are areas are usually with rapid urbanization rate, the mismatch of temporal
and spatial resolutions of different data sources may cause large deviations between model results and
statistical data. This inadequacy may reduce the simulation accuracy of the model.

4. Discussion and Conclusions

4.1. Discussion

As for the census data of administrative units, it shows how many people are distributed in a
certain spatial range (e.g., a county or a township), and where the specific distribution cannot be
presented. That is, census data is not designed for the purpose of spatialization, and the mapping based
on grid units can achieve the fine mapping of population distribution [41]. Therefore, the gridded
population mapping is very important for urban management. However, previous studies on fine-scale
population mapping are few, and the spatial resolutions of mapping results are mostly based on a grid
with a 500 m or 1 km spatial resolution, which is difficult to meet the requirements of fine management.
This study produced the 150 m gridded population data in central Guangzhou using the strategy of
zoning modeling integrated two machine learning methods. The state-of-the-art random forest model
and linear regression model were used to integrate multiple data and predict the population density
distribution, which was used for the gridded population mapping. The results provide timely and
important information to policy makers for city management and planning [51]. Obviously, the maps
with grid units are visually coarse and cannot produce the information consisting of the geographical
entities (i.e., the human residential settlements). On the contrary, our mapping result can provide fine
population information by using homogeneous polygons with irregular boundaries. On the basis of
the above experimental analysis, it is necessary to further discuss the following issues.

4.1.1. Principal Findings and Meaningful Implication

(1) The geographic detector model is a very useful tool for identification of influence factor on
population density distribution. As many concerned natural and socioeconomic variables were
input in our modeling, the analysis of the geographic detector model has an obvious positive
effect on understanding the mechanism of influencing population distribution in this study area.
The experimental results of population distribution mapping show that the influence factors
selected by the geographic detector model are reasonable. However, the impact factor selected
by the geographic detector model is not the final modeling factors for linear regression model.
The explanatory power ranking results demonstrated that socioeconomic factors have a greater
impact on the spatial distribution of population in the study area than natural factors. This finding
is consistent with previous studies.

(2) The zoning modeling strategy using machine learning methods can improve the accuracy of
fine-scale population mapping in urbanized areas. The results show that the goodness of fit for
the zoning model result is close to 0.713, while the goodness of fit for single linear regression
model and random forest regression model are 0.0039 and 0.605, respectively. We speculate that
the poor accuracy of the single linear regression model is mainly due to the low spatial resolution
of land use data and the insufficient classification of types, which leads to large deviations in
the simulation results. Compared with zonal model, the reason for the lower accuracy of the
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global random forest model may be due to the neglect of the natural and human environment
differences between dense area and sparse area. For dense area, the accuracy of the random forest
model is better than the linear regression model. While for sparse area, the accuracy of the linear
regression model is better than the random forest model. Compared with the linear regression
model, although the random forest model has many advantages in theory, it does not guarantee
that it has an accuracy advantage in population distribution mapping. Therefore, it is advised
that the zonal modeling strategy should be the first choice for solving regional differences in the
population distribution mapping research.

(3) The application of random forest regression in fine-scale population mapping should be cautious.
Despite the random forest model is popularized in many disciplines as its advantages, some
major and crucial parameters can affect the results achieved by users [58,59], such as max depth
of the decision trees, the max number of features, and so on. Therefore, tuning the parameters is
a crucial work in random forest modelling. Grid search combined with K-fold cross-validation is
an effective method to find the optimal parameters, especially when the number of sample is
small. As the number of streets being used to fit the model is only 106, 10-fold CV was chosen in
our study. The prediction result has a good effect with the goodness of fit value of 0.605 in the
global random forest model.

4.1.2. Explanations for Further Research

Fine-scale population distribution mapping is a very complicated problem. This paper first uses
the geographic detector model to select the influencing factors on population spatial distribution,
and then realizes the population distribution mapping using the single model and zoning model,
and finally compares the simulation results to prove that the accuracy of the zonal method implemented
in this paper has been improved significantly. However, due to the limitation of personal scientific
research ability, time, and other factors, there are still the following shortcomings in the research
process of this article, which need to be gradually improved in the future.

(1) The quality of data source for modeling can be improved. The spatial resolution of NPP/VIIRS
night light data is nearly 500 m, which is too coarse for population mapping in city or commune
scale. Compared to NPP-VIIRS data, spatial resolution and quantitative level of LJ 1-01 data have
increased from 500 m to 150 m. Despite the finest resolution of the LJ 1-01 data, the complex
urban fabric patterns and the uncertainty of the radiation calibration of Luojia1-01 constrain
the application of the images in conducting accurate population estimations at a fine scale.
Besides that, the spatial and type resolution of land use data used in this paper are also not
detailed enough, which may affect the accuracy of the model obviously. Moreover, the time
characteristics of the data source do not match. The street (town) demographic data used in the
research is from 2013, while the land use, night lighting, POI, and other data used in the modeling
are later than 2015. The mismatch of the time characteristics will inevitably affect the accuracy of
the model. Therefore, application of more detailed and accurate dataset in population mapping
should be further studied as soon as possible.

(2) The issue of model uncertainty need be addressed in further studies. Similar to many studies,
different model parameters produce different model results, especially in the field of geography
science. For example, grid size may affect the model result. The gridded population data with
appropriate cell size can reveal the spatial varieties of population distribution pattern more clearly.
According to previous research experience, in order to prevent the smallest residential units from
falling into the same grid, the grid size is set to 150 m in our study. However, whether there is a
more suitable grid size for the model is still to be studied. As we know, sensitivity analysis is a
useful method to explore the uncertainty of modelling. Consequently, the issue of uncertainty
using sensitivity analysis method in the population mapping is another topic need to be explored.

(3) There is still potential for improvement in the selection of modeling factors. In fact, the influence
mechanism of population distribution is a tough topic. Although this paper identified the main
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influence factors by integrating previous experience with geographic detector model analysis, it is
still difficult to fully reveal the inherent mechanism. For example, random forest model can also
be used to distinguish the importance of different features [60]. Among the impact factors selected
in this article, POI data accounted for the vast majority, which has an extremely important impact
on the modeling of population distribution. Meanwhile, each category of POI may be correlated
with each other, which may cause some feature importance bias. Further studies must deal with
the independence of each feature or fitting the model by integrating all the POIs into one layer.

Besides that, only two classic machine learning methods such as linear regression and random forest
are used in this paper. The applicability and accuracy evaluation of other machine learning methods such
as neural networks, support vector machine, and so on, should to be further studied. In other words,
more efforts are needed to apply alternative ways to build new models with proper parameters.

4.2. Conclusions

This study provided a zonal method for downscaling the census population to 30 m’ grid scale
in central Guangzhou, China. Firstly, the geographic detector model is used to select the influencing
factors on population spatial distribution. Then, the population distribution mapping with the
single model and zoning model are realized respectively. Finally, the accuracies of different model
result are compared. The street-level accuracy evaluation results show that, the proposed approach
achieved good overall accuracy, with R2 being 0.713 and RMSE being 5512.9. Meanwhile, the goodness
of fit for single linear regression model and random forest regression model are 0.0039 and 0.605
respectively. Our study demonstrated that the accuracy of the population distribution mapping can
be effectively improved compared with mapping which does not use the zoning modeling strategy.
The results indicated that the proposed method has great potential in fine-scale population mapping.
For dense area, the accuracy of the random forest model is better than the linear regression model.
For sparse area, the accuracy of the linear regression model is better than the random forest model.
Therefore, it is advised that the zonal modeling strategy should be the first choice for solving regional
differences in the population distribution mapping research.
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