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Abstract: Developments in UAV sensors and platforms in recent decades have stimulated an upsurge
in its application for 3D mapping. The relatively low-cost nature of UAVs combined with the use
of revolutionary photogrammetric algorithms, such as dense image matching, has made it a strong
competitor to aerial lidar mapping. However, in the context of 3D city mapping, further 3D modeling is
required to generate 3D city models which is often performed manually using, e.g., photogrammetric
stereoplotting. The aim of the paper was to try to implement an algorithmic approach to building point
cloud segmentation, from which an automated workflow for the generation of roof planes will also be
presented. 3D models of buildings are then created using the roofs’ planes as a base, therefore satisfying
the requirements for a Level of Detail (LoD) 2 in the CityGML paradigm. Consequently, the paper
attempts to create an automated workflow starting from UAV-derived point clouds to LoD 2-compatible
3D model. Results show that the rule-based segmentation approach presented in this paper works well
with the additional advantage of instance segmentation and automatic semantic attribute annotation,
while the 3D modeling algorithm performs well for low to medium complexity roofs. The proposed
workflow can therefore be implemented for simple roofs with a relatively low number of planar surfaces.
Furthermore, the automated approach to the 3D modeling process also helps to maintain the geometric
requirements of CityGML such as 3D polygon coplanarity vis-à-vis manual stereoplotting.
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1. Introduction

Photogrammetry has a long history of applications, beginning with military use in the early 20th
century [1]. It has since been used extensively for small to medium-scale mapping during the course of the
20th century due to its natural advantage in covering large areas in a short time period. With the advent
of laser scanning technology, photogrammetry experienced a short lull before being brought back to
prominence with the development of high density image matching [2]. On the other hand, the increasing
trend of Unmanned Aerial Vehicles (UAVs) or drones has also boosted interest in larger-scale aerial
photogrammetry, including for mapping purposes [3,4].

The decreasing cost of UAV platforms and camera sensors, coupled with its capability to cover large
areas, has arguably created one of the more cost-friendly combinations for mapping. Although recent
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developments in miniaturized lidar has seen significant progress [5], as far as the overall costs are
concerned, UAV-embarked aerial images remain a strong contender. Naturally the UAV photogrammetry
technique also possesses caveats when considering a high-precision mapping, as is traditionally the
case with classical photogrammetry. Most of these issues stem from the fact that modern digital
photogrammetry benefits very much from developments in the computer vision domain. These issues
might include camera calibration [6], bundle adjustment problems [7], up to dense image matching
behavior [8]. Nevertheless, it remains an interesting solution to mapping in general. This is even more
so when faced with budgetary constraints and demands. In the specific case of Indonesia, a recent major
governmental push for a complete map coverage of the country’s territories has regenerated interest in
low-cost mapping solutions.

One of the principal results of UAV photogrammetry is a point cloud representing the mapped
terrain derived from the dense image matching process. This point cloud is in many ways similar to the
main product of lidar albeit with notoriously larger error in terms of the altitude due to the inherent low
base-to-height ratio in photogrammetry. Photogrammetric point cloud also lacks useful information such
as intensity values which lidar provides. Photogrammetric quality would therefore highly depend on
the quality of the sensors as well as the metric considerations during data acquisition and processing.
Within the context of urban city mapping, a point cloud must be processed further to create either vector
maps or 3D representations of different object classes (e.g., buildings, vegetation, roads, etc.) consisting
of geometric primitives, preferably with annotated attributes for 3D Geographical Information System
(GIS) purposes. This “digitization” process is often performed using manual 3D stereoplotting in classical
aerial photogrammetry. In the case of UAV photogrammetry, stereoplotting may be problematic due to the
non-metric nature of the sensor.

The aim of the paper was therefore to introduce an automated workflow from UAV photogrammetry
point cloud to the generation of 3D models of building roofs, of which a further extension would be its
conversion into a CityGML-compatible 3D building model. The developed algorithm aims to generate 3D
models complying to the Level of Detail (LoD) 2 as defined by the CityGML standard. The method of UAV
photogrammetry is selected for this research in order to provide a low-cost solution to the aforementioned
national mapping problem. The research also limits itself to the extraction of roofs and therefore by
extension the buildings class, since we argue that in urban settings this class represents the most important
aspect. For the purposes of the experiments, a point cloud of the Jatinangor campus of the Bandung
Institute Technology was used. The point cloud was acquired using UAV photogrammetry from nadir
images with no oblique images involved. A type of rule-based instance segmentation was implemented
for the point cloud segmentation phase with the possibility of automatic object attribute annotation.

The paper is divided as follows: the next section will talk about some related work in the subject of
aerial point cloud segmentation and the extraction of building roofs as well as its 3D modeling. The third
section will thereafter describe the proposed workflow, by integrating rule-based point cloud instance
segmentation and roof plane extraction algorithms. The following section will then present the results as
well as some discussions, followed by conclusions to the paper.

2. Related Work

Aerial mapping has long been employed for topographic operations covering large areas [9].
Photogrammetry has a long history in this role, starting with classical nadir image stereo observations [1]
and augmented by dense image matching [2] and structure-from-motion algorithms [10,11].
The development of laser scanning sensors or more precisely Aerial Laser Scanning (ALS) [12] added
another alternative for aerial mapping [13]. In recent times, photogrammetry has been further improved
with the (re-)implementation of oblique images [14,15] and most importantly the use of UAVs [16,17].



ISPRS Int. J. Geo-Inf. 2020, 9, 743 3 of 18

Indeed, UAVs enabled the democratization of photogrammetry, making it accessible to different types of
stakeholders thanks to its relatively low cost when compared to traditional small scale aerial mapping [4].
Another interesting development is the miniaturization of ALS sensors with the objective of placing them
on UAV platforms [5].

When compared to ALS, photogrammetry may seem to have a few more disadvantages. This includes
a longer workflow involved to process the images compared to ALS’ relatively simple workflow, thus
introducing more human intervention and consequently more room for error. Nevertheless, proper
photogrammetric processing is essential to ensure its geometric qualities [9,17,18]. That being said,
photogrammetry, especially when employed with UAVs, remains a very interesting solution due its
lower overall cost. Further developments such as improvements in GNSS technology and acquisition
methods enable the reduction of field surveys [19,20], which traditionally present the most costly part in a
photogrammetric project.

As has been previously mentioned, a recent push towards nation-wide large-scale mapping (up to
1:5000 scale) in Indonesia has sparked interest in cost-feasible solutions [21]. Some of the considered
methods include high-resolution satellite imagery [22] and UAVs [23]. The use of UAV is interesting in this
regard as it provides a low-cost solution. However as has been previously mentioned, various technical
and non-technical issues such as limitations in terms of flight autonomy, payload, and regulations are
also important to take into account in any UAV projects. Indeed, an increasing number of countries have
enacted UAV-specific regulations which govern amongst others the permitted flying height, specific no-fly
zones, or privacy issues [24,25]. In Indonesia, UAV mapping is at the moment of writing regulated by a
ministerial decree as no nation-wide law is available yet. In addition to certain limitations on flying height
and no-fly zones, pilot certification is required and a special permit by the Ministry of Defense for UAV
mapping purposes is required [26]. A thorough project planning must therefore take into account not only
geometric but also legal issues [8]. Furthermore, while the government’s required outcome remains a 2D
product, we argue that in the middle to long term 3D information systems will be needed especially for
urban areas in the form of 3D GIS and/or smart city systems [27].

2.1. Aerial Point Cloud Classification

Point cloud segmentation is a logical follow-up process after its generation. This is because raw
point clouds represent mainly geometric properties [28], whereas the understanding of any 3D scene
requires semantic information [29]. Approaches to segmentation methods can be divided according to
the approach taken; a typical classification of segmentation approaches include the distinction between
rules-based approaches [30] and machine learning approaches [31,32]. The rule-based approach is also
called the heuristic method in [32] or the algorithmic method in [28], and basically involves hard-coded
prior knowledge (i.e., “rules”) introduced to the algorithm. Machine learning techniques and its subset
deep learning on the other hand, involves prior training using previously labeled or annotated datasets to
predict the class of each point in the point cloud [33,34]. Deep learning, in particular, has seen much use in
performing task automation, including in the field of point cloud segmentation [35,36].

Another way to classify segmentation methods may take inspiration from 2D image segmentation [37],
mainly the distinction between semantic, instance, and panoptic segmentations. In semantic segmentation,
a class is attributed for each point in the scene. Using the algorithmic approach, the most prominent
example of this process is the segmentation of ground point clouds [38]. Region-growing algorithms may
also be used to distinguish other classes [39]. Deep learning algorithms have also performed well in this
category, as evidenced by several studies described in [36,40]. On the other hand, in instance segmentation,
each object is classified as an individual entity. In view of information systems involving particular entities
(e.g., a university campus or governmental complexes), this approach can be advantageous. In [41],
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an algorithmic approach was presented to the problem of instance segmentation by using pre-existing
GIS files, an approach similarly explored in a different form in [42,43]. Panoptic segmentation involves a
combination of instance and semantic segmentations in the image processing terminology, which [41] also
tried to perform by integrating ground classification.

2.2. 3D Modeling of Buildings

In view of application in 3D city model, a point cloud presents a redundancy of information [44].
Indeed, the simplification of point cloud structure into 3D primitives has been the main aim of many
studies focusing in data-driven approaches. In [45], the authors proposed another approach based on
3D mesh, but ultimately still generate geometric primitives. Similarly, in [46] the authors mentioned two
approaches based on the data-driven method to be used ad hoc, one using geometric constraints to create
the building 3D models and another based on 3D mesh simplification.

Generally the process of 3D modeling of buildings from aerial point clouds involves a prior
segmentation of the point cloud into the roof class [47–49]. The segmented roofs were then modelized
using different methods such as PCA analysis [48], roof topology [50], label constraints [51], or the more
classical Hough Transform and RANSAC [52,53]. Extrusion of the modelized roof into the available DEM
should then, in theory, satisfy the requirements of LoD2 in the CityGML paradigm for 3D city modeling.

A similar approach to the one presented in this paper was presented in [54] in which the authors
implemented Euclidean distance-based region growing and RANSAC to perform a similar task. Both [54]
and [55] also used UAV data as input. Another research used heterogeneous sources, including a
combination of terrestrial and aerial data, to create LoD3 compatible models [56]. In our approach,
we implement a region growing method based on the value of point normals and Gaussian curvature to
perform the segmentation into roof patches.

2.3. CityGML Paradigm

When working with 3D city models, users often face the problem of data heterogeneity resulting
from a variety of data source, acquisition time, method, and required levels of detail. CityGML was
created to address these problems [57]. CityGML is a standard that was established in 2008 by the Open
Geospatial Consortium (OGC). It is one of the most prominent international standard which encompasses
the geometric, semantic, and visual aspects of 3D city models [58].

One of the classes defined in CityGML is that of buildings which can be represented in various LoDs.
Out of all the levels of detail for buildings defined within CityGML, LoD2 is particularly important. This is
mainly because buildings in LoD2 introduce roofs into the model; a crucial requirement for a wide range
of applications such as estimating solar potential of rooftops [59].

3. Data and Employed Methods

In this paper, the proposed workflow was tested using a point cloud generated from nadiral UAV
photogrammetry acquired from the Jatinangor campus of the Bandung Institute of Technology (Indonesia).
A fixed-wing UAV was used to acquire a total of 187 nadiral images, taken with a 20 mm Sony A6000
camera. With an average flying height of 200 m, this gave an average theoretical Ground Sampling
Distance (GSD) of 4 cm. The overlap rate between the images was set at 80% with a sidelap of 60% between
flight lines. In total, an area of about 60 hectares was covered by the images. Although the use of oblique
images may increase the quality of the result in terms of data completeness [60], practically speaking this
would involve more flights and thus increase the necessary resources [8]. In an attempt to formulate a
possible rapid and low-cost solution, only nadir images were used for the generation of the point cloud.
The resulting point cloud was then subsampled to a regular grid of 10 cm. The 10 cm value was selected to
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fulfill the requirements of a 1:1000 scale map [61], even though the national requirement at the moment is
set at 1:5000. As a consequence of this sole nadiral acquisition, building façades were mostly missing from
the point cloud. This actually helps with the roof segmentation process as the remaining “wall” points
may be considered as noise.

A general illustration of the workflow can be seen in Figure 1. The segmentation of the building
roofs from the raw point cloud utilizes the M_HERACLES toolbox (link available in the supplementary
materials section) with a workflow adapted from [41]. M_HERACLES uses 2D GIS shapefile geometries
as prior knowledge in guiding the point cloud segmentation, while providing the possibility to annotate
the segmented clusters directly with the GIS attributes. In this regard, the segmentation phase presents a
type of instance segmentation, in which individual clusters of point clouds were acquired at the end of the
process. Section 4 will discuss the results of the segmentation process and a quick comparison against a
similar process performed using a commercial software.

Figure 1. General illustration of the developed approach to extract roof 3D primitives from the input
Unmanned Aerial Vehicle (UAV) images-derived point cloud.

The segmented roof point clouds were thereafter processed individually to extract 3D polygons
representing the different roof surfaces. A region growing approach inspired by [39] was implemented
using point cloud normal and curvature values as the main constraint. Several parameters for this phase
needed to be adjusted, of which the main defining variable is the threshold value for the difference of
normal angles between any neighboring points. This value was obtained empirically and was set at one
degree. This process enabled a subdivision of the roof point cloud into planar segments (cf. Figure 1).
Furthermore, vertical elements such as the point cloud of walls were excluded from the result. For each
roof segment, a RANSAC-based algorithm then fits a planar surface and extracts the surface equation [53].
The tolerance for the RANSAC plane-fitting was set depending on the resolution of the input point cloud.
In this case, a value of 20 cm was chosen (two times the point cloud spacing).

In view of the final objective of conversion to CityGML-compatible formats, two main geometric
constraints were considered in the modeling process:

1. Coplanarity of points belonging to the same segment: in order to enforce this coplanarity, all points
belonging to the same segment were projected to the computed surface. Furthermore, during the
computation of the 3D polygon border and junction points, the RANSAC-derived surface equations
play an important role. For example, junction points between two segments were computed along
the 3D line resulting from the intersection of the two neighboring segment surfaces. In the case of
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three or more neighboring segments, a simple least-squares solution was performed to obtain the
junction point.

2. Absence of gaps between junction points (“snapping”): a specific function was developed to ensure
as best as possible that no spatial gaps exist between the junction points of neighboring segments.
Algorithmically, in order to enforce this constraint, the average coordinates of junction points located
near to each other were averaged by taking into account the global/merged segments. At this
point, the segment’s vertices were presented in a triangular mesh form (Figure 2). Here again,
the coplanarity constraint was redeployed in order to keep the points coplanar with regards to each
respective segment surface.

Several other supporting functions were developed to refine the resulting roof segment 3D polygon.
This includes amongst others a mesh simplification function to reduce the number of vertices belonging to
the same parallel lines in any given 3D surface and a function to convert the original triangular mesh into
3D multipatch polygon as required by the CityGML format. Most of the functions used in the described
workflow with the notable exception of the conversion to CityGML were integrated into the updated
version of M_HERACLES.

Figure 2. General illustration of the developed approach to extract roof 3D primitives from the input UAV
images-derived point cloud.

4. Results and Discussions

The result section will be divided into three sections covering the building/roof segmentation,
the generation of 3D roof models, and the conversion of said 3D models into CityGML format.
Several metrics will be used to assess the obtained results. For the segmentation part, a measure
of precision, recall, and F1 score will be used to determine the quality of the segmentation process.
These scores are computed as follows:

%P =
TruePositive

TruePositive + FalsePositive
(1)

%R =
TruePositive

TruePositive + FalseNegative
(2)

%F1 = 2 ∗ %P ∗ %R
%P + %R

(3)

where %P represents the precision, %R the recall, and %F1 the harmonized scores used in the
assessment. For the generated 3D roof models, assessment was two-fold: first a geometric analysis
by computing the Euclidean distance between each 3D surface and the input point cloud was performed.
This was done using the mesh-to-point function available in the open source software CloudCompare
(https://www.danielgm.net/cc/, accessed 6 October 2020), whereas a Gaussian normal curve was fitted

https://www.danielgm.net/cc/
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into the resulting histogram of deviations in order to compute the average error and standard deviation
values. A second assessment involves the verification of each surface vertices’ coplanarity as required by
the 3D polygonal/multipatch surface in CityGML models. The check was done by a simple operation
involving singular value decomposition.

4.1. Building and Roof Point Cloud Segmentation

In order to perform the segmentation using M_HERACLES, two inputs were necessary. The point
cloud generated by UAV photogrammetry was subsampled into a regular spatial grid of 10 cm. Aside from
the input point cloud, a GIS shapefile of the test site was acquired. This shapefile was digitized from
photogrammetric orthophotos for a separate GIS project of the university campus; we benefit therefore
from this previously available data to help the segmentation process. Within the shapefile, several
semantic attributes were also present. For test purposes, only a total of twenty buildings representing
all the architectural types in the campus were used with similar buildings represented by one or several
objects. Problematic cases such as the existence of heavy vegetation above the building or complex roof
architectures were also included within this 20-object dataset.

A sample of six building point clouds segmented using the M_HERACLES toolbox is presented
in Figure 3. A global view of the result is also shown in Figure 4. It is worth noting that as can be
seen in Figure 3, the resulting clusters of segmented point clouds were automatically annotated with the
corresponding semantic attributes from the 2D shapefile.

Following a precedent from [28], a comparison was performed between the results of M_HERACLES
and a commercial software capable of performing point cloud classification. Agisoft Metashape version
1.6.5 (build 11249) was chosen to perform this task. However, it should be noted that while this comparison
is useful in showcasing the advantages and disadvantages of M_HERACLES, the two solutions offer a
different approach to the problem of segmentation.

Figure 3. Result of the M_HERACLES instance segmentation, showing six of the 20 processed objects. Note
the information box to the upper left of each individual figure, showing semantic attributes derived from
the input 2D GIS shapefile.
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Figure 4. A global view of the segmented building roofs, before surface extraction.

Indeed, while M_HERACLES performs instance segmentation as has been previously established,
Metashape provides instead a type of semantic segmentation. In these results, no individual object cluster
were detected; rather the classification rests more general in nature. In this regard, M_HERACLES provides
an advantage as it not only segments individual object clusters, but it also annotates the GIS-derived
semantic information automatically to each instance. This is interesting in light of using the results
as part of a 3D GIS. This of course comes with the caveat that a GIS shapefile is required beforehand,
although the various filtering features of M_HERACLES reduces the necessity for precisely digitized
shapefile. This opens therefore the possibility to quickly create the necessary GIS shapefiles from any
source, e.g., available satellite or aerial orthophotos for the purposes of the instance segmentation.

Overall, M_HERACLES managed to produce better result than Metashape, in which the algorithm
used during the classification is not divulged but is most probably based on a machine learning method.
Figure 5 presents three samples of the segmented building from the Jatinangor dataset. As can be seen
from this figure, Metashape encountered problems of mis-classification: several roof objects were labeled
as the ground or vegetation classes. This result would evidently influence further results down the
processing pipeline; M_HERACLES therefore gives another advantage in this regard. Interestingly enough,
M_HERACLES managed to avoid the problem of mis-classification despite in some cases encountering
heavy vegetation. In tackling this particular problem, M_HERACLES relies on a simple majority-takes-all
classification approach as described in detail in [41].

Using the aforementioned statistical parameters, a numerical comparison was performed between
the results of M_HERACLES and Metashape as can be seen in Figure 6. Concurrent with results from [28],
Metashape presented a very high precision score (99.91%) while scoring lower in terms of recall (89.03%).
M_HERACLES performed well in both scores (99.51% precision and 99.62% recall), although this is
somewhat biased by the fact that it used a winner-takes-all approach in segmenting the point cloud.
This means that the quality of M_HERACLES depends on the digitization quality of the input shapefile,
even though measures were taken to minimize the effect of digitization error. This includes, among others,
a buffer zone around the shapefile vector and the use of region growing algorithm to filter the result from
noises [41]. That being said, the results of Metashape improved quite significantly when compared to
previous experiments reported in [28]. Indeed, the machine learning approach to classification has the
potential of becoming better as more training data are available.
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Figure 5. Three examples of the segmented building/roof clusters in ascending level of roof complexity.
Note that M_HERACLES employs a winner-takes-all approach, hence the homogeneous semantic
annotation. On the contrary, Metashape displays a case of mis-classification mostly between the “ground”
and “building” classes.

Figure 6. Global comparison of the precision, recall, and F1 scores of the classification results from
M_HERACLES and Metashape.
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4.2. 3D Building Model Generation

Out of the twenty buildings segmented in the previous section, seventeen were successfully used
in the 3D roof generation. The remaining three presented more complex roof types and automatic 3D
roof reconstruction was not possible without manual intervention. The seventeen building point clouds
were processed using the proposed method, from which roof surfaces were extracted. This section will
describe some assessments as regards to the quality of the roof segments, and not the building 3D models
as a whole.

The seventeen roof models were able to be extruded to the linked Digital Elevation Model (DEM) to
create a 3D mesh of the building (cf. Figure 7). At this point, the 3D mesh of the building walls serves
a limited purpose since they are not yet compatible to the CityGML definition. However, an interesting
output of the workflow proposed in this paper is the possibility to automatically annotate the resulting
roof (and by extension the buildings also) 3D models with semantic information extracted from the input
GIS shapefile (Figure 8).

In order to assess the quality of the generated roof models, two types of analysis were performed.
Note here that the assessment only applies to the roof models and not the buildings, since M_HERACLES
uses a data-driven method to reconstruct the roofs while the generation of the wall surfaces follows a
more model-driven or parametric approach. Since the original point cloud also lacks building façades,
the analysis was focused on the roofs instead.

The first analysis compares the generated roof models against the original point cloud. For this
assessment, the perpendicular Euclidean distance between the point cloud and the generated roof surfaces
were computed for each detected roof segment. This was done using the mesh-to-cloud functionality
in CloudCompare, yielding results as shown in Figure 9. As can be seen from said figure, the overall
average error amounts to 2.5 cm with a standard deviation of 6.0 cm. The error is defined as the deviation
between the points in the input point cloud and their respective roof surface primitives. This result is
quite satisfactory considering that the original point cloud’s resolution is of the order of 10 cm. However,
a closer look at the individual buildings’ statistics (as shown in the left-hand side of Figure 9) demonstrates
a more heterogeneous distribution of error.

One remark is that the overall error as well as the standard deviation tend to be better for buildings
having less joints, i.e., intersection between the different surfaces constituting the building roof. This is
shown by B1, B2, B7, B8, and B9 in Figure 9, which each consists of three roof segments, as opposed to,
e.g., B3, B4, B5, and B6 with four roof segments each. This, however, may be explained by the fact that the
M_HERACLES function contains features which computes adjusted coordinates of joint points in order to
satisfy the “snapping” requirement. As may already be inferred logically, more noisy input data, e.g., B15
generated worse standard deviation values, although the mean deviation remains low.
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Figure 7. The detected roof 3D polygons with extrusion towards the Digital Elevation Model (DEM).

Figure 8. Illustration of the automatically annotated GIS attributes on the resulting building 3D models.

Figure 9. Geometric mean deviations between each generated roof 3D model and the original point cloud
and their respective standard deviation values (left) and a histogram fitted to a Gauss curve representing
the global values of the same error (right).

A second analysis was conducted by comparing the results of M_HERACLES to manually digitized
roof surfaces from a stereoplotting operation. The main problem with manual stereoplotting measurements
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is the necessity to force coplanarity for each roof segment. While this is possible to perform (cf. Figure 10),
manual intervention is also prone to human error. M_HERACLES on the other hand, automatically
respects this restraint due to its integrated coplanarity feature. Figure 10 shows that up to 92.54% of the
generated roof surfaces respect the coplanarity constraint with a tolerance of 1 cm, slightly better than the
results of manual stereoplotting (89.41%).

Figure 10. Coplanarity check for each set of vertices constituting the roof surfaces, with a tolerance of 5 cm
(left) and 1 cm (right). The same parameters for roof surfaces generated by manual 3D stereoplotting are
also given on the lower row as a comparison. Note that the original point cloud’s resolution is 10 cm.

Another issue with the automatic M_HERACLES involves the number of the generated vertices.
Using stereoplotting, human intervention ensures an additional layer of qualitative interpretation to
the 3D data. On the contrary, the proposed method is a purely data-driven one and the result depends
strongly from the input data. On average, M_HERACLES generated 1.7 times more vertices than purely
manual plotting.

4.3. CityGML Conversion

A separate conversion program was written in Python, enabling an automatic passage between
M_HERACLES and CityGML. The program took roof surfaces created by M_HERACLES as input and
generated wall surfaces using a downward extruding process and automatically writes the result in a
CityGML file. Moreover, the building base was also created by merging roof surfaces into a roof base
surface and then changing its height consistent to the building ground elevation extracted automatically
from the DEM. In this regard, the CityGML representation falls into the pre-determined LoD2. Contrary to
the mesh representation in Figure 8, both the roof segments and the derived wall surfaces were converted
into a multipatch or 3D polygon in order to conform to CityGML requirements.

The conversion essentially involves a simple rearrangement of vertices to follow a clockwise rotation
from the barycenter’s perspective. The sorting function first projects the vertices into a 2D plane determined
by a Principal Component Analysis (PCA) computation. The barycenter of the vertices was then computed,
from which bearing angles were calculated for each vertex with regards to the barycenter point and and
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arbitrary vector. The vertices were thereafter sorted according to these bearing angles to generate the 3D
multipatch in the XML format. The resulting CityGML models are shown in Figure 11.

Figure 11. Resulting 3D CityGML models of the buildings generated by M_HERACLES and automatically
converted using the Python function.

The main benefit of the M_HERACLES-based procedure is the reduction of time and resources
required to produce the building model when compared to manually digitized roof models. Indeed, using
manual stereoplotting techniques, not only does the process take longer, but certain skills are also required
of the operator. Furthermore, the conversion program also creates perfectly vertical walls in every side of
the building. The proposed program also enforces coplanarity of each surface, reducing the requirement
for manual verification. This is crucial in order to create CityGML-compatible 3D models. As regards to
the overarching objective of developing a low-cost solution while maintaining geometric quality, the use of
nadiral UAV photogrammetry has been shown to be adequate at least for an overall point cloud resolution
of 10 cm.

Other than these stated advantages, the program also has several shortcomings.
Although M_HERACLES provided a feature to try as best as possible to prevent gaps between
roof surfaces, the result is still limited mostly by the quality of the input data and the region growing
process. Indeed, manual verification and in some instances several manual clean-up of the resulting
models is still required even though the amount of manual intervention is greatly reduced. Another
limitation of the conversion program as far as the CityGML models are concerned is that it does not at
the moment accommodate the creation of surfaces in holes located in between roof surfaces. These holes
represent vertical roof façades or voids caused by overhanging roofs (Figure 12). The program only creates
wall surfaces that starts from the roof base to the ground, so if there is holes in the input data those holes
will also be present in the output building model.

Figure 12. Example of a medium-complexity CityGML building model generated from M_HERACLES
roof models. Notice the hole on the model as pointed by the red circle.
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5. Conclusions

In this paper, an algorithmic and data-driven approach was proposed to address the 3D reconstruction
problem of buildings in an aerial UAV-derived point cloud setting. The proposed method attempts to
present an automated workflow from point cloud up to 3D building models which are compatible to the
LoD2 definition of CityGML. The M_HERACLES toolbox was used for the segmentation process and up
to the automatic creation of roof segments. Another independent function was then employed to convert
these 3D roof segments into 3D building models by virtue of extrusion towards a pre-existing DEM.

Results show that the approach taken in this research managed to perform well for building
segmentation, with an overall F1 score of 99.56% for the tested dataset. The generated roof segment
geometric primitives in the form of 3D surface polygons provided satisfactory results for low to medium
levels of roof complexity. However, this particular part of the algorithm was still unable to generate good
results for complex roofs; in many instances of complicated forms, fine-tuning is still required to obtain
acceptable results. However, of the low to medium complexity roofs that M_HERACLES managed to
process correctly, a direct conversion to CityGML format was possible.

Three main advantages of the proposed approach can be retained, albeit not without several
trade-offs. First, the use of M_HERACLES’ approach to aerial point cloud segmentation permits an
instance segmentation to be performed on individual building entities, as well as automatic attribute
annotation from the input GIS shapefile.

A second advantage to the proposed method involves the use of the algorithmic approach in creating
the 3D surfaces of the roof segments. A few constraints have been added with the specific objective
of rendering the result as compatible as possible to the CityGML paradigm. Notably, the algorithm
guarantees coplanarity between vertice points of every surface up to an acceptable tolerance. The snapping
constraint also greatly reduces the required manual clean-up of 3D roof models; a crucial step that must
also be performed when using manually stereoplotted 3D roof models.

The last advantage is straightforward and rings true for most automation attempts: the proposed
method reduces processing time as well as resources. Traditionally, 3D city models are created from roof
models digitized manually using the stereoplotting method; this means that a skilled operator is required
to perform the task. The algorithm provides a way to reduce this requirement while also giving a generally
faster solution.

There remains, however, much to be improved from the current algorithm presented in this paper.
The GIS-based segmentation may provide its benefits, but may also pose an additional constraint
depending on the project’s demands. As we have mentioned briefly in Section 2, the use of machine or
deep learning approaches may lessen the reliance on pre-existing, hard-coded algorithmic information
such as shapefiles. In this regard, developments toward panoptic deep learning segmentation will be a
very interesting approach for future work. Furthermore, the purely data-driven approach for the roof
reconstruction may benefit from additional rules and/or geometric constraints in order to improve its
overall results, especially when dealing with more complex roof forms. More tests with more varied
datasets are also envisaged in order to further validate the performance of the proposed workflow.

Supplementary Materials: M_HERACLES is an open source toolbox written in Matlab© and available for
download via GitHub in the following webpage: https://github.com/murtiad/M_HERACLES (last updated
15 October 2020). Additionally, the 3D polygon to CityGML conversion program can be accessed in the following link:
https://github.com/veriandi/roofshp2citygml (last updated 26 October 2020).
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