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Abstract: Recently, Uber released datasets named Uber Movement to the public in support of urban 

planning and transportation planning. To prevent user privacy issues, Uber aggregates car GPS 

traces into small areas. After aggregating car GPS traces into small areas, Uber releases free data 

products that indicate the average travel times of Uber cars between two small areas. The average 

travel times of Uber cars in the morning peak time periods on weekdays could be used as a proxy 

for average one-way car-based commuting times. In this study, to demonstrate usefulness of Uber 

Movement data, we use Uber Movement data as a proxy for commuting time data by which 

commuters’ average one-way commuting time across Greater Boston can be figured out. We 

propose a new approach to estimate the average car-based commuting times through combining 

commuting times from Uber Movement data and commuting flows from travel survey data. To 

further demonstrate the applicability of the commuting times estimated by Uber movement data, 

this study further measures the spatial accessibility of jobs by car by aggregating place-to-place 

commuting times to census tracts. The empirical results further uncover that 1) commuters’ average 

one-way commuting time is around 20 minutes across Greater Boston; 2) more than 75% of car-

based commuters are likely to have a one-way commuting time of less than 30 minutes; 3) less than 

1% of car-based commuters are likely to have a one-way commuting time of more than 60 minutes; 

and 4) the areas suffering a lower level of spatial accessibility of jobs by car are likely to be evenly 

distributed across Greater Boston. 

Keywords: Uber Movement; Travel time; Commuting time; Origin-destination Matrix; Aggregate 

data 

 

1. Introduction 

Travel time from one location to another has been widely used to measure transport accessibility 

[1–4]. Conventional travel survey data usually cannot collect accurate travel times since it highly 

relies on participants’ memories. Widely used in transport research, Geographic Information System 

(GIS) provides an approach to accurately measure travel times [1–4]. However, travel times are 

usually estimated based on travel distance and average modal speed, but are not realistic [1–8]. For 

instance, some studies have accounted for locations of public transport services, locations of basic 

services, and road networks to estimate travel times by public transport [1,2,7]. Additionally, some 

other studies further take account of public transport service frequency to estimate travel times by 

public transport [3,4,6,8]. Although the majority of the relevant studies focused on the accessibility of 
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public transport, some studies attempted to estimate travel times by private transport [5–7]. There 

are also some studies undertaking estimates of mode-based travel time to compare accessibility levels 

[5,7]. 

In recent years, the popularity of GPS-enabled devices has reshaped transport accessibility 

estimation. GPS-enabled devices not only help people to drive easily and safely but also produce 

massive GPS traces. Vehicle GPS data have great potential in complementing conventional travel 

survey data in transport research since they are spatio-temporally fine-grained and collected at a low 

cost. In particular, we can accurately infer the travel time between two locations from GPS traces. 

Moreover, vehicle GPS data enable individual-level transport research, whilst conventional travel 

survey data can only support aggregate-level transport research. GPS traces can provide detailed 

movement trajectories of vehicles in support of individual-level transport studies. Typically, among 

vehicle GPS data, floating car data (FCD) are likely to pave a new way for understanding individual-

level travel behaviour and bring transport research to a big data era. In the last few years, FCD has 

been widely used in transport research, including the modelling of passenger demand [9–11], 

estimation of gas emissions [12–14], analysis of drivers’ behaviour [15–17], and estimation of travel 

time [18–20]. There are several taxi FCD datasets open to the public, including Beijing datasets, New 

York City datasets, and so forth, and a number of studies have been undertaken around these open 

taxi FCD datasets [10,15]. At the same time, like other big data sources like social media, vehicle GPS 

data are attracting increasing privacy concerns. To protect user privacy, nowadays individual travel 

GPS traces are usually aggregated and anonymized before being publicly released for research and 

other purposes. Although some raw taxi GPS datasets are publicly available after being anonymized, 

raw GPS traces of other vehicles like private cars and bicycles are not publicly available due to privacy 

concerns. To address the conflict of research needs and privacy concerns, some institutions aggregate 

raw GPS traces of vehicles or persons to streets or small areas (e.g., neighbourhoods or census areas). 

Typically, commercial traffic data providers such as TomTom, Here, and Google also offer 

aggregated historical and real-time traffic information [21]. Some researchers have used real-time 

speed data from TomTom and Google to estimate dynamic accessibility or congestion level [21,22]. 

To exploit the power of citizen science, the crowdsensing approach has been recently used to collect 

travel data. Specifically, users are encouraged to self-report and share travel data via mobile devices 

[23–27]. Moreover, as a world-leading sports and fitness social media, Strava has released a data 

production named Strava Metro after aggregating individual GPS traces of Strava’s users to the 

streets or census areas. Specifically, Strava Metro offers three types of aggregated dataset at the street, 

intersection and census area levels, respectively. Simply put, the counterparts of street- or 

intersection-level data are the conventional traffic count data, whilst the counterpart of the census 

area level data is the origin–destination (O–D) matrix. 

Recently, as a world-leading car-sharing corporate, Uber also released datasets named ‘Uber 

Movement’ to the public in support of urban planning and transportation planning [28]. Likewise, to 

prevent user privacy issues, Uber aggregates Uber cars’ GPS traces into small areas (e.g., census 

areas). Specifically, the average travel time of Uber cars between two small areas is computed by 

Uber. At this stage, the average travel times of Uber cars between two small areas by quarter, month, 

week, or hour of day are available. Uber cars’ average travel times in the morning on weekdays could 

be used as a proxy for average one-way (home-to-work) car-based commuting times due to the same 

transport mode and time periods. Conventional travel survey data provide the amount of travel flows 

between census areas but rarely provide travel times between them. Specifically, conventional travel 

survey data are usually collected via telephone- or post-based questionnaires. Therefore, travel flow 

volumes, travel modes, travel times, and other travel-related information are all self-reported by the 

participants. Compared to other travel-related information, travel time cannot be well measured or 

accurately recorded based on participants’ memories. Uber Movement data can provide more reliable 

and accurate car-based travel time information than conventional travel survey data.  

Uber car driving speed might differ slightly from Uber ride-sharing cars and privately owned 

cars due to potential difference in the route selections and driving experience levels. In addition, 

travel times between two places might differ slightly from commuting trips and non-commuting 
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trips. To make trips aggregated in the Uber Movement data be representative of commuting trips, we 

selected the data aggregated from Uber trips in weekday mornings to avoid the majority of non-

commuting trips. Although there might be still some non-commuting trips on weekday mornings, 

the travel time between the same origin and destination places might not differ much from 

commuting trips and non-commuting trips since the shortest or fastest routes are always the optimal 

routes selected by both commuters and non-commuters. Compared to travel mode and origin–

destination, trip purpose is likely to have a relatively weak influence on travel time. To our 

knowledge, there are no published studies comparing Uber car driving speed and private car driving 

speed in reality. Since we can theoretically assume that Uber car driving speed is close to private car 

driving speed between the same origin and destination places during the same time periods, we 

attempt to use Uber Movement data as a proxy for one-way commuting times by car. 

In this study, to demonstrate the usefulness of Uber Movement data, we use Uber Movement 

data as a proxy for commuting time data by which commuters’ average one-way commuting time 

across Greater Boston can be figured out. We propose a new approach to estimate the average car-

based commuting times through combining commuting times from Uber Movement data and 

commuting flows from travel survey data. To the best of our knowledge, this study is the first article 

to use Uber Movement data as a proxy for one-way commuting times. In the empirical study, we 

further compare the commuting times estimated from Uber Movement data and other data to 

somewhat validate the estimation. The remainder of this paper is organized as follows: Section 2 

introduces the data and the methods used in this study, while later Section 3 carries out an empirical 

analysis, and finally, Section 4 presents the conclusion and offers suggestions for future work. 

2. Materials and Methods 

In this section, the Uber Movement data and travel survey data used are first introduced (see 

Subsection 2.1). Subsequently, we need to select the appropriate morning hours and quarters to 

calculate annual mean travel times based on Uber Movement data (see Subsection 2.2). Finally, we 

estimate commuters’ average one-way car-based commuting times (see Subsections 2.3 and 2.4). 

Moreover, we will further present how to calculate spatial accessibility of jobs by car based on the 

place-to-place average one-way car-based commuting times.  

2.1. Data 

2.1.1. Study Area 

In this study, we chose Greater Boston as the study area. According to the American Community 

Survey (ACS), using averages, workers in Boston had a longer commute time (29.3 minutes) than the 

normal US workers (25 minutes) in 2016 [29]. As the average car ownership in Boston is 1 car per 

household, most people in Boston commute by driving alone [29]. In this case, commuting times by 

car can accurately represent the level of job accessibility in Boston. 

2.1.2. Uber Movement Data 

Recently, Uber publicly released Uber Movement datasets for a number of cities worldwide [28]. 

To prevent privacy issues and keep spatio-temporally fine-grained information, Uber anonymized 

and aggregated Uber riders’ GPS-tracked trails to census tracts or traffic analysis zones (or 

equivalent). There are a few US cities covered by Uber Movement datasets. Census tract and zip code 

are the main small area units that are supported by Uber Movement datasets. Compared to zip code, 

census tract is more widely used in US demographic surveys. Therefore, in this study, we chose 

census tract as the small area unit. The Uber Movement dataset for a city is a suite of aggregated 

datasets, including ‘All-HourlyAggregate’, ‘All-MonthlyAggregate’, ‘OnlyWeekdays-

HourlyAggregate’, ‘OnlyWeekdays-MonthlyAggregate’, ‘OnlyWeekends-HourlyAggregate’, 

‘OnlyWeekends-MonthlyAggregate’, and ‘WeeklyAggregate’. Table 1 lists the attributes of the file 

‘OnlyWeekdays-HourlyAggregate’, including ‘Year’, ‘Quarter’, ‘Source ID’ (origin census tract ID), 

‘Destination ID’ (destination census tract ID), ‘Hour Of Day’ (a one-hour period) and ‘Average Travel 
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Time’ (average travel time of Uber riders between origin census tract and destination census tract 

during a one-hour period on the weekdays in a quarter of 2016). In Greater Boston, there are 1302 

census tracts covered by Uber Movement data. Figure 1 maps census tract boundaries of Greater 

Boston.  

Table 1. An example of records in the Uber movement datasets. 

Year Quarter Source ID Destination ID Hour Of Day Average Travel Time (unit: second) 

2016 1 63 237 6 567.77 

2016 1 748 1189 10 938.54 

2016 2 435 811 17 1273.05 

2016 3 362 1016 20 1158.73 

…… …… …… …… …… …… 

 

 

Figure 1. Census tract boundaries of Greater Boston. 

2.1.3. Travel Survey Data: Commuting Flow Data 

The O-D commuting flows data were downloaded from the U.S. Census Bureau [30]. As the 

Origin–Destination Employment Statistics (LODES) datasets offer the number of O–D commuting 

flows at the census block level, we aggregated O–D commuting flows into the census tract (CT) level. 

We used the data for 2015 as they are the most up-to-date data. Figure 2 boxplots census tract-to-

census tract (CT-to-CT) number of workers (commuters) in Greater Boston. The majority of CT-to-CT 

number of workers (commuters) are likely to range from 2 to 5 persons across Greater Boston, whilst 

the largest number is over 1000.  
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Figure 2. Boxplot of census tract-to-census tract (CT-to-CT) number of workers (commuters) across 

Greater Boston. 

2.2. Temporal Analysis of Mean Travel Times 

In this study, we first explored the distributions of small area-level mean travel times by hour of 

day and quarter. To do so, we found out the morning peak time periods and the appropriate quarters 

to calculate annual mean travel times. 

2.3. Calculation of Annual Mean Travel Times 

As the mean travel times of census tract pairs might vary over season, we needed to calculate 

the annual mean travel times of small area pairs by averaging the mean travel times of the four 

quarters.  

2.4. Estimation of Commuters’ Average Car-based Commuting Times 

Since car-based commuters are unlikely to be distributed among census tract pairs, a population-

weighted method is needed to calculate the average car-based commuting time. Accordingly, average 

car-based commuting times should be computed according to combination of average commuting 

times between small areas and number of car-based commuting flows between small areas. 

Theoretically, average travel time of a geographic region R should be calculated as  

 

���_����(�) =  
∑ ���_���� (�, �)  ∗ ���_���������_��_��� (�, �)�,� ∈ �

∑ ���_���������_��_��� (�, �)�,� ∈ �

        (1) 

 

where Ave_Time (i,j) is the average car-based commuting time between the two small areas (i and j); 

and Num_Commuters_By_Car (i,j) is the number of commuters by car between the two small areas (i 

and j). i and j are small areas within the geographic region R. 

Equation (1) can be rewritten as  

 

���_����(�) =   
∑ ���_����(�, �) ∗ ���_���������(�, �)�,� ∈ � ∗ �_��_���(�, �)

∑ ���_��������� (�, �)�,� ∈ � ∗ �_��_���(�, �)
 (2)  

 

where P_By_Car (i,j) is the proportion of commuters travelling to work by car between the two small 

areas (i and j). 
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However, in some cases, P_By_Car (i,j) is unknown. If we assume P_By_Car (i,j) ≡ a (a is a 

constant), then average travel time of a geographic region R can be calculated as  

 

���_����(�) =    
∑ ���_���� (�, �)  ∗ ���_��������� (�, �)�,� ∈ �

∑ ���_��������� (�, �)�,� ∈ �

         (3) 

where Ave_Time (i,j) is the average car-based commuting time between the two small areas (i and j); 

and Num_Commuters (i,j) is the number of commuters between the two small areas (i and j). i and j 

are small areas within the geographic region R. 

2.5. Estimation of Spatial Accessibility of Jobs by Car 

Average commuting times of car users by origin small area is calculated to measure the spatial 

accessibility of jobs by car at the small area level. Theoretically, the spatial accessibility of jobs by car 

of a small area i should be calculated as  

 

���_�������������(�) =  
∑ ���_���� (�, �)  ∗ ���_���������_��_��� (�, �)�,�

∑ ���_���������_��_��� (�, �)�,�

  (4) 

where Ave_Time (i,j) is the average car-based commuting time between the two small areas (i and j); 

and Num_Commuters_By_Car (i,j) is the number of commuters by car between the two small areas (i 

and j). i and j are small areas. 

3. Results 

In this study, we empirically estimated average one-way car-based commuting times of Greater 

Boston, and further identified the percentage of car-based workers who have a commuting time of 

less than 30 minutes. It is noted that we used Equation (3) instead of Equation (1) to calculate average 

car-based commuting times since the proportions of car-based commuters between census tracts are 

unknown. 

3.1. Temporal Analysis of Mean Travel Times 

We first explored the distributions of census tract-level mean travel times by hour of day (see 

Figure 3). As Figure 3 shows, in each quarter, the median mean travel times during Hour 7 (07:00–

07:59) and Hour 8 (08:00–08:59) are longer than those during Hour 6 (06:00–06:59) and Hour 9 (09:00–

09:59). Average speeds during Hour 7 and Hour 8 are lower than those during Hour 6 and Hour 9. 

This shows that Hour 7 (07:00–07:59) and Hour 8 (08:00–08:59) are likely to be the morning peak time 

period if a lower speed is associated with a higher volume of traffic. A statistical analysis also 

indicates that more than 40% of workers in the US leave home to go to work during Hour 7 (07:00–

07:59) and Hour 8 (08:00–08:59) [31]. We then explored the distributions of mean CT-to-CT travel 

times by quarter (see Figure 4). As Figure 3 shows, in each morning hour, the median mean travel 

times of the four quarters are close to each other. In addition, all the mean CT-to-CT travel times of 

the quarters excluding Q1 are below 120 minutes (2 hours). Moreover, we mapped the mean census 

tract-to-census tract (CT-to-CT) travel times during Hour 8 (08:00–08:59) or in Quarter 2 to show the 

temporal analysis of mean travel times. Specifically, Figure 5 shows the spatial distributions of mean 

census tract-to-census tract (CT-to-CT) travel times during Hour 8 (08:00–08:59) and Figure 6 shows 

the spatial distributions of mean census tract-to-census tract (CT-to-CT) travel times in Quarter 2. The 

two figures indicate that in the morning the predominant direction of longer commuting flows (e.g., 

more than 30 minutes) is towards the central area (Boston City).  
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Figure 3. Distributions of mean census tract-to-census tract (CT-to-CT) travel times by hour of day. 
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Figure 4. Distributions of mean census tract-to-census tract (CT-to-CT) travel times by quarter. 
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a) Quarter 1 b) Quarter 2 

c) Quarter 3 d) Quarter 4 

Figure 5. Spatial distributions of mean census tract-to-census tract (CT-to-CT) travel times during 

Hour 8 (08:00-08:59). 
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a) Hour 6 b) Hour 7 

  
c) Hour 8 d) Hour 9 

Figure 6. Spatial distributions of mean census tract-to-census tract (CT-to-CT) travel times in Quarter 

2. 

3.2. Calculation of Annual Mean Travel Times of Uber Cars 

As Figure 3 shows, Hour 7 and Hour 8 are more likely to be the morning peak time periods due 

to the higher medians of mean travel times. In this study, we used the quarterly travel times of Uber 

cars during morning peak time periods (i.e., Hour 7 or Hour 8) to represent quarterly one-way car-

based commuting times. Before calculating the annual mean travel times of Uber cars, we first needed 

to select the census tract pairs which have records in all the four quarters. As a result, 93,137 and 

97,613 census tract pairs were selected for Hour 7 (07:00 – 07:59) and Hour 8 (08:00 – 08:59), 

respectively. Moreover, we used the coefficient of variation (CV) to measure relative seasonal 

variability for mean travel times of census tract pairs. The coefficient of variation (CV) is referred to 

as the ratio of the standard deviation to the mean. As Figure 4 shows that Q1 has a few outliers which 

are extremely high, we compare the CV values of mean travel times for all the quarters including Q1 

and excluding Q2. For instance, there are 4, 97, 15, and 68 census tract pairs which have a mean travel 

time of more than 240 minutes (4 hours) during Hour 6, 7, 8, and 9, respectively (see Figure 7). As 

Figure 7 shows, those census tract pairs are around the central area (Boston City). Figure 8 shows the 
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distributions of CV values of mean travel times during Hour 7 and Hour 8 for all the quarters 

including Q1 and excluding Q2. In Figure 8, ‘A’ means all the quarters including Q1, and ‘B’ means 

all the quarters excluding Q1. ‘A’ has some CV values above 1, whilst the vast majority of CV values 

of ‘B’ are below 0.5. This indicates that Q1 has more outliers which are extremely high. Therefore, we 

average the mean travel times of Q2, Q3, and Q4 instead of those of all four quarters to represent the 

annual mean travel time.  

 

Figure 7. Mean census tract-to-census tract (CT-to-CT) travel times exceeding 4 hours in Quarter 1. 
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Figure 8. Distributions of coefficient of variation (CV) values of mean travel times during Hour 7 and 

Hour 8 (note: ‘A’ means all the quarters including Q1, and ‘B’ means all the quarters excluding Q1). 

3.3. Estimation of Average Car-based Commuting Times 

In this study, we used the annual mean travel times of Uber cars during morning peak time 

periods (i.e., Hour 7 or Hour 8) to represent average one-way car-based commuting times across 

Greater Boston. To calculate commuters’ annual mean commuting time across Greater Boston, we 

first need to match O–D census tracts from the Uber Movement data and the survey data. As some 

pairwise O–D census tracts have neither any commuting trips nor any Uber car trips, we cannot 

completely match O-D census tracts from the Uber Movement data and the survey data. Table 2 

shows the number of census tract pairs matched between Uber Movement and O–D flow data. Table 

2 also shows the number of commuters travelling between census tract pairs matched to O–D flow 

data. 

Table 2. Number of census tract pairs matched between Uber Movement and origin–destination (O–

D) flow data. 

 H7 H8 

Number of census tract pairs matched to OD matrix data 53,851 54,372 

Number of commuters travelling between census tract pairs matched to OD matrix data 616,727 625,646 

 

As a result, using the equations in Section 2, the averages of all car-based commuters’ annual 

mean travel time during Hour 7 and Hour 8 are estimated to be 20.1 minutes and 20.5 minutes, 

respectively, in Greater Boston. More than 75% of car-based commuters are likely to have a one-way 

commuting time of less than 30 minutes. Less than 1% of car-based commuters are likely to have a 

one-way commuting time of more than 60 minutes. According to the American Community Survey 

(ACS), Boston City had an average commuting time of 29.3 minutes in 2016 [29], whilst the average 

commuting time by car is estimated to be around 20 minutes by using Uber Movement data. It seems 

the average commuting time by car estimated in this study (approximately 20 minutes) is reasonable 

as it should be shorter than the commuting time by all modes (29.3 minutes). 

In this study, we need to compare the commuting times estimated from Uber Movement data 

and other data to somewhat validate the estimation. Specifically, we compare the commuting times 

by car estimated by Uber data and commuting times by all modes estimated by survey data, since 

commuting times by car estimated by survey data are not available (see Table 3). Table 3 also shows 

the commuting times estimated from the 2013-2017 American Community Survey of U.S. Census 

Bureau [32]. Although commuting times estimated by survey data are not available for Greater 

Boston, commuting times in Greater Boston should have a similar distribution to those in Boston City 

or Massachusetts. It could be inferred that, according to the survey data, nearly half of commuters in 

Greater Boston have a commuting time of less than 30 minutes and nearly 12% of commuters in 

Greater Boston have a commuting time of more than 60 minutes. Nevertheless, according to 

estimation using Uber Movement data in this study, more than 75% of commuters in Greater Boston 

have a commuting time of less than 30 minutes and less than 1% of commuters in Greater Boston 

have a commuting time of more than 60 minutes. This empirical study proves that public transport 

users are suffering from longer commuting times than car users. This offers new evidence on the need 

to enhance the public transport service in Greater Boston, since reducing inequalities in job 

accessibility is necessary. 

Table 3. Comparison of commuting time estimated by Uber data and survey data. 

  
0-29 

minutes 

30-59 

minutes 

60+ 

minutes 

Car-based commuting time 

estimated by Uber data 

Greater Boston (07:00–07:59) 78.77% 21.16% 0.07% 

Greater Boston (08:00–08:59) 77.22% 22.77% 0.01% 
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All-mode commuting time 

estimated by survey data 

Boston City 47.5% 40.7% 11.8% 

Massachusetts 54.9% 32.8% 12.3% 

United States 62.5% 28.6% 8.9% 

Source: U.S. Census Bureau, 2013-2017 American Community Survey [32]. 

Likewise, we calculate the annual mean travel times of Uber cars in 2016 across Greater 

Washington DC. There are 558 census tracts in Greater Washington DC. Using the equations in 

Section 2, the averages of all car-based commuters’ annual mean travel time during Hour 7 and Hour 

8 are estimated to be 21.1 minutes and 21.9 minutes, respectively, in Greater Washington DC. Table 

4 shows one-way commuting time estimated across Washington DC by Uber Movement data. More 

than 75% of car-based commuters are likely to have a one-way commuting time of less than 30 

minutes. Less than 1% of car-based commuters are likely to have a one-way commuting time of more 

than 60 minutes. According to the American Community Survey (ACS), the nationwide average 

commuting time by car is 25.4 minutes in 2016 [33]. The one-way commuting time estimated in 

Greater Boston and Greater Washington DC are shorter than the national average level (25.4 

minutes).  

Table 4. One-way commuting time estimated across Washington DC by Uber Movement data. 

  
0-29 

minutes 

30-59 

minutes 

60+ 

minutes 

Car-based commuting time 

estimated by Uber data 

Greater Washington DC (07:00 – 07:59) 81.25% 18.74% 0.01% 

Greater Washington DC (08:00 – 08:59) 78.4% 21.59% 0.01% 

 

3.4. Spatial Accessibility of Jobs by Car 

Moreover, we further aggregated CT-to-CT commuting times to origin census tracts to measure 

spatial accessibility of jobs by car. Equation (4) was used to calculate spatial accessibility of jobs by 

car at the census tract level. Figure 6 shows average commuting times of car users by origin census 

tract. The grey areas are the census tracts without CT-to-CT commuting times. The average 

commuting times of car users by origin census tract can be used to represent spatial accessibility of 

jobs by car at the census tract level (Figure 9). In Figure 9, the census tracts with an average 

commuting time of more than 20 minutes are unlikely to cluster. This indicates that the areas 

suffering a lower level of spatial accessibility of jobs by car are likely to be evenly distributed across 

Greater Boston.  
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Figure 9. Spatial accessibility of jobs by car across Greater Boston (unit: minute). 

3.5. Discussions 

Some of the Uber trips are non-commuting trips but are not excluded by the aggregations. It is 

not extremely clear to what extent travel purpose would influence travel time due to the lack of 

empirical studies on non-commuting travel times. If the priority is given to minimizing the travel 

time, both commuting and non-commuting Uber trips are likely to be the fastest trips with the highest 

average speed. In this case, travel purpose might have a weak influence on travel time. Mean travel 

times of Uber cars sometimes might be not equal to real commuting times by car as real commuting 

times include not only in-vehicle times but time spent walking from home or office to car and parking. 

As the numbers of real car-based commuters between two census tracts are unknown, we use the 

number of all-mode commuters to represent the distribution of car-based commuters among census 

tract pairs based on an assumption that the proportion of car-based commuters is likely to be evenly 

distributed among census tract pairs. However, the real proportion of car-based commuters is 

unlikely to be evenly distributed. Therefore, the gap between the realistic commuter’s one-way 

average commuting time and the estimated commuter’s one-way average commuting time is worth 

attention and caution.  

Since Uber Movement data take into account in-vehicle times but neglect the time spent walking 

and parking, real commuting times by car sometimes might be slightly longer than mean travel times 

of Uber cars. We do not use the Uber Movement data of Q1 to calculate annual travel times as it has 

a number of outliers. There might exist a bias when averaging travel time in three quarters to 

represent annual travel time. In addition, there exists a one-year gap between commuting flow data 

and Uber Movement data. It is unknown how the distribution of commuting flows among census 

tracts differed between 2015 and 2016. As Uber Movement data are only available only for three years 

(2016, 2017, and 2018), we cannot undertake a longitudinal study of car-based commuting times using 

Uber Movement data. Additionally, it seems that ride-sharing data from UberPOOL services are not 

included in the Uber Movement data, although the percentage of Uber rides that are on Uber Pool 

globally increased to 20% in 2016 [34]. As ride-hailing trips between two places are likely to be longer 

than car-based trips, travel times by UberPOOL services are likely to be longer than those by Uber 

car services, called UberX services. 
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In addition, as Uber Movement data exclude within-census tract travel times, we do not take 

into account within- census tract travel times in this study. Here, we have an issue thatnegligence of 

within-census tract travel times might have a substantial influence on the estimate results in this 

study. Based on the statistical analysis of the census tracts’ areas in Greater Boston, 70% of census 

tracts have an area of below 9 km2. If census tracts could be approximated to squares, 70% of census 

tracts would have a width of below 3 km. We might infer that the majority of within-census tract trips 

are unlikely to be taken via Uber services as their distances are likely to be below 3 km. In this case, 

negligence of within-census tract travel times might not have a substantial influence on the estimate 

results in this study.  

4. Conclusion and Future Work 

In this study, to demonstrate usefulness of Uber Movement data, we use Uber Movement data 

as a proxy for commuting time data by which commuters’ average one-way commuting time across 

Greater Boston can be figured out. We propose a new approach to estimate the average car-based 

commuting times through combining commuting times from Uber Movement data and commuting 

flows from travel survey data. The empirical results further uncover that 1) commuters’ average one-

way commuting time is around 20 minutes across Greater Boston; 2) more than 75% of car-based 

commuters are likely to have a one-way commuting time of less than 30 minutes; 3) less than 1% of 

car-based commuters are likely to have a one-way commuting time of more than 60 minutes; and 4) 

the areas suffering a lower level of spatial accessibility of jobs by car are likely to be evenly distributed 

across Greater Boston. 

Some limitations in the empirical study need to be noted. Firstly, this study focused on car-based 

commuting time rather than commuting times by all transport modes, as travel times by Uber car are 

close to those by private cars. Secondly, Uber offers average travel time but not the number of trips 

between small areas. The availability of Uber trip flow data could definitely enhance usage of Uber 

Movement data in transport research. Thirdly, we used Equation (3) instead of Equation (1) to 

calculate average car-based commuting times by assuming that all pairwise census tracts have the 

same proportion of commuters who are travelling to work by car, but actually the proportion of car-

based commuters is likely to change from one pair of census tracts to another. Finally, demographic 

characteristics of commuters are unknown, such as age, gender, race, profession, income, education 

and so forth. It would be more informative to incorporate demographic characteristics of commuters 

into this study.  

In future, some further aspects should be considered in support of research enhancement. 

Firstly, if Uber plans to release aggregated Uber O-D matrix datasets in the near future, it is of high 

interest to exploit Uber O-D matrix data to complement transport research. Secondly, we might 

acquire demographic characteristics of Uber car riders through visiting Uber users’ profiles to acquire 

personal information such as gender, age, profession, and so forth. Thirdly, as some cities, such as 

Beijing, New York City, and City of Chicago, have released conventional taxi trip datasets, it is of 

high interest to compare or combine conventional taxi trip data and Uber trip data in transport 

studies. Finally, Uber has also released average travel speed data between census tracts in a few cities 

and plans to extend the speed data availability to more cities worldwide. Investigating how average 

speed varies over space would enable a better understanding of traffic efficiency, and thus could 

inform urban planning and traffic monitoring.  
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