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Abstract: Energy co-simulation can be used to analyze the dynamic energy consumption of a building
or a region, which is essential for decision making in the planning and management of smart cities. To
increase the accessibility of energy simulation results, a dynamic online 3D city model visualization
framework based on 3D Tiles is proposed in this paper. Two types of styling methods are studied,
attribute-based and ID map-based. We first perform the energy co-simulation and save the results in
CityGML format with EnergyADE. Then the 3D geometry data of these city objects are combined
with its simulation results as attributes or just with object ID information to generate Batched 3D
Models (B3DM) in 3D Tiles. Next, styling strategies are pre-defined and can be selected by end-users
to show different scenarios. Finally, during the visualization process, dynamic interactions and data
sources are integrated into the styling generation to support real-time visualization. This framework
is implemented with Cesium. Compared with existing dynamic online 3D visualization framework
such as directly styling or Cesium Language (CZML), a JSON format for describing a time-dynamic
graphical scene, primarily for display in a web browser running Cesium, the proposed framework is
more flexible and has higher performance in both data transmission and rendering which is essential
for real-time GIS applications.

Keywords: energy simulation; online 3D visualization; real-time; 3D tiles; dynamic styling

1. Introduction

More than 50% of the world population currently live in urban areas and it is projected that
another 2.5 billion people will move to urban areas by 2050. The intensifying urbanization results in an
increased demand for energy. By 2030, it is estimated that 75% of global energy consumption will be
attributed to cities according to a UN report [1]. Therefore, efficient energy management and smart
city development are essential pathways to sustainability. Modeling and simulation are the major tools
commonly used to assess the technological and policy impacts of smart solutions, as well as to plan the
best ways of shifting from current cities to smarter ones [2]. With the development of information
and communication technology, it is possible to monitor cities in a more detailed level and to develop
smart cities that are energy- and resource-efficient. As the development of the internet, online 3D
visualization is essential to support real-time energy simulation so that the public and building owners
can access their projected energy consumption status and understand the influence of their actions
such as changing windows, renovating the buildings or deploying solar panels on energy consumption.
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Therefore, this research aims to develop a dynamic online 3D visualization framework for real-time
energy simulation based on 3D tiles.

Considering the complexity of 3D city models and related data, it is desirable to simplify the
3D models especially for real-time online interaction and fast visualization using mobile devices.
Meanwhile, for many smart city applications such as energy simulation results illustration, the numerous
details in 3D city models such as fine geometry data and high-quality textures are not necessary.
However, existing studies on 3D city model generalization mainly focused on photorealistic rendering.
As the energy simulation related application is multitudinous and the data required to visualize is
heterogeneous, online energy simulation requires non-photorealistic models for visualization. In
addition, photorealistic 3D city models are expensive to produce, complex to rendering, enormous in
volume and difficult to share. It is necessary to study non-photorealistic generalization for various
applications. The bases of non-photorealistic visualization and generalization are visual variables such
as geometry, texture and distribution. Therefore, based on theories of modern cartography, computer
graphics and data mining, this paper proposes a non-photorealistic generalization method for 3D
city models using visual variables mapping to visualize the energy simulation results. To implement
the proposed method, the latest 3D Tiles structure in Cesium is employed and tested. Our main
contribution is to combine the city object attributes with the multiple LoD 3D models with 3D Tiles and
to implement the non-photorealistic generalization and visualization using visual variable mapping.

The rest of paper is structured as follows. Related work on energy simulation and online 3D
visualization is given in Section 2. Section 3 describes the proposed framework. Section 4 explains the
implementation, illustrates the visualization results of dynamic styling and discusses the advantages
of the proposed framework compared with the existing methods. Section 5 draws the conclusions of
the paper.

2. Related Work

With the increasing interest in energy efficiency, energy simulation has been extensively studied
along with the development of computer and information technologies. It not only plays an important
role for city planning and decision making of energy infrastructure construction, but also can
persuade the public for economic and green energy choices such as using solar power or heat pump.
Many building/city energy simulation programs have been developed in past decades for example
Building Loads Analysis and System Thermodynamics (BLAST), DOE-2.1E, BSim, EnergyPlus [3],
TRNSYS [4] and so on. For general building energy performance simulation, an IFC based workflow
is suggested using Modelica a modelling language for complex systems [5]. For factory buildings,
energy analysis is applied to improve prevailing methodologies used in the assessment of energy
efficiency measures [6]. For city-level energy simulation, a Data-driven Urban Energy Simulation
(DUE-S) framework is proposed to integrate a network-based machine learning algorithm (ResNet)
with engineering simulation to understand how buildings consume energy on multiple temporal
(hourly, daily, monthly) and spatial scales in a city (single building, block, urban) [7]. These existing
energy simulation programs indicate that multiple tools is required to deal with the different aspects of
building/city energy simulation [8]. Therefore, it is necessary to standardize the input and output so
that they can be shared by different building/city energy simulation programs and users.

The input/output of energy simulation is city or building, for which many standards have been
established such as Building Information Model (BIM) and CityGML. Kim et al. have employed
BIM for building thermal energy simulation [9]. For the BIM model, two commonly adopted open
standards are IFC (Industry Foundation Classes) and gbXML (green building XML). They can both
be used to extract inputs for energy simulation [10,11]. While Choi and Park [12] pointed out the
experience of exports is essential to apply BIM data for energy simulation. Meanwhile, the BIM model
mainly concerned about single buildings, while it is necessary to analyze the energy consumption at
a higher level such as city or urban and consider more factors like economy and relationship with other
city objects that contain both energy producers and consumers. CityGML as one of the OGC standard
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for city object description has been extended for energy simulation [13,14] and city utility network [15].
Besides, CityGML covers many energy-related city objects such as water, vegetation, transportation
and so on. This information is essential for comprehensive energy simulation at the city level [16].

Another essential aspect for energy simulation is real-time data integration and interaction such
as weather, price and user feedback or requests. Therefore real-time GIS is necessary for energy
simulation and its results visualization. In 2008, an online real-time map system was developed to
support real-time GIS working with different data formats by exchanging and presenting data [17].
The real-time GIS was also applied for disseminating the hazard information and flood maps [18],
smart energy utilities [19] applications and as cyberinfrastructure platforms to support multivariate
visualization of data collected from distributed sensor network [20]. However, these existing systems
cannot directly be applied to the 3D visualization of energy simulation, which requires the supporting
for 3D buildings or city objects [21].

To increase the accessibility of 3D city models, web-based 3D visualization has attracted more
and more attention to and is becoming increasingly powerful along with the development of HTML5
and browser. Based on WebGL, current mainstream web browsers such as Chrome, IE, Firefox and
Safari can all render the 3D scene directly. To further facility the web 3D visualization, frameworks
such as Threejs, X3DOM, and Cesium are developed to provide a javascript based APIs for user to
create and modify 3D scenes without knowing the underside rendering details. Threejs, X3DOM and
Cesium have been applied for visualizing energy modeling results [22,23] or climate changes [24].
Compared with Threejs and X3DOM, Cesium supports the geospatial naturally. It can integrate
different maps, satellite images and geo-services such as WMTS and WMF. Therefore, it is suitable for
city-level energy simulation results visualization. For 3D real-time visualization, Cesium has another
advantage compared to Threejs and X3DOM, which is the multiple representation structure: 3DTiles.
The data volume of 3D city models is huge which can heavily reduce the interaction response speed
with users. Therefore, generalization of 3D city models to different Level of Details (LoDs) is necessary
especially for web-based platforms. To organize the generalized 3D city models in different LoDs, we
have to define a multiple representation usually a tree structure to implement the selection of visible
models in suitable LoDs based on the current user viewpoint. While 3DTiles provide an optimized
implementation that can be used to organize the 3D city models in multiple LoDs. In this paper, we
propose a demonstration to automatically generalize the 3D city models and convert to the 3DTiles
representation that can be directly visualized with Cesium. Different from the existing methods that
focus on static visualization, the proposed framework can support the real-time animation of energy
simulation results based on the visual variable mapping.

3. Methodology

The overall online visualization framework for energy simulation includes three main parts: 3D
tiles generation, dynamic visualization and real-time interaction. The workflow of the methodology is
illustrated in Figure 1.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 3 of 16 

Another essential aspect for energy simulation is real-time data integration and interaction such 
as weather, price and user feedback or requests. Therefore real-time GIS is necessary for energy 
simulation and its results visualization. In 2008, an online real-time map system was developed to 
support real-time GIS working with different data formats by exchanging and presenting data [17]. 
The real-time GIS was also applied for disseminating the hazard information and flood maps [18], 
smart energy utilities [19] applications and as cyberinfrastructure platforms to support multivariate 
visualization of data collected from distributed sensor network [20]. However, these existing systems 
cannot directly be applied to the 3D visualization of energy simulation, which requires the 
supporting for 3D buildings or city objects [21].  

To increase the accessibility of 3D city models, web-based 3D visualization has attracted more 
and more attention to and is becoming increasingly powerful along with the development of HTML5 
and browser. Based on WebGL, current mainstream web browsers such as Chrome, IE, Firefox and 
Safari can all render the 3D scene directly. To further facility the web 3D visualization, frameworks 
such as Threejs, X3DOM, and Cesium are developed to provide a javascript based APIs for user to 
create and modify 3D scenes without knowing the underside rendering details. Threejs, X3DOM and 
Cesium have been applied for visualizing energy modeling results [22,23] or climate changes [24]. 
Compared with Threejs and X3DOM, Cesium supports the geospatial naturally. It can integrate 
different maps, satellite images and geo-services such as WMTS and WMF. Therefore, it is suitable 
for city-level energy simulation results visualization. For 3D real-time visualization, Cesium has 
another advantage compared to Threejs and X3DOM, which is the multiple representation structure: 
3DTiles. The data volume of 3D city models is huge which can heavily reduce the interaction response 
speed with users. Therefore, generalization of 3D city models to different Level of Details (LoDs) is 
necessary especially for web-based platforms. To organize the generalized 3D city models in different 
LoDs, we have to define a multiple representation usually a tree structure to implement the selection 
of visible models in suitable LoDs based on the current user viewpoint. While 3DTiles provide an 
optimized implementation that can be used to organize the 3D city models in multiple LoDs. In this 
paper, we propose a demonstration to automatically generalize the 3D city models and convert to the 
3DTiles representation that can be directly visualized with Cesium. Different from the existing 
methods that focus on static visualization, the proposed framework can support the real-time 
animation of energy simulation results based on the visual variable mapping. 

3. Methodology 

The overall online visualization framework for energy simulation includes three main parts: 3D 
tiles generation, dynamic visualization and real-time interaction. The workflow of the methodology 
is illustrated in Figure 1. 

 
Figure 1. Real-time visualization framework for energy simulation. Figure 1. Real-time visualization framework for energy simulation.



ISPRS Int. J. Geo-Inf. 2020, 9, 166 4 of 16

First, the non-photorealistic multiple LoD representations of 3D city are generated automatically
using generalization algorithms. In this paper, we only generate the LoD0-LoD3 [25–27] from the
detailed 3D city models since our study is focused on the city and building-level instead of indoor
structure. LoD0 is the ground plan, LoD1 is the block, LoD2 is roof structure and LoD3 is model with
detailed exterior. For each city object model, an ID and its geometry attributes such as height, area,
location and orientation are added to a batched table of the 3D models. Based on the batched tables
and 3D geometry, 3D tiles are created that include both 3D objects with attributes in the batched table
and visualization strategies. Next, the dynamic styling of the 3D tiles is implemented based on the
attributes in the batched table. If the styling is based on the attribute in the batched table, a mapping
function is created to dynamic color the 3D objects. Otherwise, a mapping function between city object
ID and color is directly generated for styling. The mapping function can be specifically defined for
different applications. In this paper, we suggested an example to convert the energy consumption
to the Hue value in HSV color space from 0 (red)-240 (blue). Other colormaps such as Jet, Hot Cool,
etc., can be used for the styling mapping function. Finally, to support real-time data integration and
visualization, the proposed framework also implements the web socket based interaction in which the
real-time monitoring value such as weather conditions, energy consumption, price and etc. can be
interactively integrated for analysis and/or visualization.

3.1. Multiple LoD City Models in 3Dtiles

Multiple LoD representations of 3D city model can be created by generalization algorithms such
as simplification, aggregation or typification. For example, LoD1 model can be created from the
LoD2/LoD3 models by first generating a simplified ground plan and then extruded it according to
the building height. Then the generalized models are structured with 3Dtiles for dynamic loading
and visualization in Cesium. According to 3Dtiles specification, the multiple LoD city models can be
integrated and represented by different tree structures such as KDtree, Quadtree, Octree and so on.
In this paper, we apply the Quadtree LoD data structure of city models based on 3Dtiles for energy
simulation results visualization as shown in Figure 2.
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First, the detailed 3D city models are segmented into different parts in which the total data volume
is limited so that it can be transformed through the internet without too much lag. In this paper,
the detailed 3D city models is the model in LoD3 with detailed wall and roof structures. The segmented
parts can be windows, doors, skylights and funnels. If the model is in LoD4 and its indoor structures
will be directly removed to generate its LoD3 representation. According to our experiment, each block
should be around 1 MB so that it could be transmitted within 1 s even for mobile devices. The block
data can contain a different number of buildings according to their LoDs. For example, one block
may cover a large part of the city area if the model in LoD0, but another block may only contain one
LoD3 building with detailed structures. We organize the building data in different LoDs into blocks
with similar size can improve the network performance. In fact, the relationship between block size
and network speed is not exactly measured, but the size of block should be less than 5 MB which can
reduce the rendering speed of the browser according to our tests. We test the relationship between the
loading time and size of blocks in Table 1. It is suggested that along with the increase of the block
size (from 100 K to 5 M), the overall loading time is reducing. However, the big block is difficult to
process and render, and also it is not necessary to cover too large a city area once. Therefore, in our test
platform, the 1M size is a suitable block size.

Table 1. Relationship between the block size and loading time.

Block Size Number of Blocks Loading Time (s)

100 K 100 6.8

1 M 10 2

2 M 5 1.7

5 M 2 1.5

Then, for each segmented block, a simplification algorithm is applied to generate lower LoD
models. The nearby blocks are further grouped into one so that the size of the new block is also around
the size limitation or 1 MB in this paper. The original blocks are tagged as the children of the new
simplified block. The simplified model is expected to fully inherit the attributes of its original model,
so that the dynamic styling can be implemented in the simplified models directly.

Next, the 3D city models could be further generalized with aggregation and typification operations.
Besides the geometry changes, the attributes should be also generalized for the new model. For
aggregation, some attributes should be calculated by summarizing, such as area, volume, number of
residents, while some other attributes should be calculated by averaging/maximizing such as height,
number of floors. Therefore, the generalization related to more than one building or city object should
also take their semantic attributes into consideration. Usually, the aggregation and typification should
be avoided to preserve the semantic information, unless the city model in the big area, for example,
a whole city is required to visualized together.

Finally, the tree structure of 3Dtiles is generated according to the generalization algorithms and
we could control the loading specification by changing the screen error parameter in 3D tile metadata
file. The screen error parameter is also called a screen space error that is used to determine if an
object is visible to the current rendering camera. It is calculated based on the size of the model and
the distance to the camera. For example, a more detailed model could be loaded if the client is from
PC with high-speed network, while low LoD models (LoD0-LoD2) are sent to mobile clients with
wireless connections.

3.2. Styling Based on Attributes and ID Map

To visualize the energy simulation data, the mapping function from the simulation results to
the visual variables of 3D city models should be first defined. In this paper, color is the mainly used
visual variable. HSL color space is selected as the basic colormap from red (H = 0◦) to blue (H = 240◦).
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The attribute’s value of energy simulation are linearly converted to the H value of the color according
to Formula 1 in which v is the attribute value and vmin is the minimum attributes and vmax is the
maximum value of the attributes. The S and L value of the color can be a constancy value such as S =

100% and L = 50%.
H = 240*(v − vmin)/(vmax − vmin) (1)

This default mapping can be applied to attributes such as temperature, energy consumption,
energy efficiency and etc. Another visual variable can be used to show the attributes of city object is
transparency. We can combine two attributes to HSL and transparency at the same time, for example, if
the transparency and HSL are generated from year of build and energy loss respectively, the relationship
between energy and building will be revealed. Formula (2) shows the transparency mapping function
in which tmin minimum visible value.

T = (1 − tmin) *(v − vmin)/(vmax − vmin) + tmin (2)

In 3DTiles, each model can have an attribute table including basic features such as id, area, height,
volume, and also energy simulation results like electricity consumption, heat loss, sunlight exposure
and so on. The dynamic styling can be implemented based on these attributes. For example, the
buildings can be colored according to their height or area as described in [28].

Currently, three types of 3D model formats are defined and implemented in 3DTiles. B3DM or
Batched 3D model is used to represent the standard city models such as buildings. I3DM or Instanced
3D model is designed for the same city object that could be located in many different places like trees
or road lights. PointCloud is created to represent the massive point clouds for 3D visualization. In
this paper, B3DM format of 3DTiles is used to represent the city models with attributes for energy
simulation data visualization. In B3DM, each 3D object can be associated with an attribute table called
batch table based on which styling rules can be defined.

The batch table can be defined in json format that lists the attributes of each 3D objects. Figure 3
gives an example of batch table of two buildings with attributes ID, displayName, yearBuilt and address.
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Based on the attributes, dynamic styling can be defined. For example, we could render the
building before 2000 red and after blue by specification in client-side as shown in Figure 3b. In this
paper, we focus on building energy visualization, so the simulated results of each building can be saved
in the batch table and then different rendering strategies are defined to present various visualization
results for different scenarios according to user request.

In Cesium, the server-side sends the B3DM data with attributes based on which the styling can
be accomplished in client-side without further data requests from the server, which improves the
user experience and reduces the computation load in the server. The client styling includes two main
steps: condition definition and color mapping. Besides listing condition and its corresponding color as
shown in Figure 3b, it is also supported to define the conversion function directly from attribute to
color. For example, we can define a new attribute called HeightColor which is in HSL color space,
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and the color of each model can be directly set as the HeightColor value as shown in Figure 4. In
Cesium, RGB, RGBA, HSL, HSLA color spaces are supported.
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Styling based on attributes is easy to implement and fast for rendering. However, it requires to
generate the 3D model with attributes. We could package the 3D model with energy simulation results,
but it needs additional space and computation. Especially for big-city model with constantly changing
simulation results, the load for model generation is quite high. To deal with that, the mapping by ID
should be studied. In this paper, we first create an ID table containing model IDs and their attributes,
then client-side reads the ID table file from the server and renders the 3D model accordingly. For each
3D model ID, a condition is generated and inserted. While the color should be directly calculated
based on the attributes. Figure 5 shows the flow chart of the ID-based styling. Usually, if an attribute is
stable and widely used for different visualization scenarios, it should be written into the B3DM model
as a batch table, while the testing attributes can be visualized with ID map.
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3.3. Animation of Energy Simulation Results

3.3.1. Dynamic Visualization of Simulation Results

Besides dynamic styling on attributes or IDs, the animation is also necessary for energy simulation
to illustration the spatial-temporal changes in a period. For example, the daily heat demand of
a building in a continuous year or electric power consumption in a week. Currently, Cesium supports
the animation with CZML specification, however, it is not cover the 3DTiles objects. In other words,
CZML can implement the dynamic styling/shape/location change of a single building model but not
a whole city, except defining each building separately which dramatically reduces the performance
both loading and rendering.
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In this paper, we implement the animation of 3D city models directly based on the client styling
of 3DTiles. The JavaScript function SetInterval() which calls a function or evaluates an expression at
specified intervals is employed to perform the animation. We define a function to re-style the 3DTiles
based on a globe accumulator or timer which can be updated in each around. While the intervals can
also be set for frame rate adjustment according to the visualization configuration.

Corresponding to the built-in attribute and ID map strategies, the animation update function can
also be implemented by two types of methods attributes based and ID map-based. For attribute-based
animation, the energy simulation results are saved as an array of attributes in 3DTiles data as B3DM
format. For example, the average electricity requirement of each building in one day can be saved as the
“electricity_requirement = [20, 23, . . . , 25, 24]” to present the electricity consumption during a period
such as one week or month. Then we can access the ith value by “${electricity_requirement [i]}”,
and update the style accordingly. Finally, by accumulating i and updating continuously, the simulation
results are dynamically visualized with animation effects.

In ID map based animation, the ID map data containing simulation results are loaded first and
then for each ID the styling color is calculated based on its attributes and a condition for styling is
generated and added to the current style. After that, the current style is used to update the 3DTile
models. Compared with the attributes based method, ID map method is more flexible and not affect the
original 3DTile models. However, the performance is reduced quite much compared directly styling
with attributes in the batch table. Since in the directly styling the model is created one by one while in
the batch table based styling the models are rendering together with the better optimizing. Therefore,
it is suggested for a small area, the ID map can be applied while for large area dynamic visualization,
the attributes based method is recommended.

3.3.2. Multiple Time Scale Dynamic Rendering

For energy simulation results visualization, the multiple time scale is necessary to demonstrate
the patterns of a time-period such as daily, weekly or monthly. Meanwhile, in Cesium, a timeline
object is proposed to control the current time and speed of time passing. The timeline can control the
dynamic visualization of Cesium Language (CZML) objects of Cesium, but there is no support for
3DTiles animation in the existing Cesium (version 1.5.0 published in 1 October 2018). In this paper, we
propose a multiple time scale dynamic rendering framework for 3DTiles using the Cesium default
timeline widget.

To implement the multiple time scale rendering, three steps are designed, multiple time scale
dataset generation, time scale determination and dynamic rendering. First, the multiple scale dataset
can be created based on the detailed simulation output or directly generated from simulation tools
by parameter setting. For example, if we have hourly-based electricity power requirements, then
the daily, weekly or monthly electricity requirements can be directly calculated by summarizing,
averaging or other grouping functions the figures in the respective periods. Second, for each generated
dataset of a certain time scale, a descriptor is assigned for time scale determination. The descriptor is
composed of a time interval, start time (s), end time (e), number of values (n), and the location of the
dataset (url). The Cesium timeline widget can return two values in the interaction, speed (s) and start
time (ts). Meanwhile, to control the update frequency of the SetInterval() function, a parameter f is
introduced. Usually, f is set to 1 s and can be adjusted according to the application request. To select
the suitable time scale file, a standard time interval (int1) is defined to represent the 1× time speed,
and the descriptor with interval value closest to s*int1 will be selected as the scale file to rendering.
Finally, based on the selected descriptor, the SetInterval() function will be updated according to the
new rendering file indicated by the location parameter in the descriptor. The number of the initial
value for rendering can be also calculated by the function n*(ts − s)/(s − e).

In Cesium, we can bind the multiple time scale rendering actions to the timeline widget. Whenever
the user adjust the speed or current time in the Cesium timeline, the corresponding time scale dataset
will be reloaded to the SetInterval() function to generate the dynamic visualization in multiple scales.
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3.4. Real-Time Styling

For real-time GIS, it is essential to transmit and visualize information generated continuously. To
implement the real-time data exchange, Websocket (a computer communications protocol, providing
full-duplex communication channels over a network connection) is studied and integrated into the
system. The server side is sending real-time data such as temperature, humidity, or energy consumption
continuously. While the client receives data from the server and render the 3D Tile model accordingly.
Meanwhile, the client can also send the requests or feedbacks to the server to control the energy
simulation strategies or to get different data streaming.

After receiving data from the server, the styling is implemented accordingly. Normally, the real-time
data is structured as ID table format containing 3D model ID and its attribute value which is rendered
as discussed in Section 3.2. Meanwhile, we create a methodology to implement the batch table
attribute-based rendering to improve the visualization performance.

Assuming from different servers, various real-time data is continuously sending to the client such
as current temperature, humidity, electric price or weather condition. Then we calculate the energy
simulation results or KPIs (Key Performance Indicators) such as energy efficiency, total cost and so on
with the predefined expressions which can take the real-time data and attributes in the batch table
as input. In 3DTiles, only basic operators (+,−,*,/,%) are supported. Therefore, the simulation KPI
calculation required complex operators cannot be directly implemented. For example, we can easily
get the real-time daily electricity cost based on power consumption (batch table attribute) and real-time
electric price. While it is a bit complex to direct get energy consumption from real-time temperature.

Another method to get energy simulation KPIs from real-time data is to pre-calculate and save the
results as arrays which are accessed by the real-time data as indexes. For example, we can simulate
the electric power consumption array of building in the temperature range from −20 to 40, then
when a real-time temperature data is sent from the server we can get its corresponding electricity
consumption by locating the real-time temperature in the array. The index-based method can be
extended to support multiple parameters and can be applied for wider scenarios. Since the results
array is saved as attributes in the batch table, the size of the array should be limited so that the model
can be loaded in a reasonable time. Therefore, for real-time energy simulation data visualization,
the rendering strategies should be evaluated and selected based on the data frequency, size, simulation
complexity, and user requirements.

3.5. DTiles Generation

The 3D city model datasets are integrated into 3DCityDB according to CityGML and the
EnergyADE standards. Feature Manipulate Engine (FME), a software developed by Safe Software
Company is used to convert the data from different format into CityGML and to insert data into
3DCityDB with EnergyADE extension. Based on the 3D city model database, a wrapper is implemented
with Python to generate the input files for energy simulation software. In the test case, we mainly
create the IDF (EnergyPlus Input Data Files) file for EnergyPlus. The simulation results are saved back
to 3DCityDB with the wrapper.

Based on the 3DCityDB, a web-based GUI is created to check the city model data and define the
configuration for the wrapper to generate input file of energy simulation. The generated simulation
results are parsed and write back into 3DCityDB as CityGML EnergyADE format. For example,
the simulated energy requirements for each day in a year can be saved in the EnergyDemand
object which contains the following content: energyAmount (Time Series data), endUse and
maximumLoad, energyCarrierType. The 3D visualization of energy simulation is implemented
based on the 3DCityDB database.

To visualize the 3D city models, the 3DTiles should be generated. In this paper, we first read 3D
geometry data from 3DCityDB and convert to OBJ format for 3D models. Meanwhile, the batch table of
3DTiles is generated for each 3D objects in the OBJ file from their attributes in CityGML database. Next
a tool named obj23d-tiles is used to create the 3DTiles data in B3DM format. Based on that we create
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a 3DTile Meta data called tileset.json to define the visualization configuration such as geo-location and
geometric error of the generated B3DM files. For big area of City, the whole models are first segmented
into smaller regions and for each region a B3DM files are created. Furthermore, models in multiple
regions can be generalized to support multiple LoDs. However, the attributes in batch table should be
the same in different LoDs so that the dynamic visualization is in consentience in different LoDs.

4. Implementation and Results

To demonstrate the proposed real-time energy simulation results visualization framework, we
implement the proposed methods within IntegrCiTy project, an EU project that aims to develop
a decision-support environment for planning and integrating multi-energy networks and low-carbon
resources in cities. Real-time 3D city visualization methods are employed to illustrate the effects of the
simulation and to communicate with planners, decision-makers and the general public on sustainable
energy planning.

4.1. System Configuration

To implement the proposed real-time visualization framework, we employ Cesium 1.5 for
3DTile server and socket.io for real-time data source. The configuration structure is shown in
Figure 6. The energy simulation task is mainly implemented with TRNSYS [4] and EnergyPlus [3].
TRNSYS is a transient software tool designed to simulate the transient performance of thermal energy
systems, and EnergyPlus open-source building energy modeling (BEM) engine to simulate the energy
consumption of building structures. By combining TRNSYS and EnergyPlus, we can simulate the city
level energy supply, transmission and usage.
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In Figure 6, different types of simulation datasets such as 3D city models, energy data, city utility
network, and economy (gas or electric price), weather (average temperature) or society (number of
people) data are wrapped into a unified format with semantic information. CityGML is used as the
data integration standard. City information such as buildings, power lines transportations and so on
are first converted into the CityGML format and saved in 3DCityDB a database structured according to
the CityGML schema supporting EnergyADE or Energy Application Domain Extension. Then, energy
simulations can be performed based on the data that is wrapped from the CityGML database. Next,
the simulation results are saved back to the CityGML database for different applications.

The Cesium is developed as a Graphic User Interface (GUI) to visualize the energy simulation
results. Two types of datasets are loaded layer data and scenario data. The layer data includes imagery,
vector geometry, 3DTiles and 3D model objects. While the scenario data contains how each layer should
be visualized. For example, it can define the color, rendering method for each line or building object,
or how the animation should be implemented. We can switch from different scenarios to demonstrate
the difference between energy simulation results.
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4.2. Study Area and Data Sources

The study area is Hammarby district in Stockholm, Sweden. We collect the energy-related data
and 3D models in this area from different resources. The layer data includes 155 buildings LoD2
building models of the whole area, seven typical buildings with both LoD2 and LoD3 data representing
residential, school, business, and gym, road network and power lines. As shown in Figure 7, the energy
simulation results indicate are average heat/electricity power requirements. Building attributes such as
height, area, volume, usage, number of residents and number of companies are calculated from the 3D
models or collected from open web pages. The weather condition data for one year of the Stockholm
area are also collected for simulation.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 11 of 16 
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4.3. 3DTiles Visualization

Figure 8 gives a demo for multiple LoD visualization. The nearby models are in LoD2 with the
roof structure and the far away buildings are in LoD1 just block models with ground plan and height.
In our test, the performance is not improved much since the total number of buildings are limited. For
a large area, the muli-LoD of 3DTiles is essential for efficient visualization and interaction. We test our
dataset by comparing the rendering time and FPS (Frame per Second) in interaction in Table 2. It is
indicated that for a city block with 155 buildings, the 3DTiles structure can reduce the rendering time
from 13s to 3s and increase the FPS from 5 to 22.
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Figure 9 gives an example of combined visual mapping to color and transparency from the demo
dataset. It indicates that the old buildings (opaque ones) have lower energy efficiency (red color).ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 16 
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Figure 9. Integrated visualization of different LoDs.

Based on 3D Tiles data, dynamic styling is used to implement the energy simulation results
visualization. We create different visualizations for different scenarios by configuring styling strategies.
Multiple scenarios can be loaded and switched according to user requirements as shown in Figure 10.
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We have already implemented the style animation of a single building and 2D objects in geojson
with CZML. For large city area in 3Dtiles, we can do the dynamic style animation by setting the
simulation results as attributes in the 3Dtiles or a map file to each building/object ID and create the
animation with setInterval function in javascript. Figure 11 gives an example of animation based on
dynamic style change of 3DTiles. Figure 11a shows the overall energy consumption in summertime
and Figure 11b gives the results in wintertime. They are two frames in an animation that indicates the
energy consumption of the whole year.
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To support the real-time visualization, a websocket server is created to send data to GUI in
real-time. So that the GUI can communicate with the simulation server to send requests and to receive
the results that can be dynamically visualized in the GUI. Figure 12 shows the style change according
to the received real-time data from the server (lower right red box).
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The results show that the online real-time visualization framework is suitable for city energy
simulation. Two main contributes of the paper are non-photorealistic generalization and 3D tiles-based
real-time visualization. The experimental results indicate that the proposed visual variable based
non-photorealistic generalization algorithm can effectively generate the multiple LoD 3D city objects
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to improve the visualization performance and to represent the energy simulation results reasonably;
and 3D tiles based 3D models with attribute tables can support the real-time interaction.

4.4. Discussion

Photorealistic visualization used to be the main task of 3D city model-related research. Nowadays,
the semantic attributes of 3D city models and the corresponding non-photorealistic visualization are
becoming increasingly important especially for simulation tasks such as energy consumption [29].
To create the semantic city models for specific applications, CityGML is a suitable candidate to
start, but it still has a huge gap to implement the full requests because the CityGML only contains
the general attributes of city objects [30]. For example, for the energy simulation, the application
domain extensions such as EnergyADE or UtilitynetworkADE can provide an enhanced CityGML with
semantic information in city energy. However, it is still not enough to directly perform the simulation
based on the CityGML data, there are still around 60% parameters (building inner structure, building
facility, wall material and etc.) should be manually provided [31]. Therefore, it is necessary to integrate
especially BIM information to perform more accurate simulation. In this paper, we cannot collect the
BIM data of the test area because these buildings are built decades ago and only left the blueprint
instead of BIM data, so these missing parameters are set to the default value based on the expert’s
knowledge. Even though, it is essential to integrate the CityGML with professional software such as
BIM, heat/power station or electric grid control system to perform city-scale energy analysis.

To better understand and interact with the complex attributes or simulation results of city models,
non-photorealistic 3D visualization is one of the key technologies. Compared with traditional 2D
map, 3D city models can supply more information and interactive methods, and it allows for visually
integrating information from different sources such as energy, temperature, sunlight and people actives
into a single framework [32]. Visual variables of 3D city models can be used to represent different
attributes of city objects. In this paper, color and transparency are mainly considered. Meanwhile,
the geometry visual variables such as size, height, and orientation can also be applied as visual
variables. The key to using of these geometry visual variables is the parameterization of city objects.
We need to represent the buildings to basic types with the transform parameters (position, scaling,
and orientation) and study the rule-based 3D building modeling techniques to semantically combine
the attributes information with the geometry parameters.

Dynamic visualization is essential to illustrate the real-time attributes changes and continuous
simulation results in a period such as a day, month or year. Considering the complexity of 3D models,
the rendering efficiency is critical. Therefore multiple representations (LoD tree, a tree structure that
integrates multiple LoD representations of the 3D city models and supports the access of models of
certain LoD according to the user current viewpoint) and dynamic rendering are necessary to supply
the stable interaction with 3D city models. Different from video games that are manually optimized for
specific dynamic visualization scenarios, 3D city models have a large volume of redundant data to
cumber the rendering performance. Therefore, 3DTiles of the Cesium platform is a suitable structure
to implement the LoD tree and it also supports the dynamic styling which can change the visual
variables of 3D without recreating the whole model. The real-time streaming data of a city block can be
dynamically visualized according to the experiment results. However, currently, the visual variable are
color and transparency, the geometry visual variables such as height, size or orientation are not used
because the existing city model are not parameterized, and it is also necessary to extend the 3DTiles
structure to support the parameterized 3D models.

5. Conclusions

In this paper, we developed a GUI based on the Cesium framework to visualize the energy
simulation results. To improve the visualization performance, the 3D city models are generalized for
non-photorealistic visualization that is an essential technology for smart city applications to illustrate
different types of information. We propose a strategy to map the data for visualization to the visual
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variables of 3D city models such as geometry, texture, topology and environment. Generalization on
each visual variables are applied to speed up the data transmission and rendering. A demo project on
energy simulation for sustainable city analysis is developed to show the effectiveness of the proposed
method. The experimental results show that non-photorealistic generalization is essential for online
3D city related applications and can improve system performance while supplying the required
visualization results.

The basic findings of the paper is that 3D city models are essential for complex urban analysis
such as energy simulation; the online non-photorealistic visualization can be implemented by the
multiple LoD structures supplied by 3DTiles of Cesium; Style mapping functions of 3DTiles can also
be used for real-time rendering of 3D city models besides the CZML method.
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