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Abstract: Vector data compression can significantly improve efficiency of geospatial data management,
visualization and data transmission over internet. Existing compression methods are either based on
information theory for lossless compression mainly or based on map generalization methods for lossy
compression. Coordinate values of vector spatial data are mostly represented using floating-point
type in which data redundancy is small and compression ratio using lossy algorithms is generally
better than that of lossless compression algorithms. The purpose of paper is to implement a new
algorithm for efficient compression of vector data. The algorithm, named space division based
compression (SDC), employs the basic idea of linear Morton and Geohash encoding to convert
floating-point type values to strings of binary chain with flexible accuracy level. Morton encoding
performs multiresolution regular spatial division to geographic space. Each level of regular grid
splits space horizontally and vertically. Row and column numbers in binary forms are bit interleaved
to generate one integer representing the location of each grid cell. The integer values of adjacent grid
cells are proximal to each other on one dimension. The algorithm can set the number of divisions
according to accuracy requirements. Higher accuracy can be achieved with more levels of divisions.
In this way, multiresolution vector data compression can be achieved accordingly. The compression
efficiency is further improved by grid filtering and binary offset for linear and point geometries.
The vector spatial data compression takes visual lossless distance on screen display as accuracy
requirement. Experiments and comparisons with available algorithms show that this algorithm
produces a higher data rate saving and is more adaptable to different application scenarios.

Keywords: vector compression; spatial division; Morton encoding; Geohash; visual lossless;
binary offset

1. Introduction

Spatial data acquisition efficiency and accuracy have been drastically improved due to fast
development of positioning technologies including global navigation satellite systems (GNSS),
Bluetooth, Wi-Fi and others equipped on portable mobile devices [1,2]. Volume of big geospatial
data in vector model such as trajectory of moving agents and geotagged social media posts grows
exponentially and brings more challenges to efficient spatial data management, network transmission
and visualization [3–5]. Compression of vector spatial data can relieve the pressure of these
application scenarios.

In terms of the fidelity of results to original data, there are two types of vector spatial data
compression methods: lossy compression and lossless compression. Lossy compression reduces
the volume of data at the cost of certain data accuracy, and relevant methodologies can be roughly
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grouped into those based on map generalization algorithms and those based on high precision
to low precision data type conversion (normally floating-point values to integer values based on
rounding operation). Douglas–Peucker algorithm and relevant modified versions [6–9], Visvalingam
algorithm [10,11] and natural principles-based algorithms [12–14] are typical ones for line simplification
in map generalization by removing nodes to reduce data storage. This kind of algorithm usually
simplifies the geometric details of geographical objects and reduces the number of points representing
boundaries of vector objects. Map generalization can also be implemented based on spatial to
time-frequency domain transformations, such as discrete wavelet transformation (DWT) and discrete
cosine transformation (DCT) [15–17] by converting spatial domain information to frequency domain
information and filtering high frequency coefficients after quantization. This type of algorithm is
normally used in raster data and image compression, for example JPEG 2000 [18]. Another type
of transformation can be implemented based on data type transformation which normally truncate
coordinate values in double precision floating-point type to values in single precision floating-point
type values or integers [19,20]. Vector data tiling can be applied to reduce data extent to enable value
converting to an even smaller byte integer, with which a data rate saving of 80% can be achieved [20].
Lossless compression algorithms are mainly based on information theory, such as Huffman encoding,
LZ series encoding [21,22], which are based on data redundancy evaluation and dictionary building.
This kind of algorithm can achieve error-free decoding and is mostly used for file compression and
data archiving, which can be applied in data compression of vector file or internet transmission.
Another type of lossless vector data compression can be implemented based on specific properties
of geometric structures. Isenburg, etc. implemented an algorithm based on parallelogram predictor
of floating-point values of vertices of neighboring triangles over a surface mesh and compress the
difference between predicted and actual sign, exponent, and mantissa separately using context-based
arithmetic coding [23]. Although the data rate saving of this algorithm is not significant considering
volume of big geospatial data generated by growing mobile agents [2], it offers an idea on how to take
advantage of the geometric characteristics of vector spatial objects.

Vector data normally uses floating-point values which represents a greater range of values
comparing integer values, especially when a global geospatial database shall be managed. In most
application scenarios, a geospatial database can be divided regularly to smaller tiles accordingly
to a predefined grid, for example using topographic sheets’ boundaries. In this way, the extent
of each tile is much smaller and can be represented with an integer values with an appropriate
conversion and value scaling, which can meet requirements for many applications, especially for screen
visualization. With integer values, information redundancy increases, which generates possibility
of data compression. During data type conversion, error estimation of data compression is vital to
maintain accuracy of vector geospatial data. The conversion can be implemented in a direct float
value truncation to integer [20]. It can also be implemented by regular space division. To achieve
a consistent space division, a common strategy is to conduct division in global geographic space.
Equilateral triangle, square and regular hexagon are three basic division geometric structures for a
regular global discrete grid [24,25]. S2, H3 and Geohash encoding schema received research attention
and they are used in web map applications and spatial indices. S2 encoding is based on spherical
geometry that can be extended to Hilbert space filling curve [26]. H3 encoding is based on a regular
icosahedral multiresolution hexagonal grid [27]. Geohash encoding is based on vertical and horizontal
cross division [28,29]. Morton encoding and Geohash encoding basically follow similar ideas to encode
a geographic range (normally a rectangle) into a string or an integer value [28]. Geohash encoding
is designed for global spatial divisions. It transforms two-dimensional adjacent grid cells into one
dimensional linear adjacent numbers or strings with same prefix. The Geohash code length or Morton
code value range of encoding results depends on the level of spatial division which can be different at
various parts of research area and adaptive to local complexity of spatial objects. This property has
been applied in geospatial data indexing [30] and point cloud data compression [31]. It is particularly
useful for raster data compression since the origin of 2D space for encoding is upper left which meets
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the requirement of raster data management [32]. The characteristics of variable length at different
resolution can be used for multiscale expression of vector object targets under different geometric
accuracy requirements [33].

This paper designs and implements a hybrid encoding algorithm based on Morton and Geohash
encoding for the purpose of efficient vector spatial data compression. The algorithm takes into account
the extent of the study area, transforms the coordinate value into integer binary coding and reduces the
coding length. At the same time, since point features can be sorted spatially and boundary points of
geospatial features are always adjacent to their preceding and succeeding points, regular space division
normally allocate them into nearby grid cells. Furthermore, points located in one cell can be filtered and
a point may be referenced to its preceding point. After this introduction, the implementation method
including the encoding strategy together with the idea of grid filter and offset storage is explained.
Then experimental results are presented with four test datasets. The third section compares this paper’s
algorithm with lossless compression and a data type conversion algorithm. Finally, future works
are discussed.

2. Methodology

2.1. A Hybrid Implementation of Morton Encoding and Geohash Encoding

Space division based compression (SDC) incorporates ideas of Morton encoding and Geohash
encoding. Morton encoding divides a two-dimensional geographic space into regular grids and
each cell’s position represented by row and column is converted to one integer value resulted by
bit interleaving operation of row and column numbers [34]. An advantage of Morton encoding is
that neighboring grid cells in the two-dimension (2D) space is mapped into a one dimension (1D)
linear sequencing order and keep the 2D neighboring relationship in 1D at variable resolutions.
This encoding scheme is mostly used in quad-tree data model for spatial data indexing and raster
data compression [32]. Geohash encoding follows a similar idea with Morton encoding. A unique
property of Geohash encoding is that the encoded results at different resolutions share the same
prefix. The implementation of Geohash encoding is conducted through an alternate spatial division
vertically and horizontally. To implement a hierarchical space division and maintain advantages of
both encoding strategies, a hybrid algorithm is designed and the basic idea can be demonstrated using
an example below.

Supposing the study area of (114◦ E to 120◦ E, 40◦N to 44◦N) is going to be encoded. First, the central
value in latitude direction, 42◦N, is used to divide the area into two horizontal regions. The subregion
greater than 42◦ N (the upper rectangle) is marked as 1, and that smaller than 42◦ N (lower rectangle)
is marked as 0. Then the central value in longitude direction, 117◦ E, is used to divide the region vertically.
The subregions greater than 117◦ E are marked as 1 and each corresponding cell’s code is appended
with a character “1”. The subregions smaller than 117◦ E are marked as 0 and each corresponding
cell’s code is appended with a character “0”. The generated binary code is alternately stored as “00”,
“01”, “10”, “11”, which corresponds to the numbers of the first-level spatial division grid. The space
can be further divided into finer resolution grid following the same space division strategy until the
resolution meets the accuracy requirement of applications or a predefined level, as shown in Figure 1.

Multiresolution spatial division can be achieved by controlling levels of divisions. Encoding
process of a higher resolution grid can be expanded based on its corresponding lower resolution
grid encoding results. With more levels of space divisions, the grid resolution is getting finer and a
longer binary code is generated, which further results in more accurate coordinates. We suppose a
specific point with coordinate as (117.67198438◦ E, 42.1855639◦ N). The compression locates the grid
cell containing this point and then corresponding Morton code in form of integer is used to substitute
original floating-point coordinates. A pseudocode snippet is presented in Figure 2 showing the process
of encoding.
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In Figure 2, MinLat and MinLat are the minimum and maximum latitude values of the given
research region. PointLat and PointLng are the latitude and longitude of the given point. MinLng and
MaxLng are the minimum and maximum longitude values of the research region. Furthermore,
variable n is the recursion time.

In grid levels with different resolutions, coordinate values stored in the form of floating-point are
converted into binary codes of different length, as shown in the Table 1 with examples of binary codes.
With more recursion times, a longer binary code is generated corresponding to a high precision
representation. Compared with available methods of mapping geographic space to a fixed integer or
short integer space, this method is more adaptive to multiscale encoding.
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Table 1. Binary code of different n.

n Bit Length Binary Code

1 2 01
2 4 0110
3 6 011010
4 8 01101000
5 10 0110100001
6 12 011010000100
7 14 01101000010001
8 16 0110100001000111
9 18 011010000100011101

2.2. Grid Filter

Under a certain resolution, multiple coordinate points may fall in one grid cell, and they have one
identical binary code. For multiple nodes of one vector object, a grid filtering process is conducted to
replace multiple coordinate points in a grid cell with the geometric center point of this cell, as shown
in Figure 3.
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Figure 3. Grid filtering diagram.

This operation reduces accuracy and may incur inconsistencies. So, it is an optional process and
compression efficiency introduced by grid filtering is related to grid resolution. As grid resolution
gradually increases, number of points in one grid cell decreases and grid filter ratio becomes lower.
Grid filtering process reduces the number of coordinate points and further improves data rate saving.

2.3. Binary Offset Storage

With hybrid encoding strategy, resulted codes share same prefix in one specific area at different
resolutions and present an advantage that proximity in two-dimensional space is maintained on
one-dimensional space filling curves. For a given spatial object, points comprising its boundary are
normally near to each other. So, encoded results of consecutive points share identical or similar binary
encoded values. Then their position deviations can be recorded in resulted value of bit offset as well,
which can further reduce storage volume. The offset bits length increases as the starting point bit
length increases, which further depends on the grid resolution. When geographic features are more
clustered, this process can be more effective.
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For point features, each point is an independent vector object. After sorting according to their
binary code, offset of neighboring points can be reduced and offset of each point from its preceding
point can be record. Steps are as follows:

(1) Sort points according to their corresponding binary codes.
(2) Take the first point as origin, and all following points are presented in binary form using the

number of grid cells (steps in the Morton order) that deviates from its preceding point.
(3) Length of offset binary code will be greater than 1 and less than the length of the original binary code,

and the maximum length of all offset binary code lengths will be taken as the storage length.
(4) For records with insufficient offset bits, supplementary bits are added and filled with “0” to

ensure uniform storage length.

Figure 4 shows the offset storage of point features, and the grid divisions number is 6 in this figure.
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An example of offset format of point features is shown in Table 2 corresponding to Figure 4.

Table 2. Point feature binary offset format.

Starting Point Offset Point 1 Offset Point 2

000000000010
Supplementary bits Offset bits Supplementary bits Offset bits

1010 0 111

For linear or polygon features, points comprising their boundaries are managed in an ordered
sequence. So, the number of points and the direction of offset of each point relative to its preceding
point should be maintained. Steps are as follows:

(1) Record the number of nodes and starting point coordinates of each vector object, then calculate
offset in the unit of the vector object.

(2) Set up direction bit, calculate the offset direction of each coordinate point to its preceding point,
Use “0” or “1” to represent left or right in horizontal direction, downward or upward in
vertical direction, respectively.

(3) Calculate offset, record offsets of rows and columns along latitude and longitude directions,
convert them into binary codes and store them alternately as the final offset.
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(4) Determine offset binary code length as the maximum length of all offset binary code lengths.
(5) For records with insufficient offset bits, set up supplementary bits, fill with “0” to ensure uniform

storage length.

Figure 5 shows the offset storage of line or polygon features, and the grid divisions number is 8 in
this figure.
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An example of offset format of line or polygon features is shown in the Table 3 corresponding
to Figure 5.

Table 3. Line or polygon feature binary offset format.

Number Starting Point Offset Point 1 Offset Point 2

13 0000000010000001
Direction bits Supplementary bits Offset bits Direction bits Supplementary bits Offset bits

01 00 01 11 00 11

2.4. Error Evaluation

Data rate saving ratio depends on levels of space division. Fewer space division levels induce
lower grid resolution and greater accuracy losses. On another side, when there are more space
divisions, information redundancy is suppressed and further data rate saving is getting lower. How to
determine an appropriate number of space division, or grid resolution, to achieve a balance of data
accuracy and data-rate saving is a key question here. This paper employs visual lossless as a controlling
parameter for purposes of vector data visualization. If compressed data meets the requirement of
displaying indiscernible from original data, it can be understood that accuracy is maintained for
visualization purposes.

Considering capability of human eyes, 0.4 mm on paper map is the minimum required to ensure
visual discernibility [35]. From the perspective of computer screen resolution, for a 100 dpi display
screen, there are 100 pixels in one inch on the screen, and one pixel represents 0.01 inches, which is
about 0.025 mm. So, a distance of 0.025 mm can be taken as the minimum distance (min_res_dis)
to display vector information, and the ground distance (Min_Res_Dis) is:

Min_Res_Dis = min_res_dis ∗ Scaled/Ratio (1)
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where Scaled is map scale’s denominator, and Ratio is map magnification ratio on screen of original
vector data.

In data compression process, the center point of a regular grid cell is used to replace points in the
corresponding grid cell, which causes position deviation. For a regular rectangular grid, the maximum
error from the point in the grid to the center point is half of the diagonal of the grid cell size. Therefore,
calculation formula for defining the maximum division error (Max_Error) is

Max_Error =
√
(width/2n)2 + (height/2n)2/2 ∗ Scaled (2)

where width and height are the width and height of the research region, and n is the number of
space divisions.

When Max_Error < Min_Res_Dis, visual lossless compression can be achieved. For a research
region of 114◦ E to 120◦ E and 40◦ N to 44◦ N at a scale of 1:1,000,000, the evaluation table of division
accuracy is shown in Table 4:

Table 4. Result of precision evaluation.

n Bit Length Number of
Rows/Columns

Longitude
Resolution (m)

Latitude
Resolution (m) Max_Error (m) Distance (m) Magnification

10 20 1024 652.262641 585.449125 438.2343 250 0.57
11 22 2048 326.131321 292.724562 219.11715 250 1.14
12 24 4096 163.06566 146.362281 109.55857 250 2.28
13 26 8192 81.53283 73.181141 54.779288 250 4.56
14 28 16,384 40.766415 36.59057 27.389644 250 9.13
15 30 32,863 20.324284 18.242397 13.655233 250 18.31
16 32 65,536 10.191604 9.147643 6.8474112 250 36.51
17 34 131,072 5.095802 4.573821 3.4237054 250 73.02
18 36 262,144 2.547901 2.286911 1.7118529 250 146.04
19 38 524,288 1.27395 1.143455 0.855926 250 292.08
20 40 1,048,576 0.636975 0.571728 0.4279632 250 584.16

When the number of divisions is 11, the map can be displayed visual lossless without magnification.
When the number of divisions is 16, the binary code length is exactly the storage size of the short integer,
and the visual lossless display can be achieved when the map is enlarged by 36 times. Using more
division times can meet the requirement of higher magnification display.

3. Data and Experiment Results

Four datasets were used to test the performance of space division-based compression. The first
two datasets are polylines of road layer (LRDL.shp, Figure S1) and points of resident villages (RESP.shp,
Figure S2) from a 1:1,000,000 topographic map. These data range between 114◦ E and 120◦ E and
40◦ N and 44◦ N. The data size of LRDL.shp is about 4075 KB and that of RESP.shp is about 44 KB.
The third and fourth datasets are from OpenStreetMap [36]. The third is a natural point layer
(gis_osm_natural_free_1.shp, Figure S3) covering majority region of Spain, which is about 16,129 KB.
The fourth is a road layer (gis_osm_roads_free_1.shp, Figure S4) covering territory of Albania, which is
about 347 MB. All the data is in Esri shapefiles format and the abovementioned sizes refer to the
corresponding shapefiles (without consideration all attribute files and index files).

3.1. Visual Comparison

To the first two datasets, the compression results with different space division levels are displayed
in Figure 6.

When the level of space division is 8 and 9, there are visual distortions in the compression results,
which do not meet the requirement of visual lossless. When the number of divisions reaches 10,
the compression result that can meet the visualization requirement at 1:1,000,000 as display scale can
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reach 97.18%. However, visual errors are obvious when the map is zoomed in, as shown in Figure 7,
where the compressed result is overlaid with the original vector data
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Figure 7. Overlaid result of different scale maps when n = 10. (a) is at the display scale of 1:1,000,000;
(b) is at the display scale of 1:100,000; (c) is at the display scale of 1:25,000.

Figure 8 shows overlaid results of original vector data and compressed results when the level of
divisions is 15. When display scale is 1:25,000, the deviation also can be maintained as visual lossless.
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Figure 8. Overlay result of different scale when n = 15. (a) at the display scale of 1:1,000,000; (b) at the
display scale of 1:100,000; (c) at the display scale of 1:25,000.

3.2. Data Rate Saving and Comparison

In the vector data compression process, points stored in floating-point data are converted to
binary code generated by space division. Then, grid filtering reduces the number of coordinate points.
Furthermore, binary offset processing further improves storage efficiency. Finally, the vector data rate
saving of the test datasets under different division times is shown in Table 5. The size in each row
of the “Compressed file size” column here refers to the total size of a corresponding geometry file and
an object index file resulted from dumping compressed contents in memory to disks.

Table 5. Compression saving table at different space division n.

n Bit Length
RESP.shp gis_osm_natural_free_1.shp

Compressed File Size (BYTE) Data Rate Saving Compressed File Size (KB) Data Rate Saving

5 10 600 98.67% 17 99.89%
6 12 801 98.22% 30 99.81%
7 14 1206 97.32% 46 99.71%
8 16 1603 96.44% 72 99.54%
9 18 2007 95.54% 122 99.23%
10 20 2409 94.64% 199 98.74%
11 22 2808 93.76% 316 97.99%
12 24 3207 92.87% 473 97.00%
13 26 3613 91.97% 674 95.72%
14 28 4012 91.08% 928 94.11%
15 30 4411 90.19% 1 248 92.08%

n Bit Length
LRDL.shp gis_osm_roads_free_1.shp

Compressed File Size (KB) Data Rate Saving Compressed File Size (MB) Data Rate Saving

5 10 17 99.60% 4.4 98.67%
6 12 20 99.52% 4.8 98.55%
7 14 28 99.31% 5.1 98.46%
8 16 39 99.06% 5.5 98.34%
9 18 65 98.41% 6.2 98.13%
10 20 109 97.33% 7.1 97.85%
11 22 174 95.72% 8.3 97.49%
12 24 263 93.55% 11 96.68%
13 26 372 90.88% 15.7 95.26%
14 28 491 87.95% 23.1 93.02%
15 30 598 85.33% 32.5 90.18%
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The four datasets were compressed using LZMA [37] algorithm with 7-zip, a free and open source
file compression tool and using LZX [38] algorithm with makecab.exe, a Microsoft Windows native
compression tool. Table 6 shows the compression results with these two lossless compression tools.
Compared with these file compression algorithms, the method in this paper has a high data
compression saving.

Table 6. Lossless compression results of four test datasets.

LZMA LZX

Data Original File
Size (KB)

Compressed
File Size (KB)

Data Rate
Saving

Compressed
File Size (KB)

Data Rate
Saving

RESP.shp 44 22 50.00% 25 43.18%
gis_osm_natural_free_1.shp 15,752 3 906 75.20% 5 372 65.90%

LRDL.shp 4075 2 248 44.83% 2 610 35.95%
gis_osm_roads_free_1.shp 339,477 100 850 70.29% 122 226 64.00%

To further compare the performance of this paper’s algorithm, an available algorithm converting
floating-point type values to a short integer values is used [20]. As shown in Figure 9, space division
level 10 of this paper’s algorithm produces a data rate saving of 97.33%. Furthermore, Li’s method is
implemented using parameters Width = 2400 and stepWidth = 2, and the data rate saving is 86.40%.
A 1:1 visual comparison of the results of these two compression algorithms is shown in Figure 9.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 15 
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Figure 9. Overlaid results of different scales. (a) is the original map at a scale of 1:1,000,000; (b) is the
compression map at the scale of 1:1,000,000 using the new algorithm and n is 15. (c) is the compression
map zooming into a scale of 1:100,000 using the new algorithm; (d) is the compression map at the scale
of 1:1,000,000 using Li’s method. (e) is the compression map zooming into a scale of 1:100,000 using
Li’s method.

As shown in the Figure 10, space division level 15 of this paper’s algorithm produces a data
rate saving of 85.33%. Furthermore, with Width = 3200 and stepWidth = 2, the data rate saving of
Li’s method is 83.29%. In addition, the method in this paper maintains better match with the source
dataset visually.
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4. Conclusions and Discussion

Space division based on Morton and Geohash encoding is mainly used for spatial data index
and spatial data management in available studies. Raster data can be compressed with Morton
encoding of Quadtrees. This paper proposes and implements a hybrid implementation of Morton and
Geohash encoding strategies and applies it for vector data compression. Geographic space is iteratively
divided into a regular grid. The center point of each grid cell represented by binary code or binary
offset is used to approximate floating-point values of coordinates located in the corresponding cell.
This effectively reduces original coordinate storage. This paper implemented a new compression
algorithm based on the hybrid encoding strategy. Experiments with four datasets demonstrate that
this method is more flexible in space division and offers higher compression efficiency, compared with
converting float type values to integer values directly. Multiresolution Morton encoding schemata
were implemented and results show that this method is adaptive. This design and implementation
for vector data compression can be applied in most real-world situations where vector features are
distributed randomly in 2D space. It may not be suitable to use in some extreme situations where
vector features are clustered and sparsely distributed, especially for sparsely distributed point features,
for which further experiment and evaluation are needed to compare this algorithm’s performance.
Error evaluation based on quantitative measures should also be considered in the future.

The lossless compression methods are popular and mostly used for file archiving and quick
transmission over network. The experiments in this article shows that lossless compression can achieve
35–75% data rate saving with binary Esri shapefiles. These methods ensure accuracy of vector geometry
and can be implemented and accommodated in many applications. However, the corresponding
data rate saving is not as significant as the space division-based compression algorithm. Lossless
compression may not be applicable when progressive vector data transmission is necessary in the
context of quick online visualization, where multiresolution space division encoding results based on
this new algorithm are more applicable.

Future research can explore how to implement an algorithm to produce variable length Morton
encoding for different nodes of one vector object. A structure can be designed to manage each number
of Morton codes in a Level of Details (LODs) manner. A further compression operation using traditional
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file compression algorithms over encoding results is possible. Further work can include a design of
representing encoded results in a JSON format, which can enable spatial data sharing over internet for
generic applications [39].

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/9/12/721/s1,
Figure S1: Test dataset 1: LRDL layer, Figure S2: Test dataset 2: RESP layer, Figure S3: Test dataset 3:
gis_osm_natural_free_1 layer, Figure S4: Test dataset 4: gis_osm_roads_free_1 layer.
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