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Abstract: The accurate prediction of tourist flow is essential to appropriately prepare tourist attractions
and inform the decisions of tourism companies. However, tourist flow in scenic spots is a dynamic
trend with daily changes, and specialized methods are necessary to measure it accurately. For this
purpose, a tourist flow forecasting method is proposed in this research based on seasonal clustering.
The experiment employs the K-means algorithm considering seasonal variations and the particle
swarm optimization-least squares support vector machine (PSO-LSSVM) algorithm to forecast the
tourist flow in scenic spots. The LSSVM is also used to compare the performance of the proposed
model with that of the existing ones. Experiments based on a dataset comprising the daily tourist
data for Mountain Huangshan during the period between 2014 and 2017 are conducted. Our results
show that seasonal clustering is an effective method to improve tourist flow prediction, besides,
the accuracy of daily tourist flow prediction is significantly improved by nearly 3 percent based on
the hybrid optimized model combining seasonal clustering. Compared with other algorithms which
provide predictions at monthly intervals, the method proposed in this research can provide more
timely analysis and guide professionals in the tourism industry towards better daily management.

Keywords: seasonal clustering; short-term forecast; tourism flow forecast; optimization algorithm

1. Introduction

In recent years, owing to steady improvements in the standards of living, tourism has become an
important part of leisure and lifestyle for people worldwide. According to data released by the World
Travel Tourism Council, tourism was the third largest industry in the world in terms of the growth rate
of Gross Domestic Product (GDP) in 2019. The growth rate of tourism was reportedly 3.5%, which was
significantly greater than the global economic GDP growth rate of 2.5% [1]. In particular, the tourism
industry created nearly 80 million jobs in China, accounting for 10.3% of the country’s total labor
force. At the same time, its output value was estimated to be 10.9 trillion Yuan, accounting for 11.3%
of China’s economy [1]. The rapid development of the world’s tourism industry has promoted the
vigorous development of China’s own tourism industry. China’s tourism industry has entered the
stage of ‘mass tourism’, with people’s willingness to travel constantly rising [2]. It is expected that the
domestic tourism market will continue to thrive even in the post-epidemic era [3].

With the promotion of the economic improvement of the country and the region, the rapid
development of tourism has also ushered in multiple problems pertaining to daily management
services at tourist destinations, particularly at mountainous scenic spots, which play a pivotal role
in Chinese tourism [4]. Their unique topography and landforms, extensive spatial range, poor
natural conditions, and severe seasonal conditions make them inaccessible to personnel. In particular,
the delivery of materials and resources, scheduling of arrangements for transportation, etc., pose

ISPRS Int. J. Geo-Inf. 2020, 9, 676; doi:10.3390/ijgi9110676 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi9110676
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/9/11/676?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2020, 9, 676 2 of 17

particular challenges to management services in mountainous environments [5]. The effects of these
challenges are primarily reflected in delays in passenger flow. All tourist destinations experience
heavy tourist seasons and off-seasons, resulting in a serious seasonal imbalance in the tourist flow [6].
During the tourism season, spots are often overcrowded. This causes traffic congestion, overextends
hotel, catering, and personnel supplies, leads to the overutilization of tourism resources and the
environment, and degrades the quality of service for tourists, reducing overall tourist satisfaction.
On the other hand, the oversaturation of tourists in specific spots also poses a threat to their own
personal safety [6]. For example, on 4 October 2014, due to a surge in the number of tourists during
the Golden Week, the passenger capacity at the Three Gorges scenic spot in Yichang, Hubei, was
insufficient, resulting in hundreds of tourists being stranded at the terminal. On 2 October 2013, several
tourists were stuck at the entrance of Jiuzhaigou Valley because of overcrowding. On 26 October 2014,
the traffic was almost paralyzed at the Beijing Xiangshan area, leading to thousands of people being
stranded at the bus station. Furthermore, the Golden Week of Tourism has been witness to a series of
security incidents which have resulted in a poor travel experience for tourists [7]. However, during the
off-season, the number of tourists at destinations are considerably low, resulting in idle hotels and
wasted resources, materials, personnel, etc. These considerations corroborate the significance of the
accurate forecast of tourist flow in the tourism industry.

Tourist flow forecasting can be divided into two categories: long-term forecasting and short-term
forecasting. Both have important implications, and the determination of an accurate trend can aid
professionals in the tourism industry [8,9], particularly with respect to problems such as optimal
allocation of resources and managerial staff [10].

The forecasting of tourist flow in tourist destinations is affected by several factors, including
weather [11], climate [12], and temperature [13]. Tourism is inherently seasonal [14] as the constraints
of time and climate create inevitably unbalanced tourist flows [15]. Both natural seasons and artificial
seasons defined by holidays and other institutional factors play a part in the determination of tourist
flow [16]. Thus, both factors must be considered during prediction attempts. To the best of our
knowledge, scant attention has been paid to seasonality in previous works on this topic. For instance,
Huang and Min established a seasonal autoregressive average model combined with a difference
method to eliminate seasonal effects on tourist flow forecasting, and experimentally verified its
effectiveness [17]. However, these studies have focused solely on the elimination of seasonal influences
on the prediction of tourist flow by proposing seasonal index adjustments or by establishing a seasonal
model. Few studies have considered the influence of the alternatives of natural seasons in the forecast
of tourist flow.

Tourist flows exhibit complicated non-linear variations. This makes it difficult to identify a
relationship between the tourist flow later and the current influencing variables based on simple
mathematical models. In recent years, with the development of machine learning, nonlinear models
have been widely used in short-term time series forecasting. For instance, artificial neural network
(ANN)-based methods and support vector machines (SVM) have already been used in the forecasting
of tourist flow [18,19]. However, neural network-based models lack a systematic procedure for
model construction because of their flexibility. This necessitates multiple trials to identify the optimal
parameters required to obtain a reliable neural model [20]. Compared with ANN, SVM is more capable
of avoiding problems such as data overfitting and local minima while maintaining positive features
such as robustness. Moreover, SVM is less complicated than ANN in terms of parameter selection [21].
The LSSVM is an upgraded version of SVM that was developed to improve the accuracy of the standard
SVM [22]. Compared to SVM, it is capable of using equality constraints instead inequalities, enabling
it to solve sets of linear equations instead of being restricting to quadratic programming [23]. However,
the prediction accuracy of the LSSVM algorithm is significantly dependent on the selection of two
specific parameters [24]. To address this drawback, certain optimization algorithms, including the
genetic algorithm (GA) and the fruit fly optimization algorithm, are used to identify the optimal values
of the LSSVM parameters to enhance its prediction accuracy [25,26]. Among those intelligence-based



ISPRS Int. J. Geo-Inf. 2020, 9, 676 3 of 17

optimization algorithms, PSO, proposed by Kennedy and Eberhart [27], has been widely used in
optimization processes, model classification, machine learning, and neural network training [28] owing
to its ease of implementation and its high coherence and coordination [29].

In addition to the development of such optimization algorithms, some studies have attempted to
curate relevant information by analyzing comments on online forums. Certain researchers have used
search engine data to forecast hotel demands [30,31] by designing a composite search index to forecast
tourist flow [32]. Furthermore, Google Trends has been widely used to improve the performances of
traditional models [10,33,34]. Related works have pointed out that combining different data sources
and techniques can lead to higher accuracy [35]. Even price levels and web traffic have been as used as
variables in certain studies [36]. User interactions on online forums have also been used to forecast
tourist flows [37]. However, most of the methods are more suitable for long-term forecasting, rather
than short-term forecasting.

As few research studies have been conducted to investigate short-term forecasting methods and
substitutes to natural seasons in the forecasting process of tourist flows, we propose a seasonal
clustering-based method, which can classify seasons based on their characteristics to address
this shortcoming. We combine seasonal re-clustering and the PSO-LSSVM model and apply the
combination for short-term daily tourist flow forecasting. The crucial hypothesis in this research is
that seasonal clustering could improve tourist flow forecasting. Our results confirm the validity of the
hybrid optimized model combining seasonal clustering and provide practically useful implications
for management.

The remainder of this research is organized as follows. Section 2 presents the methods, including
principles underlying the least squares support vector machine (LSSVM) and the particle swarm
optimization (PSO) algorithms, and an illustration of the PSO-LSSVM procedure that considers seasonal
clustering, and the experiments. Section 3 details their results. Section 4 is the discussion. Finally,
Section 5 presents the conclusions, as well as the limitations and implications of this research.

2. Methods

2.1. Least Squares Support Vector Machine

The essential characteristic of LSSVM is that it is designed to utilize equality constraints and
transform quadratic programming problems to problems of direct solution of quadratic equations.
Consider a dataset (xi, yi), xi ∈ Rn, y ∈ R, where xi denotes the ith input item in an n-dimensional space
and yi denotes the output value corresponding to xi, l is the total number of data points, i = 1, 2, · · · · · · l,
and n is the number of dimensions of input variables. As a non-linear prediction model, the LSSVM
model can be expressed as follows:

f (x) = wTφ(x) + b, (1)

where w denotes the weight vector, b is the offset, and φ(x) represents a nonlinear transformation that
maps the input data (xi) into a high-dimensional feature space. According to the structure minimization
principle, the optimization objective function of the LSSVM can be expressed as follows:

min
1
2
||w ||2 +

1
2

C
l∑

i=1

e2
i , (2)

s.t.wTφ(Xi) + b + ei = yi, i = 1, 2, · · · · ··,

where ei denotes the error and C represents a positive penalty coefficient. A Lagrange multiplier, λi,
is introduced to solve the optimization problem. Hence, Equation (2) can be transformed into the
following form:
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L(w,λi, b, ei) =
1
2
||w ||2 +

1
2

C
l∑

i=1

e2
i −

l∑
i=1

λi
(
wTφ(xi) + b + ei − yi

)
, (3)

Next, the partial derivatives corresponding to each variable of Equation (3) are calculated:

∂L
∂w

= w−
l∑

i=1

λiφ(xi) = 0⇒ w =
l∑

i=1

λiφ(xi), (4)

∂L
∂λi

= −
l∑

i=1

(
wTφ(xi) + b + ei − yi

)
= 0⇒ yi = wTφ(xi) + b + ei, (5)

∂L
∂b

=
l∑

i=1

λi = 0, (6)

∂L
∂ei

=
1
2
× 2C

l∑
i=1

ei −

l∑
i=1

λi = 0⇒ λi = Cei, (7)

The variables, w and ei, are then eliminated. This yields the following linear equation:[
0
Y

]
=

[
0

AT
AT

B + C−1I

][
b
λ

]
, (8)

where Y = (y1, y2, ......, yl), A = (1, 1, ......, 1)T, Bi j = φ(xi)
Tφ

(
x j

)
, λ = (λ1,λ2, ......λl), and I denotes the

unit matrix. Hence, the LSSVM can be expressed as follows:

y =
l∑

i=1

λiK(x, xi) + b, (9)

where K(x, xi) denotes the kernel function of a feature space.

2.2. Particle Swarm Optimization

A PSO algorithm begins by initializing a random group of particles and obtains the optimal
solution after performing several iterative searches. During each iteration, the particles update their
positions and velocities based on individual and global extrema. Let us assume that there is a total of N
particles that are initialized and scattered in a D-dimensional space. Further, assume that the position
of the ith particle is Xi = (xi1, xi2, · · · · ··, xiD), and that the current best position for the ith particle is
local_xi = (local_xi1, local_xi2, · · · · ··, local_xiD), whereas the best position found by the entire swarm is
global_xi = (global_xi1, global_xi2, · · · · ··, global_xiD). In such a scenario, the new position of a particle
after t time-instants is obtained by adding the velocity vector Vi = (vi1, vi2, · · · · ··, viD) to its current
position. This can be expressed as follows:

x(t+1)
iD = xt

iD + wP× vt+1
iD , (10)

The velocity of any particle is updated using the following formula:

Vt+1
iD = wV ×Vt

iD + c1 × rand×
(
localxt

id
− xt

id

)
+ c2 × rand×

(
globalxt

iD
− xt

iD

)
, (11)

where c1, c2 denote the acceleration coefficients, wV, wP represent the elasticity coefficients with initial
values equal to 1, rand denote two random numbers with uniform distributions in the range [0,1],
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local_xt
id is the best position identified by each individual particle, and global_xt

iD is the best position
identified by the global swarm.

2.3. Seasonal Clustering Approach

Several algorithms are used for clustering analysis, and they can be roughly divided into four
categories [38]: (1) those based on cluster formation methodology, such as top-down, bottom-up, and
analytical optimization techniques [39]; (2) those dependent on the cluster model obtained, such as
stratification, centroids (e.g., K-means), distribution subspaces, and graph-based models; (3) those
obtained via a membership function, which may be further subdivided into hard or soft clustering [40];
and (4) those that use groups to define the distinction between overlapping clusters and are less
sensitive to noise because it becomes equally distributed among them [41].

The K-means clustering algorithm is a typical representative classification clustering algorithm
due to its simplicity and effectiveness. It is particularly suitable for a simple clustering of big data.
Considering that the primary characteristic of natural seasons is the change in weather [42], we attempt
to analyze the correlation between climate-related factors and variations in daily tourist flow. The details
of seasonal clustering are as follows.

Step 1: Analysis of the factors related to seasonal clustering.
Step 2: Input of the variables into the K-means algorithm to obtain the results of seasonal clustering.

2.4. Procedure of PSO-LSSVM Considering Seasonal Clustering

The present research primarily aims to prove that the use of seasonal clustering during the
pre-processing of data is beneficial to the accurate prediction of daily tourist flow. Combined with
historical tourist information, the PSO-LSSVM model is proposed to illustrate the positive impact of
seasonal clustering on the prediction of tourist flow in tourist destinations. In the PSO-LSSVM model,
the PSO algorithm is used as an optimization algorithm to optimize the regularization parameter (γ)
and the kernel parameter (σ) of LSSVM. The considerations of seasonal clustering in PSO-LSSVM can
summarized in the following steps.

Step 1. The natural seasons are clustered. The new natural season of the tourist destination
combined with the spot’s historical tourist data comprises a dataset. The original dataset is normalized
and divided into training and test datasets.

Step 2. The parameters of the PSO algorithm, including population sizes, evolution times, and
learning factors, are initialized.

Step 3. The swarm of particles is initialized with random individual velocities and positions.
Step 4. The various initialized parameters are fed into LSSVM, and then the fitness value of each

particle is evaluated. In this research, the root mean squared error (RMSE) defined in the test dataset is
used as the fitness function, as follows:

f itness = RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (12)

where n denotes the number data points in the dataset, and yi and ŷi represent the actual value
and the estimated value, respectively. The local and global optima are then calculated following the
fitness function.

Step 5. The velocity and position of each particle is updated using Equations (10) and (11).
Step 6. Steps 4 and 5 are repeated until the termination criterion is satisfied and the optimal values

of the LSSVM parameters are obtained. The flow chart of the procedure of PSO-LSSVM is shown in
Figure 1.
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Figure 1. Flow chart of the procedure of the particle swarm optimization-least squares support vector
machine (PSO-LSSVM).

In this research, to evaluate the forecasting accuracy, the mean absolute percentage error (MAPE)
and RMSE are used as the evaluation criteria. It is evident that the values of MAPE or RMSE are
inversely proportional to forecasting accuracy:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣∣∣×100%, (13)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (14)

where yi, ŷi denote the actual and evaluated data, respectively, and n denotes the total number of
data points in the test dataset. It should be noted that the RMSE indicator only considers the annual
average in the last row of the table as a supporting indicator. Consequently, the MAPE indicator is
more suitable for prediction of daily trends.
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2.5. Data Preprocessing

To improve the accuracy of prediction, it is necessary to normalize the original sequence of input
variables. The following normalized formula is adopted in this research:

u =
(umax − umin) × (xi − xmin)

xmax − xmin
+ umin (15)

where u denotes the normalized value with uniform distribution in the range [0,1]; and umax and
umin are the upper and lower limits, respectively. In this research, it is assumed that umax and umin.
xi denotes the tourist flow on the ith day in the original one-year data series, and xmin and xmax denote
the minimum and maximum values of the original sequence, respectively.

2.6. Data Collection and Correlation Analysis

To verify the feasibility of the proposed algorithm, the dataset of the daily tourist flow at Mountain
Huangshan during the period of 2014 to 2017 is accessed, the tourist flow data comes from our
cooperation project with Huangshan Management Committee. Besides, we investigated the spot’s
historical temperature and weather for this research; the temperature is measured in degrees Celsius
and the weather is measured in different categories such as sunny, cloudy, heavy snow, moderate
snow, and so on. The tourist flow dataset contains both original regular daily tourist flow data and
original tourist flow data on holidays. Four types of data are included in the data set: X1, the daily
tourist flow on a particular day; X2, the tourist flow volume on the same day in the previous week;
X3, the tourist flow volume on the same day of the previous year; and Y, the daily tourist flow on
the subsequent day. Each type contains 1461 data points. The relationship between the historical
tourist flow, which includes X1, X2, X3, and the daily tourist flow of the subsequent day is primarily
determined by the respective correlation coefficients—the correlation coefficients between pairs of data
items are proportional to the suitability of the selected factors as inputs to the model.

Table 1 presents the correlation coefficients between X1, X2, X3, and Y. As expected, X1 is
observed to be superior to the other factors. Consequently, X1 is selected as the input variable in the
proposed model.

Table 1. Correlation coefficients between the daily tourist flow of tomorrow and each element of the
historical tourist flow.

X1 X2 X3

Y 0.726 0.468 0.347

In addition, the severity of weather, weekday, and official holiday are also added to the model

as dummy variables X4, X5 and X6. X4 =

{
1
0

, where 1 represents severe weather, such as blizzard,

heavy snow, moderate snow, heavy rain, thunderstorms, and showers, which would significantly
affect people’s willingness to travel, and 0 represents non-severe weather, such as sunny, cloudy, and

drizzle. X5 represents a matrix which represents the day of the week. X6 =

{
1
0

, where 1 represents

an official holiday; 0 represents an ordinary day. The use of dummy variables is another difference
between our research and previous ones. The incorporation of such factors allowed us to approach the
problem of prediction from a more microscopic perspective.

2.7. Parameter Initialization and the Addition of Seasonal Factors

The initial parameters are set as follows, the size of the swarm is taken to be 30, maximum
number of iterations is set as 300, and acceleration coefficients c1 and c2 are 2 and 2, respectively.
To verify whether the ambient natural season affects the accuracy of prediction of the tourist flow on
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the subsequent day, a binary virtual variable-based approach is introduced to represent the different

seasons; si =

{
1
0

(1 represents the ith natural season i =1, 2, 3, 4).

3. Results

The results of the experiments above are shown in this section.

3.1. Analysis of Influence of Original Natural Season

This research aims to investigate the effect of seasonal changes on tourist flow on the subsequent
day. The daily tourist flow at scenic destinations varies dramatically over the different seasons,
primarily because of the differences in temperature. In this part, the year is assumed to be divided
into four seasons following the meteorological department’s scheme: spring (March, April, and May),
summer (June, July, and August), autumn (September, October, and November), and winter (December,
January, and February) [15]. Figure 2 illustrates the distribution of the daily tourist flow on the
subsequent day at Mountain Huangshan over the period of 2014 to 2017.

Figure 2. Daily tourist flow at Mountain Huangshan during 2014–2017.

It is clear from Figure 2 that due to the daily fluctuations in tourist flow, the distribution is complex
and non-linear. Further, the daily tourist volume at Mountain Huangshan during the period from
March to November is observed to remain high every year, whereas during December to January it
appears to be consistently low. Further analysis of the data depicted in Figure 2 is presented in Tables 2
and 3.

Table 2. Total number of tourists during each season.

Spring Summer Autumn Winter

March 2014–February 2015 799,838 976,109 827,444 385,479
March 2015–February 2016 815,947 1,062,968 896,006 529,186
March 2016–February 2017 761,308 869,248 717,781 661,204
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Table 3. Average number of tourists during each season.

Spring Summer Autumn Winter

March 2014–February 2015 8694 10,610 9093 4283
March 2015–February 2016 8869 11,554 9846 5815
March 2016–February 2017 8275 9448 7887 7346

Tables 2 and 3 reveal that the total tourist flow and the average tourist flow remain high during
spring, summer, and autumn each year. It is further confirmed that the tourist flow is maximum during
the summer and that it is the second highest during spring and autumn. The tourist volume in winter
is significantly less than that during the other three seasons. Thus, it can be concluded that the tourist
flows in different seasons are significantly different.

3.2. Predictions by the Models and Their Comparison before Seasonal Clustering

In this experiment, to satisfy the requirements of the model, the dataset is divided into a training
dataset (2014–2016) and a test dataset (2017). To enhance the prediction accuracy, all the data are
normalized using Equation (15) with a range of [0,1]:

y =
x− xmin

xmax − xmin
, (16)

where y denotes the normalized data, x denotes the original input data, and xmax, xmin are the maximum
and minimum values in the dataset, respectively.

Following that, the vectors (X1, X4, X5, X6, S1, S2, S3, S4), including the natural seasons, are used as
input variables in the predictive models, and the vectors (X1, X4, X5, X6), without considering seasonal
factors, are used as input variables to the predictive models on a separate iteration for comparison
purposes. Both the PSO-LSSVM algorithm and the LSSVM algorithm are adopted as predictive models
for each of the two sets of input vectors. Table 4 presents the results of this experiment.

Table 4. Prediction results of PSO-LSSVM and LSSVM with different sets of parameters.

(X1, X4, X5, X6) (X1, X4, X5, X6, S1, S2, S3, S4)

LSSVM PSO-LSSVM LSSVM PSO-LSSVM

January 42.52% 41.67% 38.65% 39.01%
February 40.00% 38.84% 34.82% 34.04%

March 29.88% 30.60% 36.81% 32.17%
April 34.04% 33.06% 31.38% 25.76%
May 42.74% 42.46% 43.06% 40.09%
June 28.44% 29.74% 30.14% 31.58%
July 10.07% 9.44% 9.10% 10.28%

August 13.44% 12.92% 13.93% 12.41%
September 26.73% 26.28% 27.05% 25.50%

October 20.72% 21.49% 22.07% 20.19%
November 24.85% 26.11% 28.18% 28.98%
December 34.28% 31.07% 24.47% 24.90%

Average MAPE 28.86% 28.53% 28.23% 27.08%
Average RMSE 4201 4214 4091 4030

(1) Table 4 reveals that the mean absolute percentage error corresponding to each month is not
always better for the models that consider the seasonal factors than those of the models that do not.
However, the average MAPE/RMSE scores of the two models are observed to be lower when they
incorporate the seasonal factor within themselves. This establishes the fact that the ambient natural
season is a factor that affects the accuracy of prediction.
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(2) The annual mean absolute percentage error of the PSO-LSSVM model is observed to be better
than that of the LSSVM model, which indicates that the PSO algorithm is an effective method to solve
the optimization problem for the parameters in the LSSVM algorithm.

The prediction accuracies of PSO-LSSVM also demonstrate that the prediction errors corresponding
to January, February, and May are relatively high when seasonal factors are not considered, and that
the maximum prediction error is 42.46%. When the ambient natural season is considered, the high
mean absolute percentage errors are, in particular, are observed to reduce by nearly 2.5%, even though
the maximum prediction error remains high at 40.09%. This may be attributed to the fact that the daily
tourist flow varies with the alternating seasons. Obtaining accurate forecasts simply based on the
ambient natural seasonal factor is unrealistic. Hence, the pre-treatment of seasonal variation factor
is necessary.

Therefore, PSO-LSSVM is verified to be an effective method for the accurate forecasting of daily
tourist flow at tourist destinations. Further, the predictions verify that consideration of the ambient
natural season reduces the prediction error by nearly 2%. However, given the differences in time and
temperature, a simple incorporation of the seasonal factor cannot be expected to satisfactorily enhance
the accuracy of forecasting. Hence, the pre-treatment of the seasonal variation factor is necessary.

3.3. Adjustment of Natural Seasons Based on K-Means

During the practical application of the predictive model, the climate changes from cold to warm
or from warm to cold with the variation of seasons. In other words, the change of temperature within
the same season might alter the trend of daily tourist flow at a destination, whereas the daily flow
may be identical during successive months despite a season change between them if the difference
in temperature is not palpable to tourists. Therefore, if the forecasting model considers the natural
seasons directly, the accuracy of its predictions will be adversely affected. This leads to the necessity of
pre-treating the seasonal variation factor.

Corresponding to each season, the daily tourist flow varies with the change of time and temperature.
As is evident from the daily tourist data (from the cooperation project with Huangshan Management
Committee) during the period from March, 2014 to February 2015 at Mountain Huangshan, the daily
tourist volume varied in accordance with the maximum and minimum daily temperatures. Figure 3
illustrates the tourist flow over different seasons.

Figure 3. Daily tourist flow, along with the maximum and minimum daily temperatures, during March
2014 to February 2015.
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As observed in the figure, the distribution of tourist flow over the four seasons exhibits an
almost identical trend to that of daily temperatures, except for the sharp changes on four statutory
holidays. Further conclusions can also be drawn from the data. During spring, the temperature in
mountainous environments remains relatively low in early March, thereby lessening the daily tourist
flow during that time. The data confirms that the daily number of tourists during this period is 2000
on average. With time, the temperature gradually rises as the climate becomes more comfortable.
The climate becomes more suitable for travelling; thereby increasing the daily tourist flow at the
mountain. Although summer is the hottest period of the year, the temperature at Mountain Huangshan
stays consistent at 25 ◦C. Lu corroborated that Huangshan exhibits monsoon climate between June and
August, which is quite conducive to travelling [14]. Moreover, the summer holidays are scheduled
between July and August, during which people prefer to travel. Due to these factors, the daily tourist
flow remains high during this period. In autumn, the overall temperature in mountainous destinations
remains very comfortable during September and October, and the tourist flow remains high. However,
the temperature starts to decrease in November, the number of people willing to visit the mountains
lessens. Overall, in winter, the daily tourist flow at Mountain Huangshan remains low because of the
low temperature. However, the tourist flow may exhibit increasing trends even in winter owing to
the temporary rise in temperature, whereas during the majority of the season, the daily tourist flow
exhibits the same distribution as the ambient temperature and humidity. Therefore, clustering the
seasons at scenic tourist destinations according to the distribution of daily tourist flow is necessary.

Based on the analysis, the daily highest and lowest temperatures, the tourist flow of a particular
day, and the time are selected as input variables. The K-means algorithm is adopted to adjust the
natural season at the destination of Mountain Huangshan. Taking the data pertaining to 2014 as an
example, the clustering results are shown in Figure 4.

Figure 4. Results of seasonal clustering for the data pertaining to 2014.

In the figure, we use the number 1 to represent cluster 0, number 2 for cluster 1, number 3 for
cluster 2 and so on. As is evident, when the year is divided into three seasons, some sample points
are clustered into very few clusters. When it is divided into five classes, some objects belong to more
than one category. However, when it is divided into six classes, only a few objects belong to each class,
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which is insufficient to form a category. Tables 5 and 6 present the specific clustering results for the
cases of three and four classes.

Table 5. Clustering results for three classes.

One Two Three

Month January, February, March April, May, June, July, August, September, October November, December

Table 6. Clustering results for four classes.

One Two Three Four

Month January, February
1 March–14 March

15 March–31 March,
April, May

June, July, August,
September, October

November,
December

To facilitate the presentation of the clustering results, Figure 5 is designed, from which it can be
concluded that when the year is divided into three categories, April, May, June, July, August, September,
and October are clustered into a single category. However, during April to October, the temperature
initially increases and then decreases, affecting the daily tourist flow accordingly. After repeated trials,
the results confirm that a stable state is reached when the year is divided into four seasonal classes.
The final result is also presented in Figure 5, in which January, February, and 1–14 March is taken to
constitute one class. During this time, the temperature is relatively low, and the daily tourist flow
remains almost identical throughout the period. However, in late March, the temperature begins
to gradually increase, and the climate becomes more comfortable. Thus, the daily tourist flow at
mountainous destinations during this time is similar to that of April and May. Therefore, early March
is classified in the same category as January and February, whereas late March is now classified
in the same category as April and May. Similarly, in June, July, and August, although the surface
temperature is relatively high, the temperature in mountainous spots remains relatively low; and so,
they are grouped together with September and October into a single class. Meanwhile, November and
December define their own category.

Figure 5. Clustering results of different quantity categories.

3.4. Predictions by Various Models and Their Comparison after Seasonal Clustering

To verify the effectiveness and feasibility of seasonal clustering, we use the vectors

(X1, X4, X5, X6, Si) as input variables in the models, where si′ =

{
1
0

(1 represents the ith natural season

i = 1, 2, 3, 4) denotes the new natural seasons. In a separate experiment, we use the vectors representing
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the originally defined natural seasons for comparison purposes. As before, both PSO-LSSVM and
LSSVM are tested with respect to both sets of vectors. Tables 7 and 8 present the results of the predictions.

Table 7. Results of the predictions by PSO-LSSVM and LSSVM using three and four seasonal classes.

(X1, X4, X5, X6, S1, S2, S3, S4)

Three Four

LSSVM PSO-LSSVM LSSVM PSO-LSSVM

January 39.59% 37.92% 36.31% 35.39%
February 33.07% 31.37% 34.17% 33.38%

March 31.26% 26.50% 30.90% 26.35%
April 35.31% 32.20% 31.47% 26.52%
May 48.07% 42.57% 44.44% 42.32%
June 28.78% 29.24% 30.12% 30.95%
July 8.80% 9.26% 9.15% 8.98%

August 15.20% 13.17% 14.67% 12.98%
September 29.09% 27.33% 29.23% 27.22%

October 21.72% 21.03% 22.11% 20.03%
November 25.01% 22.24% 24.89% 22.51%
December 26.70% 31.93% 27.29% 25.29%

Average MAPE 28.49% 27.00% 27.82% 25.91%
Average RMSE 4051 3977 3967 3798

Table 8. Results of the predictions by PSO-LSSVM and LSSVM under different definitions of seasons.

Original New

LSSVM PSO-LSSVM LSSVM PSO-LSSVM

January 38.65% 39.01% 36.31% 35.39%
February 34.82% 34.04% 34.17% 33.38%

March 36.81% 32.17% 30.90% 26.35%
April 31.38% 25.76% 31.47% 26.52%
May 43.06% 40.09% 44.44% 42.32%
June 30.14% 31.58% 30.12% 30.95%
July 9.10% 10.28% 9.15% 8.98%

August 13.93% 12.41% 14.67% 12.98%
September 27.05% 25.50% 29.23% 27.22%

October 22.07% 20.19% 22.11% 20.03%
November 28.18% 28.98% 24.89% 22.51%
December 24.47% 24.90% 27.29% 25.29%

Average MAPE 28.23% 27.08% 27.82% 25.91%
Average RMSE 4091 4030 3967 3798

Table 7 illustrates that when the year is divided into four seasonal classes, the MAPE/RMSE scores
of both models are better corresponding to each month than those when the year is divided into three
seasonal classes. Further, the reasoning behind dividing the year into four seasonal categories has
already been provided. Moreover, when the year is divided into four seasonal classes, the prediction
accuracy of PSO-LSSVM is observed to be better than that of LSSVM, which establishes the feasibility
of the proposed model.

Table 8 shows the results of the predictions by PSO-LSSVM and LSSVM under different definitions
of seasons.

(1) As is evident from Table 8, although the adoption of seasonal clustering does not reduce the
monthly mean absolute percentage error, it does reduce the annual mean absolute percentage error by
nearly 1.5%. Additionally, the RMSE indicator also corroborates our conclusion. This establishes that
seasonal clustering is effective in enhancing the prediction accuracy.
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(2) The annual MAPE/RMSE score of the PSO-LSSVM model is observed to be better than that of
LSSVM overall, as can be seen from Table 8, PSO-LSSVM model has a better performance than LSSVM
in most of the months, the error was reduced by an average of nearly 1.5%. This corroborates our
conclusion that the PSO-LSSVM model is an effective method to forecast daily tourist flow at scenic
tourist destinations.

(3) The seasonal clustering that produces the best results classifies January, February, and
1–14 March into one group, November and December into another group, and April and May into yet
another group.

By comparing the predictions by PSO-LSSVM, we corroborate that the mean absolute percentage
error corresponding to March decreases significantly after the seasonal adjustment. Although the
MAPE scores corresponding to April and May are a little higher than those before clustering, the MAPE
scores of November, December, and March are lower than those before clustering, and the value of
MAPE is observed to decrease throughout the year. Therefore, the method proposed in this research is
effective, moreover, the RMSE indicator also corroborates the validity of the proposed method.

4. Discussion

The prediction of daily tourist flow at scenic destinations is essential to the tourism industry, and
the accuracy of forecasting is highly significant for the optimal distribution of tourism resources [8,37,43].
Mountain Huangshan is a famous scenic spot in China, and its daily tourist volume is known to exhibit
complex nonlinear characteristics and the historical tourist data exhibits various trends of fluctuation
during different seasons [44]. This research considers the tourist flow data at Mountain Huangshan
between 2014 and 2017 as a dataset and analyzes the variation of daily tourist volumes with respect
to different seasons. On the one hand, particle swarm optimization is used to optimize the least
squares support vector machine; on the other hand, we focus on rearranging the seasons by clustering
algorithm. In response to results in our research, it can be pointed out that the prediction performance
can be improved from two aspects: the predictor itself and the input of the algorithm. The experimental
results above verify the correctness of our research that the effect of classical forecasting model can be
optimized by seasonal adjustment and it has an inspiration and practical value for short-term daily
tourist flow forecasting.

In summary, compared with the previous research, the differences and advantages of this research
are as follows:

(1) Instead of forecasting tourists flow at monthly or yearly intervals, this research is conducted at
a daily time interval, and this improvement can significantly increase the efficiency of prediction.

(2) The prediction performance of the hybrid model in this research is significantly improved via
the proposed optimization algorithm, which can be seen from the Section 4.

(3) Seasonal adjustment and division were included into the forecasting model as factors in our
research, and it proves to be an effective method to improve the predictive performance of the model.
Meanwhile, previous research works rarely considered the question, as mentioned in Section 2.

The results of this research are helpful to tourism management, and the following practical
implications can be provided in management:

(1) According to the results of seasonal clustering, managers can always adopt a different hybrid
model instead of using the same model. Namely, it can improve the specificity of actual management.

(2) The accurate short-term daily tourist flow forecasting can help reduce the number of crowding
incidents to improve the quality of tourists’ experience.

(3) In terms of resource allocation management of scenic spots, the accurate tourist flow forecasting
method presented in this research can reduce the waste of resources.

In general, this research has an inspiration for tourist flow forecasting. It fills the gap of tourist
flow forecasting by introducing the idea of seasonal clustering, which proved to be effective. The results
of this research can also provide some practical implications.
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5. Conclusions

In this research, the ambient natural season is taken to be an essential factor in the prediction
of the daily tourist flow on the subsequent day, and a hybrid optimized model is proposed. The
experimental results corroborate that: (1) season is a factor that profoundly affects the accuracy of
prediction of the daily tourist flow, which can be supported by evidence from Table 4; (2) seasonal
adjustments improve the prediction accuracy effectively by nearly 3%. In particular, it is suitable for
months that exhibit significant temperature variations, e.g., March. Evidence from Tables 7 and 8 can
support it; (3) the superiority of PSO-LSSVM over LSSVM is also verified and it can be supported by
evidence from Tables 4, 7, and 8. This is attributed to the role of the PSO method in the determination
of optimal values of LSSVM parameters based on its excellent coherence coordination. Further, the
effective adjustment of natural seasons based on the K-means algorithm is another important reason
behind the superiority of PSO-LSSVM. Thus, based on the idea of seasonal adjustment, PSO-LSSVM
combined with the K-means algorithm was established to be a convenient and feasible method for
daily tourist volume forecasting. The experimental results in this research support this conclusion.

However, the proposed method still suffers from certain limitations which could be improved in
future works. First, this research was conducted with a focus on the practical utility of the method,
and the underlying theory merits further research. Second, certain factors such as weather could be
considered in greater complexity than was considered in this research to further improve the prediction
accuracy. In addition, the method of seasonal adjustment deserves further research.

In general, this research proves the reliability of improving the prediction effect based on seasonal
adjustment, and the accuracy of short-term prediction of the daily tourist flow achieved by the proposed
hybrid model is beneficial to professionals in the tourism industry, enabling them to reasonably allocate
appropriate resources in advance. This research also contributes to the research on short-term
forecasting, which is significant as most existing studies have focused on monthly or annual prediction.
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