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Abstract: Most Simultaneous Localization and Mapping (SLAM) methods assume that environments
are static. Such a strong assumption limits the application of most visual SLAM systems. The dynamic
objects will cause many wrong data associations during the SLAM process. To address this problem,
a novel visual SLAM method that follows the pipeline of feature-based methods called DM-SLAM is
proposed in this paper. DM-SLAM combines an instance segmentation network with optical flow
information to improve the location accuracy in dynamic environments, which supports monocular,
stereo, and RGB-D sensors. It consists of four modules: semantic segmentation, ego-motion estimation,
dynamic point detection and a feature-based SLAM framework. The semantic segmentation module
obtains pixel-wise segmentation results of potentially dynamic objects, and the ego-motion estimation
module calculates the initial pose. In the third module, two different strategies are presented to detect
dynamic feature points for RGB-D/stereo and monocular cases. In the first case, the feature points
with depth information are reprojected to the current frame. The reprojection offset vectors are used
to distinguish the dynamic points. In the other case, we utilize the epipolar constraint to accomplish
this task. Furthermore, the static feature points left are fed into the fourth module. The experimental
results on the public TUM and KITTI datasets demonstrate that DM-SLAM outperforms the standard
visual SLAM baselines in terms of accuracy in highly dynamic environments.

Keywords: visual SLAM; deep learning; dynamic scenes; Mask R-CNN; optical flow; ORB-SLAM2

1. Introduction

Simultaneous Localization and Mapping (SLAM) is one of the key technologies in the field of
intelligent mobile robots. Over the past few decades, many state-of-the-art algorithms have been
proposed and achieved satisfactory performance in most static scenes. SLAM techniques utilize the
data streams of on-board sensors to dynamically build a map model for the current environment in
an incremental way and estimate the position during the map construction process. Visual SLAM is
the SLAM system with a camera as the main sensor, which has received extensive attention and been
widely researched in recent years. Compared with other sensors, such as LiDAR, visual SLAM is much
less costly and can obtain a larger amount of data about surrounding environments. Many visual
SLAM systems have achieved excellent performance under certain circumstances (e.g., DTAM [1],
LSD-SLAM [2], and ORB-SLAM2 [3]). However, it is challenging for almost all existing visual SLAM
systems to provide accurate and robust location information in real-world environments because
the ubiquitous moving objects will cause errors in the camera motion computation. There are
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several solutions for this problem, one of which is the traditional robust estimation methods such as
RANSAC [4]. This method removes the dynamic information that occupies a small part of the scene as
an outlier, but it may fail when dynamic objects dominate the scene. Another popular solution is to
integrate information from additional sensors mounted on the robots [5]. The system can extract the
dynamic objects from the scenes via ego-motion compensation using the information captured from
several sensors. However, this is not a cost-effective method, and cameras are often the only sensors
available. Therefore, in this paper, we focus on how to eliminate the effect of dynamic objects using
only cameras.

Visual SLAM can be divided into two categories: feature-based methods [3,6,7] and direct
methods [1,2,8,9]. Feature-based methods search for correspondences by comparing the descriptors
of each feature point between images and optimize the camera pose by minimizing the reprojection
error. Direct methods calculate the minimum photometric error to estimate the pose based on the
grayscale invariant assumption. As analyzed by Engel et al. [10], these two methods have their
advantages and disadvantages. Specifically, feature-based methods are significantly more robust to
geometric noise, but the feature point extraction is time consuming. Direct methods perform better in
low-texture regions than feature-based methods but are generally more sensitive to dynamic objects.
However, none of the above methods can solve the problems caused by common dynamic objects
in the scenes. The dynamic objects will produce many wrong data associations during the process,
which can degrade the calculated pose accuracy.

When there are rigid or non-rigid objects with absolute motion in the rigid scene (e.g., people
walking, moving cars, etc.), it is a rigid dynamic scene. In this paper, a novel visual SLAM method
for rigid dynamic scenes (DM-SLAM) is proposed based on the ORB-SLAM2 system [3]. It applies
an instance segmentation network and optical flow to eliminate the influence of the dynamic objects
existing in the scenes. For cameras that can obtain depth information (RGB-D/stereo cameras) and
monocular cameras, we present two strategies to detect dynamic points. In the RGB-D/stereo case,
the feature points with depth information of the previous frame are reprojected to the current frame.
Then, we use the reprojection offset vectors [u,v] to obtain an adaptive threshold to distinguish
dynamic points. In the monocular case, our method calculates the distance from the matched point to
its corresponding epipolar line. Those points whose distance exceeds the preset value are considered
to be dynamic. The contributions of our work can be summarized as follows:

• We propose a complete visual SLAM system called DM-SLAM that combines an instance
segmentation network and optical flow information. The system eliminates the influence of
dynamic objects on pose estimation in highly dynamic environments and can handle data streams
from monocular, stereo, and RGB-D sensors.

• We present two strategies to efficiently extract dynamic points between adjacent frames for
RGB-D/stereo camera and monocular camera cases.

• We evaluate our proposed system on the public TUM and KITTI datasets and achieve good
performance in highly dynamic scenarios. The absolute trajectory accuracy of DM-SLAM far
outperforms those of the standard visual SLAM baselines.

The rest of this paper is organized as follows. Section 2 presents a review of related work. Section 3
provides the details of our method. The experimental results on the public TUM and KITTI datasets
are presented in Section 4. Finally, a brief conclusion and discussion are presented in Section 5.

2. Related Work

Dynamic objects are classified as outliers in most visual SLAM systems, which are not used for
tracking and mapping. In addition to the SLAM systems using typical outlier rejection algorithms [4],
the methods of connecting deep learning with visual SLAM have also been extensively studied in
recent years. Therefore, we will introduce the dynamic SLAM systems based on the traditional methods
in Section 2.1 and the SLAM systems combined with deep learning in Section 2.2.
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2.1. Dynamic SLAM

Different methods have been proposed to handle dynamic problems in visual SLAM in the
past. Saputra et al. [11] discuss in detail visual SLAM and 3D reconstruction techniques in dynamic
environments. The studies [12–14] use depth information and Alcantarilla et al. [15] use the scene
flow to detect and eliminate the moving objects from the background. Tan et al. [16] project the
map features from the closest keyframes to the current frame to detect changed points and propose
an alternative RANSAC formulation to distribute the sampled points. However, when dynamic
objects move slowly, this method has difficulty maintaining a robust motion estimation. Sun et al. [12]
roughly filter out moving-object motions via ego-motion compensation and then precisely determine
the foreground based on vector quantization. Wang et al. [14] cluster the RGB image-based trajectories
of points; then, dynamic points are excluded via energy function minimization. Dense SLAM systems
perform better after integrating this method. Optical flow is used to construct an angle histogram
in [17]. They use the Gaussian Mixture Model (GMM) to approximate the obtained angle histogram
and then estimate the parameters using the expectation–maximization (EM) algorithm. Finally,
the Gaussians with sufficiently high mixing proportion are selected as optical flow over moving
objects. Sabzevari et al. [18] employed the wheeled vehicle constraint to estimate the camera motion
by utilizing Ackermann steering geometry. The feature points satisfying the motion estimation of
the camera are static features and the others are considered as dynamic features. Maxime et al. [19]
propose real-time monocular visual odometry for dynamic underwater environments. They utilize
RANSAC to compute the essential matrix and eliminate the outliers that are not consistent with the
epipolar geometry. However, the system lacks a loop-closure mechanism and cannot be regarded
as a complete visual SLAM method. Liu et al. [20] combine the Grid-based Motion Statistics (GMS)
GMS [21] feature matching algorithm and a sliding window to eliminate the influence of dynamic
objects. Other approaches utilize external sensors such as an inertial measurement unit (IMU) to solve
this problem [22,23] by estimating the camera ego-motion. Kim et al. [24] combine RGB-D sensors with
an IMU to estimate camera pose in a highly dynamic environment. The IMU information is considered
as a priori information to constrain the camera pose estimation and eliminate visual information error.
In addition to these methods for dealing with rigid scenarios, Agudo et al. [25,26] provide a solution
to handle a non-rigid objects based Kalman filter. The Navier–Cauchy equations are used to represent
the object’s surface mechanics and are solved with a Finite Element Method (FEM). Then, they embed
equations in an extended Kalman filter, resulting in a sequential Bayesian optimization framework.

2.2. SLAM Combined with Deep Learning

There have been some attempts to combine deep learning with visual SLAM to improve the
performance of traditional SLAM systems. CNN-SLAM [27] is one of the typical approaches,
which fuses CNN-predicted depth values with depth measurements directly calculated from
monocular SLAM. DeTone et al. [28] propose a point tracking system using two deep convolution
neural networks called MagicPoint and MagicWarp. The first network extracts 2D feature points,
and the second processes pairs of point images. In addition, semantic segmentation networks are
often applied in visual SLAM systems. Bowman et al. [29] use EM estimation to convert semantic
SLAM into a probability problem. They utilize the traditional DPM detection network and still achieve
certain effects. Lianos et al. [30] regard semantic information as constant scene rendering elements
while using semantic reprojection errors to construct constraint conditions. Riazuelo et al. [31] embed
a human tracker into the SLAM system and deal with the impact of walking people by using human
semantic information. In [32], a semantic fusion approach is proposed to handle dynamic objects more
efficiently. Kaneko et al. [33] present a framework for eliminating unstable feature points utilizing
masks that are generated by a semantic segmentation network. The remaining feature points are
used to stably estimate the camera position. Chao et al. [34] used the SegNet [35] network to obtain a
pixel-wise semantic segmentation of the image and combine it with a motion consistency check to filter
out dynamic portions of the scene. They produce a dense semantic octo-tree map, which can be used
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for high-level tasks but has less positioning accuracy in tracking. Similarly, Bescos et al. [36] propose
DynaSLAM, which combines a multiview geometry and Mask R-CNN [37] to detect dynamic objects
in the RGB-D case. However, in monocular and stereo cases, they simply do not extract feature points
in the mask area, which means that the mask area is considered to be absolutely dynamic. This may
result in tracking loss or initialization failure due to a small number of remaining feature points.
Masoud et al. [38] propose an algorithm that integrates the feature-based SLAM with multi-target
tracking (MTT) for dynamic environments. They use Faster R-CNN [39] to detect objects and classify
them as moving and stationary objects. This algorithm only detects two categories of doors and people
and cannot cope well with complex dynamic scenes.

3. System Introduction

In this section, the problem statement is first introduced. Then, we describe the details of our
proposed method in Section 3.2.

3.1. Problem Statement

The graph optimization model in dynamic environments is shown in Figure 1. The motion model
can be represented as the edges linking camera poses. The measurement model is represented as the
edges linking camera poses and observed landmarks. The measurement model can be formulated as:

zk,j = h(ξk, pj) + vk,j, (1)

where ξk denotes the Lie algebra representation of the camera pose at time k, and pj represents the
position of the j-th landmark. The measurement zk,j , [us, vs] is pixel coordinate information in the
image taken by the camera, which corresponds to the observation of landmark j by the camera at
time k. h() is the nonlinear model, and vk,j ∼ N (0, Qk,j) is Gaussian noise with zero mean assumed.
Qk,j denotes the covariance of the measurement. For this observation, the error term can be defined as:

ek,j = zk,j − h(ξk, pj). (2)

Then, we can describe the cost function as follows:

J(x) =
1
2

m

∑
k

n

∑
j

ek,j(x)TQ−1
k,j ek,j(x), (3)

where x denotes all camera poses and positions of landmarks. This is a typical nonlinear least square
problem. However, if there are dynamic objects in the scene, they will corrupt the measurement model.
As mentioned above, vk,j is assumed to have zero mean in Equation (1). Obviously, this term does not
have a non-zero mean for the measurement of dynamic objects. The abnormal noise of non-zero mean
will bring false information into the optimization process. As shown in Figure 1b, dynamic landmarks
destroy the constraints of camera poses (red solid edges) and the constraints between camera poses
and landmarks (red dotted edges).

Let dk,j denote the 2D location change of landmark j at time k. We can modify Equation (2)
as follows:

e
′
k,j = zk,j + ωk,jdk,j − h(ξk, pj), (4)

where if the landmark j is static at time k, then ωk,j is set to 0; otherwise, it is set to 1:

ωk,j =

{
1, dynamic,
0, otherwise.

(5)
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The cost function Equation (3) will also be fine-tuned accordingly. We can see that the tuning
function aims to estimate the camera poses and landmark positions accurately by eliminating the
negative effects of dynamic landmarks on this problem. The method of distinguishing dynamic objects
will be described in Section 3.2.

(a) SLAM graph in static environments (b) SLAM graph in dynamic environments

Figure 1. Illustration of the graph optimization model in Simultaneous Localization and Mapping
(SLAM). The circles {p1, p2, p3, p4} represent landmarks. In addition, the triangles {x1, x2, x3, x4}
represent camera poses. The solid edges link camera poses. The dotted edges link the camera poses
and observed landmarks. In (a), the camera poses are estimated normally when all of the landmarks
are static. In (b), the landmark p3 has moved to the p

′
3 position at the next moment. Red triangles x3

and lines represent the pose error and constraints obtained with dynamic objects. The interference of
dynamic objects is clearly illustrated by comparing the two situations.

3.2. Proposed Method

This section describes the proposed DM-SLAM method. DM-SLAM consists of four modules:
semantic segmentation, ego-motion estimation, dynamic point detection, and a feature-based SLAM
framework. In the following sections, the framework of DM-SLAM, segmentation of potentially
moving objects, ego-motion estimation, and dynamic feature extraction are presented in detail.

3.2.1. Overview of the Proposed Approach

Figure 2 shows an overview of our proposed method, and Figure 3 shows in more detail the
pipeline in monocular and RGB-D/stereo cases. The input frames are first segmented by Mask
R-CNN. Then, we preliminarily assume that some of the segmented content are dynamic (e.g., people
and cars). All the feature points that fall in the selected regions are discarded for rough ego-motion
estimation. We adopt the low-cost tracking algorithm proposed in [36] to calculate the initial pose.
Because there are fewer feature points involved in the pose estimation and lack of local bundle
adjustment, the calculated initial pose is inaccurate.

As illustrated in Figure 3, we propose two different strategies to detect dynamic feature points
after ego-motion estimation. In the monocular case (dotted line), we simply use the epipolar constraint
to extract dynamic points. The distance from the matched points to its corresponding epipolar line
is used to distinguish the outliers. In RGB-D/stereo cases (solid line), the feature points have depth
information from the depth image or triangulation. We reproject the feature points of the previous
frame to the current frame, and the reprojection offset vectors [u,v] are used to describe the offset
distribution of the static area. Then, the feature points that do not follow the a priori distribution will
be considered as dynamic points.

Subsequently, we utilize the dynamic feature points to determine whether the mask areas are
dynamic. All of the feature points located in the corresponding dynamic content are discarded.
The static feature points left are fed into the SLAM algorithm for tracking and mapping.
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Figure 2. Overview of our proposed method. Input frames are segmented by the Mask R-CNN
network, and then the feature points that fall in the initially assumed dynamic content are discarded
for ego-motion estimation. The static feature points left are fed into the SLAM algorithm for tracking
and mapping after dynamic feature points are discarded.

Figure 3. Detailed framework of our proposed method. We add a front-end stage to the ORB-SLAM2
framework as illustrated in the figure. A low-cost tracking algorithm is needed to calculate the initial
ego-motion after the Mask R-CNN module. Then, there are two different strategies to extract dynamic
feature points for monocular and RGB-D/stereo cases. We discriminate which masks are dynamic so
that all feature points in the corresponding dynamic content can be discarded.

3.2.2. Segmentation of Potentially Moving Objects

To accurately detect the regions of dynamic objects, we adopt the Mask R-CNN [37] network to
obtain both instance label and pixel-wise semantic segmentation based on TensorFlow.

Mask R-CNN is one of the state-of-the-art instance segmentation networks, which can segment
80 classes trained on COCO datasets [40]. We employ the pre-trained models on COCO and select 20 of
these 80 classes as potentially moving objects (“person”, “bicycle”, “car”, “motorcycle”, “airplane”,
“bus”, “train”, “truck”, “boat”, “bird”, “cat”, “dog”, “horse”, “sheep”, “cow”, “elephant”, “bear”,
“zebra”, “giraffe”, and “frisbee”). We assume that, for most environments, the dynamic objects that
may appear are included in these 20 categories. The Mask R-CNN part is designed as a relatively
independent module so that, if other classes are needed, we can fine-tune the network with new
training data. The feature points falling in these potentially moving objects areas are deemed to
be unreliable. We do not directly eliminate these feature points but employ further discrimination.
As illustrated in Figure 4, Figure 4a presents the initial semantic segmentation result of the RGB image
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generated by Mask R-CNN. Figure 4b shows the potentially moving objects extracted using the above
20 classes.

(a) pixel-wise semantic segmentation (b) potentially moving objects areas

Figure 4. (a) The pixel-wise semantic segmentation of the RGB image. Different color areas represent
different instances; (b) potentially dynamic objects areas. We extract the two instances named “person”
in (a) as potentially dynamic objects.

3.2.3. Ego-Motion Estimation

After the potentially dynamic objects have been segmented in the frame, we preliminarily assume
that the segmented areas are dynamic and discard all the feature points that fall in these areas.
The feature points that are too close to the edge of the regions are also discarded.

We adopt the lightweight tracking algorithm proposed in [36]. Different from the one in
ORB-SLAM2, this method does not perform local bundle adjustment and new keyframe decision.
It directly matches the feature points with the previous frame and projects the associated map points
to the current frame. Then, the camera pose is estimated by minimizing the reprojection error in
Equation (2). This module can obtain a roughly correct initial pose with low-cost calculation.

3.2.4. Dynamic Feature Points Extraction

In the ego-motion estimation module Section 3.2.3, we remove all the points that fall in the
potentially dynamic regions and calculate the initial pose (with error). Then, we need to apply the
pose to extract dynamic points, which are used to determine whether the mask areas are dynamic.

As mentioned above, we propose two different methods to detect dynamic feature points. First,
we will introduce the details of the method for the RGB-D/stereo cases, which is also the focus of
this paper.

Through ego-motion estimation, the initial camera pose (perspective transformation matrix) is
obtained. In the first step, we calculate optical flow using the Lucas–Kanade algorithm [41] to obtain
matched feature points between two frames.

Then, we reproject the feature points of the previous frame to the current frame as illustrated
in Figure 5. {p1, p2} denote feature points in the previous frame at time t− 1, and {q1, q2} represent
the feature points in the current frame at time t. {q̂1, q̂2} denote the reprojected points in the current
frame matching the feature points {p1, p2}. q̂1 and q1 usually do not coincide because the estimated
transformation matrix is inaccurate. Consequently, there will be an offset vector, such as q1 − q̂1,
for each point. The differences in the distance and angle between q1 − q̂1 and q2 − q̂2 are clearly
illustrated when the landmark P2 has moved to the P

′
2 position at time t. Figure 6a–c show the

difference more intuitively between a static area and moving people for three cases. We can see that
even if the initial camera pose calculated from the ego-motion estimation module is not completely
accurate, the static points and dynamic points still follow the different distributions. This difference in
distribution can help us distinguish between these two points.
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Figure 5. Different offset vectors of static points and dynamic points. Ct−1 and Ct denote the camera
center position at different times. q1 − q̂1 and q2 − q̂2 represent the offset vectors of static point P1 and
dynamic point P2 in the current frame.

(a) (b) (c)

(d) (e) (f)

Figure 6. (a–c) Three cases for object motion. The yellow line between the red and green endpoints in
the figure is the offset vector in Figure 5; (d–f) dynamic point extraction results of (a–c). Static feature
points are displayed in green, and dynamic points are displayed in red. The figure is best viewed
in color.

A weighted average method is proposed to describe the offset vectors in static areas (all other
areas except the potentially dynamic masks in the image), which obtain an adaptive threshold
used to distinguish dynamic points. The set of offset vectors in static areas is denoted as Vstate =

{qi, i = 1, 2, 3, ..., n}. First, we calculate the angle θi and modulo value εi for each vector of this set.
Then, indicators Ti and φs are constructed as follows:

Ti =
εi

∑n
k=1 εk

+
|θi|

∑n
k=1 |θk|

, i = 1, 2, 3, ..., n; (6)
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the mean value of Ti is denoted as φs:

φs =
∑n

i=1 Ti

n
, i = 1, 2, 3, ..., n. (7)

Vother =
{

qj, j = 1, 2, 3, ..., m
}

denotes the set of offset vectors in potentially moving areas,
and Pother =

{
pj, j = 1, 2, 3, ..., m

}
represents the corresponding feature point set. For each offset vector

in Vother, we calculate Tj and compare it with φs. The following inequalities are used to determine
which point is dynamic: {

Tj > φs, if pj is dynamic,
Tj < φs, if pj is static.

(8)

The results of dynamic point extraction are illustrated in Figure 6d–f. We can see that the points
above the moving people are divided into dynamic points (red points). Most of the points on the
sitting people are divided into static points (green points) because of the inconspicuous motion.

In the monocular case, we simply use the epipolar constraint to extract dynamic points.
The epipolar constraint can be expressed by the following equation:

qT
i F pi = 0, i = 1, 2, 3, ..., m, (9)

where F denotes the fundamental matrix, qi and pi denote the matched feature points in the current
frame and previous frame. For each point of the current frame, we calculate its distance to the
corresponding epipolar line Fpi = [x, y, z]T . The distance is determined as follows:

D =

∣∣qT
i F pi

∣∣√
‖x‖2 + ‖y‖2

, i = 1, 2, 3, ..., m, (10)

where D represents the distance. If the distance exceeds the preset threshold value, then we regard this
point as a dynamic point.

Finally, if a certain number of dynamic points fall in the potentially moving area, then the
corresponding object is determined to be moving. We discard all feature points located in the contour
that are extracted from the image pyramid.

As mentioned in Section 2, there are also some approaches to use semantic segmentation
network and geometry-based methods to solve dynamic environment problems like DS-SLAM [35],
DynaSLAM [36]. Compared to these two methods, our proposed method has two advantages:

• DS-SLAM only takes the human as a typical representative of dynamic objects in experiments
and cannot process stereo sensors data. We predefine 20 categories as potentially dynamic or
movable in DM-SLAM and evaluate our system in the pubic monocular, stereo, and RGB-D
datasets. DM-SLAM is applicable to a wider range of scenarios.

• DynaSLAM directly regards the segmented content as dynamic and does not extract feature points
on them, which is not in line with the real situation (e.g., a parked car). Then, they only extract
dynamic points in the RGB-D case using multi-view geometry. In our system, a mask motion
discrimination module is added to avoid the problem of discarding too many points on a static
mask, causing too few remaining static points. Thus, it has better robustness than the method of
directly removing all feature points in the mask.

4. Experimental Results

In this section, we present the experimental results of DM-SLAM on the public datasets
TUM RGB-D and KITTI. To demonstrate the improvement of DM-SLAM in dynamic scenes,
we compare it with the state-of-the-art visual SLAM systems, i.e., DS-SLAM [34], DynaSLAM [36] and
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ORB-SLAM2 [3]. A PC with an Intel i7 CPU, 12 GB RAM and a single GeForce GTX 1080 Ti GPU is
used to run the programs.

4.1. TUM Dataset

The TUM RGB-D dataset [42] provides color and depth images along with the accurate
ground-truth trajectories and contains 39 sequences in different indoor environments. According to
whether there are dynamic objects in the scene, we divide the sequences into static scenes and dynamic
scenes. According to the magnitude of the motion of dynamic objects, we further divide the dynamic
scenes into low-dynamic scenes and high-dynamic scenes. In the sitting sequences, two people are chatting
and gesturing in front of a table. We consider the sitting sequences as low-dynamic scenes. In the walking
sequences, two people walk back and forth and sit down in front of the desk. We consider the walking
sequences as high-dynamic scenes. There are four types of camera motion: (1) halfsphere: the camera
moves following the trajectory of a 1-meter diameter halfsphere, (2) xyz: the camera moves along the
x–y–z axes, (3) rpy: the camera rotates along the roll, pitch and yaw axes, and (4) static: the camera is
roughly kept static manually.

For the sake of brevity, we use the terms fr, half, w, s, d, v to represent freiburg, halfsphere, walking,
sitting, desk, and validation in the names of the sequences.

4.1.1. RGB-D

We utilize the metric Absolute Trajectory Error (ATE) [42] for quantitative evaluation, as shown
in Table 1. The sequence names are shown in the first column, for example, fr3/w/xyz represents the
freiburg3/walking/xyz sequence in the TUM RGB-D dataset. Figure 7 shows the feature extraction and
matching results of the fr3/w/xyz sequence in the high-dynamic scenes. As we can see, DM-SLAM can
eliminate the influence of the walking people in the red area. Meanwhile, the ORB-SLAM2, DS-SLAM
and DynaSLAM systems are used for comparative analysis of trajectory accuracy. For comparison
purposes, we present the values of the Root Mean Squared Error (RMSE) [42] of ATE. The improvement
values of the RMSE and Standard Deviation (STD) compared to ORB-SLAM2 are also shown in the
last column. The values of improvement are defined as follows:

ζ =

(
1− γ

µ

)
× 100%, (11)

where ζ denotes the improvement value, γ represents the RMSE value of DM-SLAM, and µ represents
the RMSE value of ORB-SLAM2. Here, we only calculate the improvement compared to the
ORB-SLAM2 system.

(a) ORB-SLAM2 (b) DM-SLAM

Figure 7. (a,b) Feature matching results between frames in ORB-SLAM2 and DM-SLAM. The red boxes
in the figure represent the dynamic area.

As we can see in Table 1, the average of RMSE improvement values for high-dynamic scenes
is 96.27%. In high-dynamic scenes, DM-SLAM eliminates the influence of dynamic objects in pose
estimation. The performance of DM-SLAM has an order of magnitude improvement compared to
ORB-SLAM2. However, for the low-dynamic scenes, DM-SLAM only achieves a 20.19% average RMSE
improvement. Our method provides less improvement in low-dynamic cases. We think that the reason
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is that the moving object has a small amplitude of motion in the low-dynamic scenes, and the original
ORB-SLAM2 can remove the relatively few points as outliers. For example, in the fr3/s/rpy sequence,
two people are seated in a fixed place while gesturing. The dynamic feature points that fall on the arm
do not significantly affect the camera pose estimation.

Table 1. Quantitative comparison results of the absolute trajectory error (ATE) [m] in meters for the
experiments. It can be seen that our method exhibits significantly improved performance compared to
ORB-SLAM2 in high-dynamic scenes in terms of the ATE.

Sequences ORB-SLAM2 DS-SLAM DynaSLAM DM-SLAM Improvement

RMSE [m] STD [m] RMSE [m] RMSE [m] RMSE [m] STD [m] RMSE [%] STD [%]

fr3/w/xyz 0.7137 0.3584 0.0241 0.0158 0.0148 0.0072 97.93% 97.99%
fr3/w/rpy 0.8357 0.4169 0.3741 0.0402 0.0328 0.0194 96.08% 95.35%
fr3/w/static 0.3665 0.1448 0.0081 0.0080 0.0079 0.0040 97.84% 97.24%
fr3/w/half 0.4068 0.1698 0.0282 0.0276 0.0274 0.0137 93.26% 91.93%
fr3/s/static 0.0092 0.0039 0.0061 0.0064 0.0063 0.0032 31.52% 17.95%
fr3/s/rpy 0.0245 0.0172 0.0187 0.0302 0.0230 0.0134 6.12% 22.09%
fr3/s/half 0.0231 0.0112 0.0148 0.0191 0.0178 0.0103 22.94% 30.41%

Figures 8 and 9 show the motion trajectory of ORB-SLAM2 and DM-SLAM with reference to
the ground truth in the six sequences. Figure 8 shows selected ATE plots for high-dynamic scenes.
The accuracy of the trajectory is significantly improved in DM-SLAM because DM-SLAM can estimate
the camera poses accurately by eliminating the negative effects of dynamic objects. Figure 9 shows
selected ATE plots for low-dynamic scenes. The original ORB-SLAM2 algorithm can also provide
good performance for these scenes. The improvement of DM-SLAM is not obvious compared to the
high-dynamic scenes.

(a) fr3/w/xyz of ORB-SLAM2 (b) fr3/w/half of ORB-SLAM2 (c) fr3/w/xyzv of ORB-SLAM2

(d) fr3/w/xyz of DM-SLAM (e) fr3/w/half of DM-SLAM (f) fr3/w/xyzv of DM-SLAM

Figure 8. Plots of the ATE [m] for high-dynamic scenes: fr3/w/xyz, fr3/w/half, fr3/w/xyzv. (a–c) the
experiments performed with ORB-SLAM2; (d–f) the experiments performed with DM-SLAM.
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(a) fr3/s/xyz of ORB-SLAM2 (b) fr3/s/half of ORB-SLAM2 (c) fr2/d/person of ORB-SLAM

(d) fr3/s/xyz of DM-SLAM (e) fr3/s/half of DM-SLAM (f) fr2/d/person of DM-SLAM

Figure 9. Plots of the ATE [m] for low-dynamic scenes: fr3/s/xyz, fr3/s/half, fr2/d/person; (a–c) the
experiments performed with ORB-SLAM2; (d–f) the experiments performed with DM-SLAM.

4.1.2. Monocular

We also conducted experiments on the monocular images in the TUM dataset. The experimental
results are shown in Table 2. Compared with Table 1, we can see that ORB-SLAM [7] can achieve more
accurate results than in the RGB-D case. The reason is that the monocular initialization algorithm has
more stringent restrictions than in the RGB-D case. ORB-SLAM can only be successfully initialized
after satisfying the matching and parallax conditions. Therefore, it may take a long time to initialize in
dynamic scenes. However, the initialization in DM-SLAM is always quicker than that in ORB-SLAM
due to the elimination of the effects of dynamic objects. The percentage of the tracked trajectory in
Table 2 is the ratio of successfully tracked frames to the total number of images. This value demonstrate
DM-SLAM tends to have a longer trajectory than ORB-SLAM.

In some sequences, the accuracy of ORB-SLAM is slightly higher than that of DM-SLAM.
The reason is that the estimated trajectory in DM-SLAM is longer than ORB-SLAM, and there is
room for accumulating errors. In general, compared to ORB-SLAM, DM-SLAM initialization creates
a map without dynamic objects and has more trajectory information, which is more helpful for
subsequent information reuse (e.g., reconstruction of dense map).

Table 2. Comparison of the RMSE of the ATE [m] and percentage of tracked trajectory for monocular
cameras.

Sequences ATE RMSE [m] Traj (%)

ORB-SLAM2 DynaSLAM DM-SLAM ORB-SLAM2 DynaSLAM DM-SLAM

fr3/w/xyz 0.014 0.014 0.020 85.61 87.37 97.90
fr3/w/half 0.017 0.021 0.024 90.12 97.84 97.87
fr3/w/rpy 0.066 0.052 0.050 85.82 85.11 87.24
fr3/w/static 0.005 0.004 0.004 89.30 90.01 91.57
fr3/s/xyz 0.008 0.013 0.014 95.47 95.51 95.78
fr3/s/rpy 0.042 0.021 0.021 80.36 54.39 92.54
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4.2. KITTI Dataset

The KITTI dataset [43] is a computer vision algorithm evaluation dataset for autonomous
driving scenarios. It contains stereo image data collected from scenes such as urban, rural, and
highway. To show the removal effect of dynamic points more intuitively, we implement pose tracking
experiments on the KITTI dataset. Figure 10 shows the feature points tracked by DM-SLAM and
the ORB-SLAM2 system during pose estimation. DM-SLAM does not track the feature points on the
moving cars or bicycles during camera pose estimation, so the influence of the dynamic objects can
be eliminated.

(a) ORB-SLAM2 (b) DM-SLAM
Sequence 01

(c) ORB-SLAM2 (d) DM-SLAM
Sequence 02

(e) ORB-SLAM2 (f) DM-SLAM
Sequence 08

(g) ORB-SLAM2 (h) DM-SLAM
Sequence 09

Figure 10. Tracking experiments with ORB-SLAM2 and DM-SLAM on the 01, 02, 08, and 09 sequences.
The rectangular boxes represent the moving objects, and there are some feature points tracked in the
red box of ORB-SLAM2 but not in the yellow box of DM-SLAM.

Then, we implement trajectory accuracy analysis of the stereo camera in the 11 sequences. Table 3
shows the experimental results of DM-SLAM, compared against those of ORB-SLAM2 and DynaSLAM.
We use the absolute trajectory RMSE as the error metric. As we can see, in most sequences that contain
a certain number of moving objects, such as cars and bicycles, DM-SLAM can achieve higher tracking
accuracy by eliminating the influence of dynamic objects in the road. Nevertheless, in some sequences,
most of the recorded cars are parked next to the road, and the position accuracy of our method is
slightly lower than that of ORB-SLAM2. The reason is that the most potentially dynamic regions
(e.g., parked cars) produced by Mask R-CNN are hence static. The initial ego-motion calculated with
the distant points has errors after all the static points in these regions are removed. Then, some of the
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static points are mistaken as dynamic in the dynamic point extraction module, which will not be used
for tracking and mapping, resulting in a slight decrease in tracking accuracy.

Table 3. Comparison of the RMSE of the ATE [m] for stereo cameras.

Sequences ORB-SLAM2 DynaSLAM DM-SLAM

ATE RMSE [m] ATE RMSE [m] ATE RMSE [m]

KITTI 00 1.3 1.4 1.4
KITTI 01 11.4 9.4 9.1
KITTI 02 6.2 6.7 4.6
KITTI 03 0.6 0.6 0.6
KITTI 04 0.2 0.2 0.2
KITTI 05 0.8 0.8 0.7
KITTI 06 0.8 0.8 0.8
KITTI 07 0.5 0.5 0.6
KITTI 08 3.8 3.5 3.3
KITTI 09 3.4 1.6 1.7
KITTI 10 1.0 1.2 1.1

Furthermore, we utilize the evo tool (https://github.com/MichaelGrupp/evo) to plot the absolute
pose error (APE) and the motion trajectory of the four sequences in Figures 11 and 12. Since the
absolute trajectory error of DynaSLAM is similar to that of ORB-SLAM2, we no longer draw its APE.
The APE distribution of DM-SLAM and ORB-SLAM2 is shown in Figure 11. We use SE (3) to align
the motion trajectory with the ground-truth trajectory. As we can see, the pose error of DM-SLAM is
significantly lower than that of ORB-SLAM2. Figure 12 illustrates the motion trajectories of DM-SLAM
with reference to the ground truth. It can be seen that the area with larger error is basically distributed
at the corner of the trajectory. Overall, the trajectory of DM-SLAM is consistent with the ground truth
and has high accuracy.

(a) Sequence 02 (b) Sequence 04 (c) Sequence 05
c

(d) Sequence 09

Figure 11. (a–d) Absolute pose error (APE) of DM-SLAM and ORB-SLAM2 for the 02, 04, 05, and 09
sequences of the KITTI dataset.

4.3. Runtime Analysis

To ensure the integrity of the experiments, Table 4 shows the runtime analysis of DM-SLAM for its
different stages, running on the TUM and KITTI datasets. All the experiments are run on a computer
with an Intel i7 CPU, 12 GB RAM, and a single GeForce GTX 1080 Ti GPU, and the operating system is
Ubuntu 16.04.

We calculate the average time on the TUM and KITTI datasets of different components.
The semantic segmentation module is the most time consuming because of the addition of Mask
R-CNN. There are two solutions to address this problem in the future. One is to replace Mask R-CNN
with a more lightweight semantic segmentation network. Another more efficient way is to deploy
the semantic segmentation module on a server with a better hardware configuration and transfer the

https://github.com/Michae lGrupp/evo
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semantic results to a local terminal. We believe that the SLAM model of cloud terminal collaboration
will be more popular in the future.

(a) Sequence 02 (b) Sequence 04

(c) Sequence 05 (d) Sequence 09

Figure 12. (a–d) Comparison of the motion trajectories of DM-SLAM with the ground-truth trajectories
for the 02, 04, 05, and 09 sequences of the KITTI dataset. The dotted line represents the ground-truth
trajectory. The degree of warmth and coldness of the color on the dotted line represents the magnitude
of the error.

Table 4. DM-SLAM average computational time (unit: ms) of different components.

Datasets Semantic
Segmentation [ms]

Ego-Motion
Estimation [ms]

Dynamic Point
Detection [ms]

TUM 201.02 3.16 40.64
KITTI 210.11 7.03 94.59

5. Conclusions

In this paper, a visual SLAM method combining optical flow and a semantic mask is proposed,
which can provide good performance in high-dynamic environments for RGB-D, stereo, and monocular
cameras. This method can be divided into four modules: semantic segmentation, ego-motion estimation,
dynamic point detection, and a feature-based SLAM framework. Our method adds a front-end stage
to ORB-SLAM2 to filter out data associated with dynamic objects. In RGB-D/stereo cases, we utilize
the reprojection information of feature points to construct an adaptive indicator, which is used to
distinguish the dynamic points. In the monocular case, we simply use the epipolar constraint to extract
dynamic points.

On the TUM RGB-D dataset, DM-SLAM exhibits an order of magnitude improvement compared
to ORB-SLAM2 in high-dynamic scenes. In the monocular case, the accuracy of our approach is
similar to that of ORB-SLAM; however, our approach obtains more trajectory and map information.
On the KITTI dataset, DM-SLAM achieves higher tracking accuracy for most sequences, except for
those containing many static potentially moving objects (e.g., parked cars). To overcome this problem,
in future work, we would like to utilize a more accurate mathematical model to describe the distribution
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of reprojection offset vectors in the a priori static areas, rather than an adaptive threshold. In addition,
DM-SLAM uses features tracked in rigid static scenes to estimate camera pose. If all the scenes are
dynamic, our current method cannot obtain accurate results due to the lack of static features. In the
follow-up work, we will utilize the information on dynamic objects to assist in motion estimation and
real-time reconstruction.
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