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Abstract: Synthetic aperture radar (SAR) plays a remarkable role in ocean surveillance, with 
capabilities of detecting oil spills, icebergs, and marine traffic both at daytime and at night, 
regardless of clouds and extreme weather conditions. The detection of ocean objects using SAR 
relies on well-established methods, mostly adaptive thresholding algorithms. In most waters, the 
dominant ocean objects are ships, whereas in arctic waters the vast majority of objects are icebergs 
drifting in the ocean and can be mistaken for ships in terms of navigation and ocean surveillance. 
Since these objects can look very much alike in SAR images, the determination of what objects 
actually are still relies on manual detection and human interpretation. With the increasing interest 
in the arctic regions for marine transportation, it is crucial to develop novel approaches for 
automatic monitoring of the traffic in these waters with satellite data. Hence, this study aims at 
proposing a deep learning model based on YoloV3 for discriminating icebergs and ships, which 
could be used for mapping ocean objects ahead of a journey. Using dual-polarization Sentinel-1 
data, we pilot-tested our approach on a case study in Greenland. Our findings reveal that our 
approach is capable of training a deep learning model with reliable detection accuracy. Our 
methodical approach along with the choice of data and classifiers can be of great importance to 
climate change researchers, shipping industries and biodiversity analysts. The main difficulties 
were faced in the creation of training data in the Arctic waters and we concluded that future work 
must focus on issues regarding training data. 

Keywords: deep learning; object detection; ocean objects; synthetic aperture radar; classification; 
YoloV3 

 

1. Introduction 

Synthetic aperture radar (SAR) is a very capable tool for ocean monitoring, especially in regard 
to detecting oil spills, mapping ice, and locating unidentified ships. Since SAR is based on active 
remote sensing, it has capabilities to function both during the day and night through any weather 
conditions, and spaceborne SAR products therefore allow for constant and seamless monitoring of 
vast areas. Mapping and detecting objects through SAR data are based on measurements of the 
surface texture properties of different object types. Depending on the application, different methods 
are applied in SAR-based mapping, sea ice charting is mostly based on backscatter values measured 
from observations [1] where iceberg detection relies on adaptive threshold algorithms that detect 
sudden increases in backscatter values between an object and the ocean. [2]. The same underlying 
methodology algorithm is used in ship traffic monitoring [3], allowing authorities to monitor and 
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detect vessels that are not traceable with the automatic identification system (AIS) or other reporting 
signals [4]. 

While object detection in SAR data has served a variety of applications and has solid ground on 
well-established methodologies, basing the detection on adaptive thresholding algorithms can be 
challenging and the determination of an object is often still up to human interpretation. In areas 
where there are both a great number of icebergs and ships, it is challenging, even for a human 
interpreter, to tell them apart. A recent study on automatic detection of ships in 2000 Sentinel-1 SAR 
images covering Arctic waters using the adaptive threshold CFAR algorithm reached the following 
conclusion: 

The presence of sea ice is a constant challenge. Accurate automatic tools to discriminate ice from open 
water are needed to increase the reliability of the SAR based ship detection, both reducing the number of false 
alarms and increasing the number of ships detected. This includes the need for automatic ship–iceberg 
discrimination capability [5]. 

The capabilities and possibilities within deep learning object detection are increasing at a fast 
pace. Today, there is a significant amount of deep learning frameworks to choose from, with some of 
the most notable being Faster R-CNN [6], SSD [7], YOLO [8] and Resnet [9]. Most of these are being 
utilized in image object detection, locating a vast number of objects in everyday photos. The 
algorithms are being utilized for object detection in aerial, satellite photography and SAR data at an 
increasing degree. 

In the creation of a training dataset for SAR ship detection, [10] utilised and evaluated different 
deep learning models such as SSD, Faster R-CNN and RetinaNet. All of these models achieved 
accuracies between 88–91%, with RetinaNet achieving the highest accuracy but at the cost of the 
longest training time. The study [11] managed to classify types of ships in Sentinel-1 images, by 
training OpenSAR data on a multi-task neural network. The research studies achieved accuracies of 
96–97% on small image tiles and 85% on larger Sentinel-1 scene patches.  
The creators of OpenSAR [10] did not test the Yolo object detector as it has been proven to be fast and 
accurate [8,12]. A study on ship detection [13] compared training and detection between Faster-
RCNN and YoloV2 and managed to achieve 90% accuracy with the Yolov2 detector, 20% higher than 
Faster-R-CNN, and proved significantly better training and detection times. The Yolo framework has 
gained increased traction over the last few years, proving good detection capabilities and great 
detection speeds and training times. In remote sensing applications, it has outperformed the field of 
established algorithms [14], and thus making the YoloV3 algorithm the ideal choice of algorithm for 
the purpose of this study. 

Given the recent advances and results produced by deep learning image recognition and object 
detection algorithms, it is the inevitable way to proceed for the future of satellite ocean monitoring. 
The main objective of this study was set to implement YoloV3, which has become a popular and 
reliable object detector, in order to investigate its usefulness and what challenges arise in the task of 
iceberg–ship discrimination in SAR data. 

2. Materials and Methods  

2.1. Data 

Training a deep neural network for object detection and classification purposes requires a large 
portion of labelled images serving as training and validation data. These data were generated 
through a combination of an automatic detection algorithm (CFAR) and manual digitization of 
objects in a number of Sentinel-1 interferometric wide (IW) swath images over various locations. The 
automatic detection was set to locate and outline as many objects as possible in the size range of 20–
480 m, this helped to quicken the labelling process and ease the assessment of the large image scenes. 
All detected objects were manually inspected for precise outlining and removal of false objects; if 
missing objects were found in the images, these were outlined manually. Labelling the object as two 
object classes, ship, and iceberg, was achieved based on AIS data for the selected areas. The ship class 
was mainly gained from the Danish study areas, where the AIS data were sorted accordingly to the 
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Sentinel-1 acquisition timestamp, and all objects were manually correlated to nearby AIS data points. 
The iceberg class was created from the Greenland study areas, where the AIS data were used to 
ensure that the outlined objects were not correlating to any nearby AIS data points. There is, to our 
knowledge, no complete and accurate coastline data set for Greenland, and with some areas prone to 
high tides, near-surface rocks can cause false objects to appear. Sentinel-2 optical imagery was used 
to assist quality assurance of the data e.g., removal of surface rocks.  
It was emphasized to use Sentinel-1 data of the same areas but captured from both satellites and with 
different orbits, paths, and directions, this ensures that training objects are seen at different angles 
and from different sides. The study areas and Sentinel-1 scenes can be seen in Figure 1. Over the 
different areas, a total number of 2279 objects were digitized in 7 different Sentinel-1 scenes. See 
details on the labelled data and satellite information in Table 1. 

 
Figure 1. Study areas outlined in red and, Sentinel-1 scenes used within the study areas outlined in 
black. 

The two Greenland study areas (Disko Bay and Nuup Kangerlua) were selected based on the 
expected amount and density of icebergs. While icebergs are common sights all over the coast of 
Greenland and Eastern Canada as well, the selected areas have glacier outlets from the icesheet 
flowing directly into them ensuring a stable flow of icebergs during the warmer months of the year. 
The Danish study area covers the ocean Kattegat, this is a busy shipping route due to fact that all 
cargo from the Baltic areas travel through here. Choosing a waterway within was however mainly 
chosen based on the fact that AIS data are made free by the Danish Maritime Authority.  

Table 1. Information on acquired satellite data for annotation of ship and icebergs 

Location Satellite 
Acquisition 

Time Polarization 
Path & 
Angle1 

Object 
Class 

No. of 
Objects 

Greenland Sentinel-1A 
24/11/2019 

(09:45:23 – 09:45:52) 
HH+HV 

Descending 
X34° 

Iceberg 1150 

Greenland Sentinel-1B 
30/11/2019 

(09:44:41 – 09:45:10) 
HH+HV 

Descending 
X34° 

Iceberg 613 

Denmark Sentinel-1A 
08/10/2019 

(05:32:31 – 05:32:56) 
VH + VV 

Descending 
X34° 

Ship 78 

Denmark Sentinel-1B 
19/11/2019 

(05:31:39 – 05:32:04) 
VH + VV 

Descending 
X34° 

Ship 102 
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Denmark Sentinel-1A 
23/11/2019 

(17:02:05 – 17:02:30) 
VH + VV 

Ascending 
X34° 

Ship 118 

Denmark Sentinel-1B 
16/01/2020 

(17:01:20 – 17:01:45) 
VH + VV 

Ascending 
X34° 

Ship 112 

Denmark Sentinel-1B 
23/02/2020 

(05:31:35 – 05:32:00) 
VH + VV 

Descending 
X34° 

Ship 108 

1 Incidence angle measured at mid swath. 

 
The acquired satellite data for the study is seen in Table 1, it is important to note the different 

polarizations at the Greenland and Denmark locations and associated object classes. Given the 
geographical extent of the polarizations and the nature of the locations of the objects, as the Arctic 
has a lack of ships but a great number of icebergs and vice versa, it is not feasible for a study of this 
scale to produce a data set with all objects in the same polarization.  
The Sentinel-1 data are converted into RGB composites with the individual polarization used as 
image bands. Earlier studies have indicated better ship detection capabilities in the dual-polarization 
(VV or HH) modes [10,15], but since the goal is not solely ship detection, it was decided to also 
include the cross-polarization in composite. Thus, making the Sentinel-1 RGB colour composite 
structured as follows:  

• R = HH or VH 
• G = HV or VV 
• B = HH or VH 

The initial objects are outlined as vectors in the given Sentinel-1 images (see Figure 2), and they are 
converted into the darknet annotation format with text files containing information on the label class 
of objects and positions in the image. The Sentinel-1 images are cropped into image tiles in the sizes 
of 640 × 640 pixels, resulting in a total of 1609 images with corresponding label files. Code for darknet 
conversion is available at GitHub (see supplementary materials). Out of these images, 20% (322) are 
selected as validation data, and the remaining 80% (1288) for model training. 

 
Figure 2. Samples of training objects’ bounding boxes, icebergs in top row and ships in bottom row. 
The targets are shown in single-polarization greyscale, HH (top) and VH (bottom). 

2.2. YoloV3 Model Architecture 

The YoloV3 algorithm implemented in this study is based on Darknet-53, a 53-layer deep 
convolutional neural network (CNN) with residual connections. The traditional CNN object detectors 
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function as two stage detectors that first have to identify individual regions of interest in the image 
and then carry out bounding box detection within these regions. The two-stage detection performs 
at competitive levels but at slow speeds, and while the improvements to speed have been made in 
further developments such as the Fast R-CNN and Faster R-CNN, they cannot achieve equal training 
time to the single stage detection. Yolo is a single stage detector that does not need to divide the image 
into separate regions, but instead handles the full image at once and hence the name: You Only Look 
Once. This is achieved by creating feature maps consisting of grid cells through a 3 level pyramid-
like resampling of the image [8]. 
The resampling of the image is completed at the levels of 32, 16 and 8 in the individual feature maps, 
with a 1 × 1 detection kernel for each layer that contains the underlying image cells. The kernel is a 3-
dimensional array with the shape of 1 × 1(Bx(5C)), with B being the number of bounding boxes per 
grid cell (3 as standard) and C, more importantly, being the number of classes for the model to 
predict. The shape of the kernel is an important factor when considering the size of the input images 
for the model to train and predict. With images of 640 × 640 pixels, the finest scale prediction boxes 
have the size of 20 × 20 pixels. The predictions made on each feature map are passed through the 
upsampling layers and residual connections to perform detections at the original scale without loss 
of information from the finer scales.  
The biggest advantage of YoloV3 over its predecessor YoloV2 is the scaling of the image and 
predictions made on each level and hereby its ability to detect smaller objects. Furthermore, the 
scaling causes the number of bounding boxes for prediction to increase by a great magnitude. With 
the case of size 640 × 640 images, the number of prediction boxes is 25,920 per image.  

2.3. Training 

Model training was carried out on a NVIDIA Quadro M4000 GPU with 8GB of memory, with a 
training time of 4.9 min per epoch. With the adaptive learning rate algorithms usually yielding higher 
model accuracies than static ones [16], the Adam learning rate optimizer was chosen over the static 
stochastic gradient descent (SGD). Both the basic SGD and its further adaptive developments are 
popular in neural network applications [17], but given the findings of [18,19], which proved Adam’s 
usefulness on relatively small datasets (less than 1000 images), the Adam optimizer is chosen for the 
model of this study.  
Hyperparameter setting was completed based on studies who successfully implemented Yolo in 
remote sensing cases. The author of the Yolo-based “Yolt” model [14] suggests implementing the 
same hyperparameters as the Yolo model. The default parameters of YoloV3 are 0.001, 0.9 and 0.0005 
for the learning rate momentum and weight decay, respectively, and we decided to keep these values. 
There is some variance in proposed learning rate settings, but studies applying Yolo to aerial imagery 
have succeeded with a learning rate of 0.001 [12] and have proven that this value produces higher 
precision [20]. 
The model was trained for a total of 350 epochs, resulting in a total training time of 27 h. Due to 
limitations in computer memory, the batch size was set at 4. 

2.4. Evaluation Metrics 

The model is evaluated using the following metrics: Precision, Recall and F1, which are used to 
measure the model detection performance [21]. The formulas include the classification terms: 

• TP, true positive: model detects a true object; 
• FP, false positive: model detects a false object; 
• FN, false negative: model did not detect a true object. 

The scores are calculated as: 
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 
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𝑅𝑒𝑐𝑎𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 
𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 
The precision and recall metrics both measure the model detection performance, but each 

account for different factors in the detection process. Precision is a measure of how accurate the model 
is at making positive predictions, i.e., objects detected by the model. Since only detected positives are 
used in the formula, the precision is likely to remain high as long as very few objects are detected. 
The recall accounts for this by measuring false negatives, i.e., objects not detected, and is thereby a 
measure of how much is detected out of what should have been detected. These two measures often 
move in opposite directions in relation to each other; high precision causes low recall and vice versa. 
The F1 score accounts for these measure biases and is thereby perceived as an overall accuracy 
measure [21]. A high F1 score means a small amount of both false negatives and false positives. All 
measures are valued between 0–1, with 1 being a perfect validation result. 

Generalized intersection over union (GIoU) measures how well the model predicts object 
bounding boxes. The GIoU is developed from the standard intersection over union (IoU), a metric 
that measures how well a predicted bounding box intersects the ground truth bounding box. This 
metric only returns a value if there is an intersection, whereas the generalized version takes the 
proximity of the two boxes into account. This is especially useful for small objects, as the bounding 
boxes of small objects are easily missed and thereby return a value of 0. In these cases, the GIoU 
would still return a value, indicating if the boxes were close to each other [22]. The GIoU is calculated 
as: 
 

𝐺𝐼𝑜𝑈 = |𝐴 ∩ 𝐵||𝐴 ∪ 𝐵| − |𝐶(𝐴 ∪ 𝐵||𝐶| = 𝐼𝑜𝑈 − |𝐶\(𝐴 ∪ 𝐵ሻ||𝐶|  

A and B represent the predicted and ground truth bounding boxes, and C is the bounding box 

containing both of these. ∩ , and ∪ represent areas of overlap and union, respectively. 
Mean average precision (mAP) is a measure for overall model accuracy, derived by calculating 

the area under a precision–recall curve. The precision and recall metrics are good assessments for 
model accuracy, but both are sensitive to false negatives and false positives, meaning that these 
graphs alone can sometimes be misleading. By plotting a curve of these two metrics and calculating 
the area under the curve, a non-bias metric for the overall model accuracy is found [21]. The mAP of 
0.5 states that only objects with an IoU threshold above 0.5 (having 50% overlap) were used in this 
metric. 

3. Results  

3.1. Training Evaluation 

The model was trained for 350 epochs and evaluated using the scores precision, recall, F1, GIoU, 
and mAP, as seen in Table 2. The scores are calculated from model validation data, consisting of 321 
image tiles. The F1 score and mAP score are seen to follow each other closely, given indications on 
the training at different stages, the model quickly reached F1 and mAP scores of ~0.4, whereafter they 
continue to increase but at a slower rate. At the end of the training, the model achieved the accuracy 
scores of F1 = 0.530 and mAP = 0.557. The GIoU is steadily decreasing, indicating that the model is 
becoming better at correctly locating targets.  

Table 2. Training metrics at different iteration stages. 

Epoch Precision Recall F1 Score GIoU mAP 
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100 0.656 0.321 0.430 2.14 0.407 
200 0.583 0.549 0.541 1.58 0.542 
300 0.493 0.610 0.534 1.29 0.548 
350 0.476 0.600 0.530 1.16 0.557 

Comparisons between input images and model predictions are shown in Figure 3. Visually 
inspecting the predictions, it can be seen that the detector struggles to detect the largest of the objects 
while having good detection capabilities for the smaller objects, though also showing weakness in 
dense object situations. Most of the ships detected are false positives, as these are icebergs wrongly 
classified as ships.  

 
Figure 3. Input Sentinel-1 RGB composite images and output predictions, blue labels are predicted 
icebergs and red labels are predicted ships. Blue circles are false negatives and red circles are false 
positives. 

Figure 3 shows the prediction carried out in Western Greenland, where there is an abundance 
of icebergs but very few ships. The vast majority of objects here are icebergs, and the model correctly 
detects them; however, the low number of ships makes it difficult to evaluate exactly how well the 
ship detection is performing. Therefore, we tested the model at the Danish study site, while expecting 
that it should only detect ships.  
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Figure 4. Input Sentinel-1 RGB composite images and output predictions, red labels are predicted 
ships. Blue circles are false negatives. 

The prediction shown in Figure 4 proves that the model is indeed capable of detecting ships, 
with only a few ships going by undetected. The detection setting here is simpler though, with the 
biggest difference being the number of objects and their proximity to each other.  

3.2. Testing the Model against Existing Iceberg Detections  

To test the model in a full-scale setting, we carried out a prediction for a full Sentinel-1 scene 
covering the Disko Bay in Western Greenland. The predictions made here are compared to iceberg 
detection obtained from the Danish Meteorological Institute (DMI) on the same Sentinel-1 data. The 
prediction is carried out with the confidence set to 0.5, meaning that the model will only return objects 
that have a 50% certainty of being either an iceberg or a ship. The date selected for validation was 
April 25, 2020.  

The icebergs used for validation are detections made by DMI for the Copernicus Sea IceBerg 
Concentration product (Copernicus Marine Service. Sentinel-1 Sea Ice Berg Concentration), these data 
are represented as polygons outlining each detected iceberg. The polygon data set is not publicly 
available, but have been provided for this project, a low-resolution overview of the data is also 
published at DMI’s PolarPortal (DMI Polar Portal, Isberge). 

The ship AIS data for the Greenland study areas have been provided by the Danish company 
Gatehouse, these data are not publicly available. As the data are satellite AIS, it has a lower accuracy 
than shore-based AIS systems. The AIS data are sorted according to the timestamp of the Sentinel-1 
acquisition, this does not guarantee an exact match but only points close to detected objects. 

In the Sentinel-1 scene of April 25, 2020, a total number of 23,576 icebergs and 207 ships were 

detected. 
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Figure 5. April 18, 2020, Disko Bay Sentinel-1 RGB composite cropped with a coastline and overlaid 
on a Sentinel-2 image mosaic. 

In Figure 5, the full scene RGB composite can be observed. The composite is made up of HH-
HV-HH, which means that open water is represented by the green colour and strong reflective objects 
(icebergs and ships) appear as white with some purple reflection as well. The vast amount of purple 
seen in the top of the image is a mix of icebergs and floating sea ice. The model has not been trained 
in dense ice situations, so no validation took place in such areas. The green dominant area at the 
bottom of the image, marked by the red square, is open water with a large number of objects, which 
was used for this validation. 

 
Figure 6. April 20, 2020. Validation area detection output, orange polygons and red dots are validation 
objects. Blue marks are iceberg detections, and red marks are ship detection (too few to see in the 
figure). 

In Figure 6, the detection output for the validation area is seen, detected icebergs are represented 
with a blue colour and detected ships are represented in red, due to a relatively small amount of ship 
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detections, they are difficult to see in the image. The orange polygons are icebergs detected by DMI 
in the same Sentinel-1 scene, and the red points are AIS points with ship positions. Figure 7 clearly 
shows that icebergs detected by the project model, and icebergs detected by DMI, do not follow the 
same geographic extent. The reason for this is the fact that DMI only detects icebergs in open waters 
and assessing the DMI sea ice chart of the day before shows that the large area without DMI detections 
is classified as sea ice (DMI ice chart, April 24, 2020). 

 
Figure 7. April 20, 2020. Close-up detection examples, left images show validation iceberg polygons 
from DMI and right images show model detections. Blue marks are iceberg detections, and red marks 
are ship detections. 

In the validation area, DMI detected a total of 4601 icebergs, these are the orange polygons in 
Figure 6. The polygons appear to have a small offset towards the left, this is due to differences in 
Sentinel-1 pre-processing. With the use of DMI iceberg polygons, the detections made by the study 
are validated against these. The polygons are used as ground truth and the model is validated by 
measuring how many of these were detected. In the areas without iceberg ground truth, validation 
is not possible. 

Each iceberg polygon is validated with three possible outcomes: “detected as iceberg”, “detected 
as ship”, or “not detected”. A validation overview is shown in Table 3. The validation shows that out 
of the 2340 icebergs detected by DMI, 54.95% of them were detected by the model. A fraction of these 
were correctly detected but classified wrongly as ships. 

Table 3. April 18, 2020. Validation overview. 

DMI Icebergs Detected as iceberg Detected as ship Not detected 

4601 2285 69 2247 

 
This gives an overall accuracy of 51.16%, which corresponds very well to the models predicted 

accuracy of 55.7% (see mAP, Table 2). In the validation area, there were five ships present at the 
satellite acquisition time, the AIS data points from these are shown as the red dots in Figure 8. Out of 
these five ships, three were detected as icebergs and one was correctly detected as a ship. With the 
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result from the iceberg validation along with the fact that 69 ships were detected even though only 
five were present, this validation indicates the model is to a large extent capable of detecting and 
classifying objects, but still struggles to detect and correctly classify the ships. The prediction results 
for the five ships are shown in Figure 8. 

 
Figure 8. The 5 AIS validation data points in the validation area, top images are the input Sentinel-1 
RGB composites and bottom images are the model prediction. 

3.3. Results Summary 

Based on the icebergs detected by DMI and ship AIS data, the validation shows an overall 
iceberg detection accuracy of about 51%. The ship detection carried out in Denmark had about 70% 
accuracy, and too few predictions were made in Greenland to estimate an actual accuracy, but the 
results indicate an accuracy lower than 50%. It should be noted though, that out the 23,000 objects 
predicted by the model, only a very few of these were ships. This indicates that even though the 
model has issues with the ship class, the vast majority of objects were still classified correctly.  

4. Discussion 

We set out to implement the Yolo detection algorithm for iceberg–ship discrimination, a difficult 
classification task performed in complex environments. In the following discussion, we will cover the 
biggest issues facing the modelling process: availability, quality and quantity of the input data for 
the model. 

While some SAR datasets exist on ships, there is not a sufficient large-scale data set on icebergs. 
The only thing that comes close is the dataset provided for the 2017 Kaggle competition (Statoil/C-
CORE Iceberg Classifier Challenge) on the topic in question, but the data provided are in very small 
image tiles and are not under a complex situation, such as the one presented in this study.  
Given the lack of completeness in current automatic detection methods, a great amount of manual 
work must be spent on creating an iceberg dataset. However, labelling icebergs in SAR data around 
Greenland is a complicated process, and a task that seems to remain unsolved by the Earth 
observation scientific community.  
We therefore faced the task of creating an iceberg dataset through a mix of automatic detection and 
manual labelling. This left the difficult question of how to label icebergs up to our interpretation. 
While there are definitions and categorizations of what exactly an iceberg is and different types of 
icebergs (such as the definition by the National Oceanic and Atmospheric Administration, NOAA), 
these are not used in Greenlandic iceberg charting by Copernicus and DMI (the polygons used in 
Section 3.2).  
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Figure 9. Image from a camera station placed in the bottom of the fjord Nuup Kangerlua. Photo taken 
on 13th of August 2018. 

Figure 9 shows an example of the real-world situation at the glacier outflows. The picture 
highlights the complexity of labelling icebergs in the Greenlandic fjord. Some icebergs are clearly 
seen, but most of the ice are smaller pieces and patches of drift ice, which are difficult to categorize 
exactly. When looking at such scenes from satellite radar, the complexity in labelling remains the 
same. 

 
Figure 10. Example of icebergs detected with an adaptive thresholding algorithm in Sentinel-1 data. 

Figure 10 shows an example of iceberg training data used in the model and is a good indicator 
of a complex situation where data are to be labelled. It could be argued that too many objects are not 
labelled, leaving them out of training, but in opposition to this, one could say that too many small 
objects are included, and these are not of great importance. In Figure 11, training objects are also seen 
to be located within the large piece of floating ice in the right side of the image, this also raises the 
question of icebergs being present in other types of ice, such as in this study [23], or if such large 
pieces of floating ice should be in a class of their own or maybe not be included at all. 
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Since ships are clearly defined objects, populating a SAR dataset with these does not face the 
same issues as the icebergs. The quantity of ships sailing in Arctic and iceberg-infested waters are 
however very low, making it challenging to create a comprehensive data set.  

Only a few dozen ships are usually sailing in Greenlandic waters at a time and given the very 
large geographical extent of these waters, the traffic of any given area is very sparse. This poses a 
challenge in validating any given model, but even more so in creating model training data. To avoid 
acquiring AIS data over a very long timeframe and processing equal large amounts of Sentinel-1 data, 
it was decided to populate the dataset with ships from more busy waters, and hence the need for the 
Danish study area (see Figure 1). Denmark and Greenland are, however, covered by different 
Sentinel-1 polarizations (see Figure 11), raising the question of the impact of training and detecting 
in different polarizations. 

 
Figure 11. Sentinel-1 acquisition polarisation schema. (Source: European Space Agency “Sentinel 
High Level Operations Plan (HLOP)”). 

Due to the nature of the geographic distribution of the two object classes and the two 
polarization types, locating areas with great quantities of both ships and icebergs is a major challenge. 
Given that each of the object classes are by far most abundant in their separate polarization regions, 
it was inevitable to create training data in two different polarizations. As shown in Figure 11, most 
of the world is covered with the same polarization, so this is not an issue for the majority of the studies 
regarding object detection in SAR data, and likely the reason why it is not very well covered in the 
literature. Thus, the training of the two classes in the model is based on different polarizations, 
HH+HV for the Greenland areas and VH+VV for the Danish areas. To which degree this factor has 
impacted the detection results is difficult to say, but it certainly has an impact as the model is not 
trained on ships appearances in the HH+HV polarization. To which degree, and exactly what effect 
the cross-polarization training and detection have on overall accuracy, are certainly subjects for 
further investigation.  

5. Conclusion 

In this paper, we proposed implementing the YoloV3 object detection algorithm for Sentinel-1 
iceberg and ship detection in Arctic waters, a long-lasting issue in remote sensing of the arctic regions. 
Our study shows the capabilities of the state-of-the-art deep learning framework, while also 
highlighting the issues facing implementation of such models.  

The choice of the Yolo framework was based on documented performance, training time and 
inference speed. With the model showing such good performance with a bare amount of training 
data, we confirm the choice of Yolo for this purpose. At the time of this study, YoloV3 was state-of-
the-art and we chose this detector based on documented performance under various settings, new 
improvements have since arrived and we encourage future research to implement the later versions 
such as the YoloV4 or V5 model. While we still believe that good results can be achieved with other 
single-stage detectors, such as the SSD, the purpose of this study has not been to compare deep 
learning frameworks, but to highlight the difficulties in implementation and validation.  
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Due to the lack of existing quality data, we set out to create our own data set for the purpose of 
the project. The data set created is, in a deep learning context, still at a relatively small size. However, 
testing the model under very difficult circumstances and complex backgrounds still yielded good 
detection capabilities, paving the way for future work. 

In this specific case, the capabilities of any object detection framework are far beyond the quality 
and quantity of existing data sets, stating that the creation of training data is currently of greater 
importance than comparing model frameworks. The cross-polarization scenario is a challenging 
large-scale annotation of ship data, with only a few ships sailing in Arctic waters, while setting up 
specific goals for annotating icebergs is a necessity as well. Future research should keep 
implementing state-of-the-art algorithms, but our conclusion remains that real improvements to end 
results come from continuous work in annotating large-scale data sets for the research community to 
use. 

Supplementary Materials: The respective developed application is accessible at GitHub-Frhass. 
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