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Abstract: Accurate crop-type maps are urgently needed as input data for various applications,
leading to improved planning and more sustainable use of resources. Satellite remote sensing is the
optimal tool to provide such data. Images from Synthetic Aperture Radar (SAR) satellite sensors
are preferably used as they work regardless of cloud coverage during image acquisition. However,
processing of SAR is more complicated and the sensors have development potential. Dealing with
such a complexity, current studies should aim to be reproducible, open, and built upon free and
open-source software (FOSS). Thereby, the data can be reused to develop and validate new algorithms
or improve the ones already in use. This paper presents a case study of crop classification from
microwave remote sensing, relying on open data and open software only. We used 70 multitemporal
microwave remote sensing images from the Sentinel-1 satellite. A high-resolution, high-precision
digital elevation model (DEM) assisted the preprocessing. The multi-data approach (MDA) was used
as a framework enabling to demonstrate the benefits of including external cadastral data. It was used
to identify the agricultural area prior to the classification and to create land use/land cover (LULC)
maps which also include the annually changing crop types that are usually missing in official geodata.
All the software used in this study is open-source, such as the Sentinel Application Toolbox (SNAP),
Orfeo Toolbox, R, and QGIS. The produced geodata, all input data, and several intermediate data are
openly shared in a research database. Validation using an independent validation dataset showed
a high overall accuracy of 96.7% with differentiation into 11 different crop-classes.

Keywords: remote sensing; land use land cover; ancillary information; machine learning algorithms

1. Introduction

Global food insecurity is on the rise again [1]. Current and future challenges evolve from
a growing world population with an increasing nutrition demand under climate change conditions [2].
Therefore, ref. [3] demand a higher crop yield from agricultural production. To achieve this efficiency
increase, the decision makers in this domain can use information from agricultural monitoring systems
based on satellite remote sensing data [4].

However, ref. [5] identified crop-type maps as one missing yet essential part of the current
global systems. In addition, spatial crop-type data are critical for modeling matter fluxes in
soil–vegetation–atmosphere systems [6]. While on a local scale, crop-type information is needed
and available for agricultural management decisions (e.g., [7]), on regional, national, or continental
scales, such crop-type data are missing [8], especially on an annual basis. This data gap lowers the
capabilities of agroecosystem models [9] and results in less information about the current state of the
agricultural production for decision makers.
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Delimiting crop-type is a special type of land use / land cover (LULC) classification. LULC can
be efficiently derived by satellite remote sensing [10–12], which provides continuous monitoring of
the earth’s surface over extended areas at a comparably low cost. Separating crop types with remote
sensing images is achieved using the crop specific reflection in multitemporal images. By considering
the phenology of the plants under investigation, time frames can be identified where each crop type is
more easily distinguishable from the others. The topic is being researched using various sensors [13]
and algorithms [14,15]. One recent approach uses external information about crop development during
the year to classify the crops without the need for mapping the annually changing crops [16]. Yet,
supervised methods, relying on ground surveys, usually achieve higher accuracies, and are therefore
chosen by most studies [4,17,18].

However, optical approaches are unreliable for acquiring data of a distinct phenological stage,
as clouds during image acquisition hamper successful crop differentiation [14,19]. The mandatory
multitemporal measurement is then sometimes impossible, resulting in degraded map accuracy.
For cloudy conditions, Synthetic Aperture Radar (SAR) systems are a solution as they make crop
classification approaches more reliable in cloudy areas [17,18,20–23]. For our AOI, although combining
multiple optical satellite imaging systems, ref. [14] reported that no cloud-free remote sensing image
was available for a seven-year period. Unsurprisingly, the optical Sentinel-2 collected no cloud-free
image over our area of interest (AOI) during the observation period (January–September 2017) of this
study. This period encompasses the most critical phenological stages of all the considered cultures.

Interestingly, ref. [24] stated that operational microwave applications are limited, providing as
reasons the complexity of the radar signal and the limited radar sensor capabilities. Furthermore,
studies on the topic of crop-type classification from SAR are not reproducible as data restrictions
lead to the input data not being available. Moreover, ref. [5] concluded that the lack of such
data for calibration purposes is the primary constraint to operationalizing agricultural monitoring
systems. In a more general context, transparency and openness are demanded by the Transparency
and Openness Promotion (TOP) [25,26].

More challenges in LULC analysis come from using proprietary software, which is expensive
and the source code cannot be examined or improved by others. Free and Open-Source Software
(FOSS) works differently: The code is available online and no costs are incurred when using, changing,
or redistributing the software [27]. In a different domain, ref. [28] have already shown how using
FOSS helps to achieve reproducibility of remote sensing studies.

Additionally, remote sensing data analysis, including official geodata for creating LULC maps
has proven beneficial. The multi-data-approach (MDA) [29] has been proposed as a framework for
fusing multitemporal satellite images and official geodata for LULC mapping. The concept has been
adopted to crop-type classifications using optical [14] and to microwave [21] satellite images. Such
official geodata on, e.g., topography has recently been released as open data obtained by surveying
and mapping authority of the German state North Rhine-Westphalia (NRW), which includes our AOI.
Among other datasets, the program open.NRW provides the complete real-estate register, with the
geometry of every property [30]. A highly accurate digital elevation model (DEM) is also provided.
Both open.NRW datasets are ideal for integration into the workflow of crop-type classification from
radar satellite remote sensing.

The availability of open microwave satellite imagery, FOSS for LULC analysis, and open geodata
from official sources for the MDA creates new research opportunities. Therefore, the overall objective
of this study was the development and implementation of an open remote sensing analysis workflow
with open data and FOSS for crop-type mapping on the field level for national scales. As a first step,
we focused on a region in western Germany, the Rur Catchment, to develop, implement, and validate
such an open data analysis workflow. The Rur Catchment is the study region of the DFG-funded
CRC/TR32 “Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data
Assimilation” (TR32) (Figure 1). Within the TR32 research activities, multiannual LULC data including
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crop types were produced (Figure 1) and have been available via the TR32 project database (TR32DB)
since 2008 [31].

Figure 1. Location of the study region Rur Catchment and land use / land cover (LULC) analysis of
2017 using the Multi Data Approach (MDA) [14] with optical satellite data and external data. Screenshot
from the online available WebGIS of the TR32 project database (TR32DB).

The present study used open remote sensing data from the SAR satellite Sentinel-1, and external
data from open.NRW to perform a LULC crop-type classification. We designed the whole workflow
using FOSS to follow the demands of TOP. The used data models, all input, and the output data,
including the labeled reference data set from our mapping campaign, are shared openly in a scientific
data repository, the TR32DB. This combination allows others to access, use, change, evaluate, reproduce,
and even refine or improve the present study’s outcomes.

2. Study Site and Data

2.1. Rur Catchment

This study was performed within the collaborative research project TR32. The project has a defined
study area situated at the German borders with Belgium and the Netherlands (compare Figure 1). For
the present study, only those parts that lie within the German borders were considered. The extent
of the area is about 2500 km2. The area is characterized by fertile loess soils and humid, temperate
climate. It is intensively used for agricultural production. Ref. [14] describe the study area in detail.

2.2. Sentinel-1 Open SAR Data

The positive effects of open data have been seen by the remote sensing community, as the opening
of the optical Landsat archive in 2008 by the United States Geological Survey (USGS) Landsat [32]
had a positive impact on how satellites images are used for scientific purposes [33]. Consequently,
the prominent statement from [34] was to “make earth observations open access.” The European Space
Agency (ESA) followed the USGS example by distributing all satellite observations of their current
satellite program Copernicus Sentinel as open data [35]. Hence, the Sentinel-1 radar satellite, which
was used in the present study, is the first operational radar satellite, with an open data policy.
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The two Sentinel-1 SAR satellites work in a constellation to provide a repeat cycle of six days
for the same imaging properties. The revisit time for different image properties is shorter and varies
depending on the geographic location. Over land, the satellites monitor continuously with a spatial
resolution of 5 m × 20 m [36].

For this study, we acquired 70 Sentinel-1 images, for the growing period of 2017, between January
and August. As can be seen in Table 1, the images are two time series from the relative orbits 88 and
37. Only the images covering the entire AOI of approx 2500 km2 were considered. Table 2 shows the
individual acquisition dates. Notably, the two chosen relative orbits from the two satellites offer at
least one image acquisition per week. Even more images would be available that only partly cover
the AOI.

The Sentinel-1 SAR images were downloaded from ESA’s Scihub in prepossessed ground range
detected (GRD) form. The advantages of this server-side preprocessing are the smaller download
sizes and reduced speckle. The disadvantages are a decreased spatial resolution and loss of the phase
information, which are used for SAR interferometry and polarimetry [36]. As the Sentinel-1 images are
provided with high geometric accuracy [37] a multitemporal image classification is possible without
further coregistration. All used Sentinel-1 scenes can be downloaded from the TR32DB [38–41].

Table 1. Metadata of the Sentinel-1, A and B, acquisitions used in this study, VV = vertically transmitted
vertically received, VH = vertically transmitted horizontally received.

Relative
Orbit

Orbit
Direction

Time (UTC)
of Acquisition

Number of
Acquisitons Polarisations Incidence Angle

over AOI

88 Ascending 17:24 39 VV + VH 38.4◦–41.2◦

37 Descending 8:12 31 VV + VH 33.2◦–37.6◦

Table 2. Sentinel-1A (S1a) and Sentinel-1b (S1b) acquisitions of the study period, each acquisition
covers the whole AOI. As can be seen, there is at least one acquisition for each week.

January February March April May June July August

Cal. Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

rel.
orbit

39 S1a ? ? ? ? ? ? ? ? ? ? ?
S1b ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

88 S1a ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
S1b ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

2.3. Crop Distribution Mapping of 2017

Over 1200 agricultural fields were visited and mapped in a ground survey campaign [42]. After
transferring the mapping results to the geographical information system (GIS), the areas were checked
for plausibility using the remote sensing Sentinel-1 datasets described above. To exclude the field
edges from analysis, an inner buffer of 20 m to all mapped fields was applied. Furthermore, only the
fields within the AOI were used. Detailed information on the area statistics of the final 775 fields that
were used for the present study can be found in Table 3. In addition to the typical crops of the region
such as maize, sugar beet, rapeseed, potato, wheat, and pasture, we found 19 pea and eight carrot
fields. Consequently, we additionally included those crops in our classification scheme.

The ground data were divided into independent training and validation fields. To equally split
the pixels as well as the number of fields into training and validation, the fields were first sorted by
crop type and field size. Then they were alternately assigned to either validation or training, starting
with the tallest field to validation. As can be seen in Table 3, this procedure results in a homogeneous
composition of training and validation with only slightly higher area statistics for validation. All data
from the ground campaign [42] and the pre-processed independent training and validation datasets [43]
are distributed under an open data policy via the TR32DB.
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Table 3. Collected field data of crop distribution during the growing season 2017.

Crop Type Number of Fields Area (ha) Number of Pixels (10 × 10 m) Mean Field
Size (ha)Tot. Train. Val. Tot. Train. Val. Tot. Train. Val.

Maize 75 37 38 205 98 107 20,490 9763 10,727 2.73
Sugar Beet 108 54 54 364 177 188 36,422 17,660 18,762 3.37
Barley 206 103 103 600 296 304 60,005 29,626 30,379 2.91
Wheat 87 43 44 279 134 146 27,937 13,351 14,586 3.21
Rye 51 25 26 113 54 59 11,331 5389 5942 2.22
Spring Barley 51 25 26 103 49 54 10,309 4924 5384 2.02
Pasture 82 41 41 147 69 78 14,696 6907 7789 1.79
Rapeseed 72 36 36 220 105 115 21,953 10,471 11,482 3.05
Potato 16 8 8 73 34 39 7305 3365 3940 4.57
Pea 19 9 10 58 27 31 5848 2740 3108 3.08
Carrot 8 4 4 56 25 31 5623 2499 3124 7.03

Total 775 385 390 2219 1067 1152 221,919 106,695 115,224 2.86

2.4. Authorative Official Data from Open.NRW

For preprocessing of remote sensing data, and SAR data in particular, using a digital elevation
model (DEM) is advised [12]. In this study, we used the high-resolution, high-precision, openly
available elevation data from open.NRW. The DEM is produced from LIDAR data with a point density
of at least 4 points per m2 and updated every six years. The final spatial resolution of 1 m has an
absolute height error of less than 40 cm in most areas [44]. The newest version of the DEM can be found
online [44], and a preprocessed version over the AOI of the DEM can be acquired via the TR32DB [45].
For compatibility reasons with the radar processing software Sentinel Application Platform ( SNAP)
the DEM was projected to WGS84 and the spatial resolution reduced to 5 m [46].

For the delineation of the arable land, we exploited the real-estate register Amtliches
Liegenschaftskataster-Informationssystem (ALKIS), which is freely available for the state
Northrhinewestfalia (NRW) from Open.NRW [47]. ALKIS contains, in addition to other information,
the usage of each of the 9 million property parcels in NRW. To identify the area of annually changing
crops the agricultural parcels with the attribute “arable land” were selected. Based on the selection
a crop/non-crop mask was calculated [48].

3. Methods

3.1. Preprocessing of the Sentinel-1 Radar Data Using the SNAP Toolbox

The preprocessed GRD images were individually processed using the SNAP Toolbox [49].
The following tools were executed on each acquisition:

1. As a first step, a subset of the images was calculated by cropping the images to the extent of
the AOI.

2. To enhance the geometric accuracy, the precise orbit files were auto-downloaded from the ESA
server and applied to the images. The precise orbit files are calculated within two weeks after the
image acquisition and significantly enhance the geometric accuracy of the Sentinel-1 images.

3. Next, the images were calibrated to beta0, which is the measured radar brightness [50], and
a prerequisite for the next step.

4. The highly accurate DEM from Open.NRW was used to perform a Radiometric Terrain Correction
to gamma0. Thereby, based on the DEM, the terrain-induced radiometric effects are eliminated,
and the signal is normalized for the local illuminated area [50].

5. All SAR images inherit a salt-and-pepper-like noise [51]. A Gamma Map Speckle Filter with
a 3 × 3 moving window was applied to reduce it.
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6. To project the images from slant range to ground range, a Range Doppler Terrain Correction was
performed using the DEM from Open.NRW. [51]. Notably, a higher accuracy of the DEM translates
into a higher horizontal accuracy of the projected image. The resampling of the preprocessed
DEM to the image system was performed using Bicubic Interpolation. The calculation of the new
image pixels in the final grid was done using nearest-neighbour resampling to avoid unnecessary
mixing with neighbouring pixels. The final pixel spacing was set to 10 m and the reference system
is UTM 32 N with WGS 84 as the reference ellipsoid.

7. For better data handling, conversion of the raster values from linear to a decibel (dB) scale
backscatter coefficient was applied.

8. To reduce the amount of disc space being used for the images and to accelerate classification,
the pixel-depth was reduced to unsigned integer with a linear scaling using slope and intercept of
the histogram.

The graph to apply those steps in the SNAP software [52], and the final stacked image
composite [53] can be downloaded via the TR32DB.

3.2. Supervised Random Forest Classification

The 70 individual Sentinel-1 images were stacked and a supervised pixel-based classification was
performed using the independent training data from the mapping campaign. The Random Forest
(RF) algorithm was used as the classifier, as it had already proved beneficial in other SAR-based crop
classification scenarios [15,20,21]. The advantages of the RF classifier are its capabilities to handle high
dimensional data and the ability to work without normally distributed data. While there are more
advanced algorithms, such as the one developed by [22], previous studies have found the RF classifier
to be highly accurate [54].

In the implementation of the RF classifier, 2000 pixel samples were randomly selected per class
from all training fields. Next, those samples were randomly split for training and validating each
tree. Two-thirds of the samples were used for training and one third for validation. The tuning
parameters of the RF classifier left unchanged to the defaults of the R-package. This means that
500 trees with an unlimited node size built, and the variables tried at each split are set to the number
of classes (eleven).

Validation of the gained classifications was conducted using the fields from the mapping campaign
that had not been used for training the classifier. The resultant error matrix is the basis for the class
specific accuracy measures, user’s accuracy, producer’s accuracy [55], and F1-Score [22]. For assessing
the general accuracy of the classification, the overall accuracy [55] was calculated.

3.3. Real Estate Cadastre and Post-Classification Filtering

As can be seen in Figure 2, the raw ALKIS cadastre data downloaded from Open.NRW, were
imported into a PostGIS database using the NorGIS software. Thereby, all different thematic geodata
contained in the cadastre is available in QGIS. A selection of all agriculture parcels having agricultural
as usage on the ALKIS cadastre data made it possible to acquire a crop/non-crop mask.

Only after that step is a post-classification filter reasonable. Otherwise, non-crop pixels would be
considered in the filtering process, possibly degrading the classification quality. We used a majority
filter with a circular (Von Neumann) neighbourhood, setting the center pixel to the majority value of
the pixel values within the neighbourhood [56]. The filtering was conducted twice: the first one with
a neighbourhood radius of three pixels, the second one with two pixels.
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Figure 2. Flowchart of the data flows and processing steps of this work.

3.4. Open Source Software Used in this Study

One of the principles of the present study was to rely solely on Open Source Software.
Preprocessing of the radar images was conducted using (SNAP) [49], which is developed by ESA
and therefore, particularly suited to process ESA sensors, such as the Sentinel-1 used in this study.
The actual multitemporal random forest classification was performed in R [57] (Version 3.4.3) using
a freely available R-script [57] from [58] that uses the following R-packages: randomforest [59],
Geospatial Data Abstraction Library (GDAL) [60], Raster [61], Maptools [62], and SP [63]. For
postprocessing including the Error Matrix generation and the post classification filter, we used the
Orfeo Toolbox [64], which provides a number of state-of-the-art remote sensing tools and has an active
community. Map-making, integration of the ALKIS, cropping of the raster data, and preprocessing of
the crop distribution maps was conducted in QGIS [65], one of the leading open-source GIS. The ALKIS
data were imported to a PostGIS [66] geospatial database, which is based on PostgreSQL [67], using
the free software ALKISimport [68]. The preprocessing of the DEM was achieved with GDAL [69].

4. Results

Using the proposed approach made it possible to classify 11 different crops with an accuracy of
around 95%. The final crop classification map is presented in Figure 3. It covers the entire 2500 km2 of
the AOI at a spatial resolution of 10 m. It is available for download in the TR32DB [70].

As can be seen in Tables 4 and 5, the accuracy of all crop classes was in the acceptable accuracy
range, as all user and producer accuracy measures were beyond 80%, with one exception: −72%
producer accuracy of the class potato, which was mixed up with sugar beet.
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Table 4. Error Matrix of the proposed classification, shown in Figure 3.

Validation (Ground Data)

Pasture Rape
Seed Potato Maize Sugar

Beet Barley Wheat Rye Spring
Barley Pea Carrot

C
la

ss
ifi

ca
ti

on
D

at
a

Pasture 3093 0 0 0 0 116 0 0 25 3 0
Rapeseed 6 11,045 0 0 0 3 0 0 0 0 0

Potato 0 0 2845 0 0 0 0 0 0 0 0
Maize 314 0 2 10,826 93 35 3 1 0 6 81

Sugar Beet 32 0 1096 9 18,667 2 10 1 0 0 0
Barley 49 0 0 0 0 27,979 3 247 7 0 0
Wheat 40 0 0 0 0 4 14,345 2 0 0 0

Rye 8 0 1 0 0 1228 2 5585 0 0 0
Spring Barley 7 0 0 0 0 135 0 0 4855 0 0

Pea 29 0 0 0 0 0 0 0 0 3105 0
Carrot 0 0 0 0 0 1 0 0 0 0 2967

Table 5. Accuracy measures of the proposed classification, shown in Figure 3.

User’s Accuracy Producer’s Accuracy F1-Score Overall Accuracy

Pasture 96% 86% 91%

96.69%

Rapeseed 100% 100% 100%
Potato 100% 72% 84%
Maize 95% 100% 98%
Sugar Beet 94% 100% 97%
Barley 99% 95% 97%
Wheat 100% 100% 100%
Rye 82% 96% 88%
Spring Barley 97% 99% 98%
Pea 99% 100% 99%
Carrot 100% 97% 99%

Figure 3. Final Classification with a two times post classification majority filter of the whole area of
interest (AOI) covering about 2500 km2.

Integrating the external ALKIS data allowed crop areas to be focused on, as all non-crop areas
were masked out. Thereby, applying the two times majority filter became feasible, which resulted
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in a 1.7% accuracy gain (Overall Accuracy: 96.69%). A map of the final classification is shown in
Figure 3. Although 1.7% might not seem impressive, the advantages from this procedure go beyond
the pure number. Most importantly, pixels values classified as a crop type and not within the feature
class “agricultural land” of ALKIS are deleted, and the correct ALKIS land use class is assigned.
Consequently, no agricultural land use is present in the final LULC map. However, if a map including
the attributes of the ALKIS together with the crop type is needed, the creation of enhanced LULC
maps, as demonstrated in Figure 4, is feasible.
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Figure 4. Enhanced land use / land cover (LULC) map by fusing the Sentinel-1 based Crop
Classification with generalized ATKIS cadastre data.

To follow the principles of TOP, the workflow of the current study was designed and implemented
with FOSS 2. All of the necessary steps to perform the final crop classification could be successfully
conducted in the following software environments:

• The Sentinel-1 images were pre-processed in SNAP [49].
• Transferring the ALKIS into a PostGIS database was performed with ALKISimport [68].
• Processing of the DEM from open.NRW was done in GDAL [69].
• Performing the random forest classification was executed in R [57].
• Post classification filtering and evaluating of the classification was achieved with the Orfeo

Toolbox [64].
• Creating the final maps of the classification, as shown in Figures 3 and 4 were conducted with

QGIS [65].

5. Discussion

This paper presents an open-data and open-source remote sensing workflow to derive crop type
for a region in west Germany, the area of the Rur Catchment. The all-weather capability of the used
SAR sensor Sentinel-1 makes the results independent of the cloud coverage that is typical for the study
region [14]. External data in the form of a height model and cadastre data [30] assisted the classification
process. The final classification of 11 different crops shows a high accuracy of approx. 97% overall
accuracy on a spatial resolution of 10 m.

A comparison with the LULC analysis based on optical data, shown in Figure 1, revealed merely
56% agreement of the two classifications within the agricultural area. As that dataset is available for
download project internally [71], the differences could be further analyzed:
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• 11% of the differences originate from incomplete disaggregation to the crop level in the optical
classification. Merely superior classes such as agricultural field, or summer crop are given in the
optical classification.

• Another 10% stems from the class rye, which is dissolved in the winter wheat class in the optical
classification and correctly differentiated in the classification of this study.

• About 9% difference is due to roads and tracks that are modeled into the optical MDA
classifications [14]. It is debatable whether that area is representative of the fields in the study area.

In addition to those shortcomings of the optical classification, the error matrix, shown in Table 6,
reveals more confusion than the one from the current study shown in Table 4. Consequently, the overall
accuracy is about 5% lower than that of the present study, although fewer classes were considered.
Finally, the spatial resolution is increased from 15 m to 10 m, providing more details of the crop
distribution. In summary, a superiority of the present study’s classification can be inferred in almost
all aspects.

Table 6. Error Matrix of the multi data approach (MDA) land use / land cover (LULC) classification
with optical data shown in Figure 1 [71]. The classification was performed using the MDA described
by [14], Overall Accuracy: 91.44%.

Validation (Ground Data) User’s
AccuracyRape

Seed Potato Maize Sugar
Beet Barley Wheat Summer

Crops
Spring
Barley Pea

C
la

ss
ifi

ca
ti

on
D

at
a

Rapeseed 2655 0 25 0 255 168 0 53 77 83%
Potato 0 784 0 103 0 34 32 0 0 82%
Maize 9 126 4582 70 95 0 279 0 2 89%

Sugar Beet 0 79 538 11,265 7 2 118 0 35 94%
Barley 0 30 21 1 6681 319 0 0 0 95%
Wheat 3 51 11 26 120 13,311 0 8 21 98%

Summer Crops 102 503 291 63 0 1 4062 13 116 79%
Spring Barley 3 82 6 0 57 99 195 1076 20 70%

Pea 0 0 0 0 0 0 9 0 988 99%

Producer’s Accuracy 96% 47% 84% 98% 93% 96% 87% 94% 78%

Another comparison was performed with the results of a recent study by [22]. He also used
multitemporal Sentinel-1 images to distinguish similar crop types in another study region also situated
in Germany. In general, the results of this study are consistent with the study by [22], who concluded
that dense time series of SAR images provide a high crop-separation potential. The final crop
classifications are not publicly available. Hence, the comparison had to be conducted with the accuracy
numbers given in the publication.

Table 7 shows the direct comparison of the user and producer accuracies of both studies.
The accuaries from [22] are taken from his most sophisticated crop classification, which uses
information about the crop’s phenology. As can be seen, compared to the present study, there is
a consistency on the high accuracy of pasture, maize, sugar beet, and wheat. Both studies revealed
challenges to correctly classify potatoes, which is probably due to the alignment of the potato hills and
various phenology due to varying planting dates [21]. The classes rye, and especially spring barley,
was significantly better classified in the present study. This confusion could stem from fewer mapped
fields and fewer Sentinel-1 images in the study by [22].
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Table 7. Comparison of the Producer’s Accuracy (PA) and User’s Accuracy (UA) (in %) of crop classes
of the study carried out by [22] and of the present study. Unsatisfactory results below 80% are marked
in red ( 80%–70% , 70%–60% , below 60% ). The classes Oat, Pea, and Carrot, appeared merely in one
of the classifications and were left out.

Bargiel
(2017)

Season 1

Bargiel
(2017)

Season 2

Present
Study

Crop PA UA PA UA PA UA

Pasture 96 89 96 92 86 96
Rapeseed 100 91 100 66 100 99.9
Potato 81 93 75 87 72 100
Maize 96 93 96 89 100 95
Sugar Beet 97 94 89 94 100 94
Barley 96 97 88 56 95 99
Wheat 90 97 88.2 98 100 100
Rye 93 93 89 74 96 82
Spring Barley 74 74 67 96 99 97

Mean 91.4 91.4 87.2 83.5 94.2 95.8

Although the current study’s results show less confusion, the algorithm of [22] seems more
sophisticated, as it includes crop phenology information. However, it is not possible to compare
the algorithms, the input data, or the obtained results as neither the source code nor the data is
publicly shared.

That last aspect highlights the innovation of this study, which lies in the unique implementation
of the workflow: All datasets used in the process, provided by ESA and open.NRW, are distributed as
open data by the data providers, as well as in the TR32DB. Also, the ground reference of the study,
about 1200 labeled agricultural fields, is shared. Furthermore, since the whole workflow is designed
with FOSS, there are no additional costs for software and the source code is open. The combination of
open data and FOSS allows reproducibility of the study, which enables other scientists to build upon
this study’s results and evaluate their approaches with our data.

Next, crop-type classifications on larger scales are to be pursued and can be integrated into global
agricultural systems [5]. In doing so, such systems can provide better outputs to enable the principles
of agricultural intensification to be following, resulting in lower environmental impacts and higher
food security.

However, upscaling the approach brings additional challenges. One is the availability and quality
of external data. Geodata is often not available in such high precision as the geodata provided by
open.NRW. For DEMs, that problem could be solved by relying on global data sets, such as the
TanDEM-X derived DEM [72], which has recently been made freely available for scientific purposes in
90 m resolution. However, releasing the full resolution as open data would be favorable.

In the case of including external cadastre data into the classification process [30] or for
post-classification fusion (compare Figure 4) a high spatial accuracy cannot be anticipated in many
areas of the world. In such cases, ref. [73] present a smart way to improve the accuracy of external
data, using a composite of multitemporal TerraSAR-X images as a spatial reference. As Sentinel-1 has
a similarly high spatial accuracy [37], the approach could be adapted to areas where merely external
geodata of lower spatial accuracy is available.

As shown above, the workflow’s implementation was performed in six different FOSS
environments. Each environment has its characteristics, which involves a high demand of technical
abilities necessary to execute the whole workflow. One way of coping with that issue is to create
comprehensive documentation, user forums, and user mailing lists. It would also be possible to
develop new software based on the environments used or to extend existing environments to meet the
requirements of SAR-based crop classification in one environment.
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6. Conclusions

This study demonstrates the feasibility of multitemporal microwave c-band SAR data from
Sentinel-1 to distinguish crop types in our study site in western Germany. The final classification
was evaluated with high accuracy, which was reached through the innovative integration of publicly
available open data from Open.NRW. One of them was the high-resolution and high-precision DEM,
which assisted the SAR preprocessing. The other one was the spatially highly accurate real estate
register enabling to exclude the non- and special crop areas using the MDA. To overcome the problem
of limited radar applications due to the complexity of radar data, all data used and produced in
this study are openly available in the TR32DB. Additionally, the processing was done solely with
FOSS. Consequently, all the results are reproducible without any additional data or software costs.
Hence, the current study makes a substantial contribution to science in the context of microwave-based
crop classification.
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