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Abstract: The degree of automation and efficiency are among the most important factors that
influence the availability of Terrestrial light detection and ranging (LiDAR) Scanning (TLS) registration
algorithms. This paper proposes an Ortho Projected Feature Images (OPFI) based 4 Degrees of
Freedom (DOF) coarse registration method, which is fully automated and with high efficiency, for TLS
point clouds acquired using leveled or inclination compensated LiDAR scanners. The proposed
4DOF registration algorithm decomposes the parameter estimation into two parts: (1) the parameter
estimation of horizontal translation vector and azimuth angle; and (2) the parameter estimation
of the vertical translation vector. The parameter estimation of the horizontal translation vector
and the azimuth angle is achieved by ortho projecting the TLS point clouds into feature images
and registering the ortho projected feature images by Scale Invariant Feature Transform (SIFT) key
points and descriptors. The vertical translation vector is estimated using the height difference of
source points and target points in the overlapping regions after horizontally aligned. Three real TLS
datasets captured by the Riegl VZ-400 and the Trimble SX10 and one simulated dataset were used to
validate the proposed method. The proposed method was compared with four state-of-the-art 4DOF
registration methods. The experimental results showed that: (1) the accuracy of the proposed coarse
registration method ranges from 0.02 m to 0.07 m in horizontal and 0.01 m to 0.02 m in elevation,
which is at centimeter-level and sufficient for fine registration; and (2) as many as 120 million points
can be registered in less than 50 s, which is much faster than the compared methods.

Keywords: terrestrial LIDAR scanning; LiDAR point clouds; coarse registration; ortho projected
feature image

1. Introduction

Light detection and ranging (LiDAR) scanning, including Terrestrial LIDAR Scanning (TLS) [1],
Personal LiDAR Scanning (PLS) [2], Mobile LiDAR Scanning (MLS) [3], and Airborne LiDAR Scanning
(ALS) [4], can acquire dense point clouds of target scenes directly and efficiently. LiDAR scanning
is among the most advanced three-dimensional (3D) spatial data acquisition technologies. Point
clouds acquired by LiDAR scanning are used in numerous applications, including 3D modeling of
target object in reverse engineering [5], 3D building reconstruction in city modeling [6], slopes and
super-elevations estimation in road mapping [7], individual tree mapping in forestry [8], and large-scale
Digital Elevation Model (DEM) generation in steep mountainous areas [9].

Registration is a fundamental and frequently encountered problem in point clouds processing [10,11].
Terrestrial LIDAR scanning scans the whole target scene station by station and registration is essential
to align point clouds obtained from different stations to a unified frame [12-18]. In addition, the point
clouds obtained by different LIDAR scanning platforms, such as TLS and MLS, are often merged to
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obtain more complete coverage of the target scenes. In such situations, registration of different platform
point clouds is necessary [19,20].

The aim of point cloud registration is to obtain the optimal parameters transforming points in one
coordinate system to another. The rigid transformation is 6 Degrees of Freedom (DOF), if without
any constraints, and can be expressed using three translation parameters and three rotation angles.

T
The translation vector can be denoted as t = (tx ty tz) and the rotation vector can be denoted as

0= (ap y)T. The registration of large-scale dense point clouds is usually time-consuming. To be
more efficient, the coarse-to-fine strategy is usually used in point cloud registration. Approximate
transformation parameters are first found through the coarse registration algorithm and serve as an
initial value of fine registration. Then, the fine registration algorithm converges to the final optimal
solution. The details of coarse-to-fine registration strategy can be found in Cheng et al. [10].

The most famous and widely used fine registration algorithms include Iterative Closest Point
(ICP) [21], Least Squares 3-Dimensional (LS3D) matching [22], Normal Distributions Transform
(NDT) [23], and their variations [24-26]. The ICP algorithm finds the pairs of nearest point in the
two sets and iteratively estimate the registration parameters by minimizing the distances between
the nearest point pairs. In contrast to point pairs, LS3D algorithms match 3D search surfaces to a
3D template surface and estimate the registration parameter by minimizing the Euclidean distances
between the surfaces. The NDT algorithm divides the point clouds into cells or voxels and assigns
a normal distribution to each cell or voxel to locally model the probability of measuring a point.
The registration parameters are estimated by matching of the probability density.

Since this paper deals with the coarse registration of TLS point clouds, the related works reviewed
in the next section will mainly focus on coarse registration algorithms. The most intuitive and oldest
way to achieve coarse registration is to use artificial targets in data scanning. Artificial targets, such as
spherical balls are installed in the scanning scene, and the targets are scanned by more than one scan
station. The corresponding coordinates of targets in multiple scan stations are extracted manually,
or fitted automatically in the registration process, and the registration parameters are estimated by the
coordinate pairs. Sometimes, the coordinate pairs can also be picked manually with feature points
such as corners when artificial targets are unavailable. Due to the installation of artificial targets and
the manual picking of feature points, these methods are labor-intensive and inefficient.

In the computer vision community, the “generate and test” methods are used to achieve automatic
coarse registration of point clouds. The famous Random Sample Consensus (RANSAC) algorithm [27]
randomly selects three points from source points and three from target points to form a pair of
correspondences. A candidate transformation is estimated using the correspondences and the remaining
points are used to test whether the candidate transformation is good or not. Repeating this process
until a given number of times reached. The best transformation is chosen as the final coarse registration.
RANSAC algorithms do not need any assumptions to the point clouds to be registered, but this kind
of methods are often time-consuming, especially when used for large-scale dense TLS point clouds.
To accelerate the RANSAC algorithm and make it more robust, Aiger et al. [28] proposed to extract
co-planar 4-points sets from source points and target points first, and the correspondences of 4-points
sets are found using the RANSAC algorithm. This algorithm is known as 4-Points Congruent Sets
(4PCS) algorithm. To further accelerate the 4PCS algorithm, Theiler et al. [18,29,30] extracted keypoints
from raw LiDAR points first, and only the extracted key points were used to estimate coarse registration
parameters using the 4PCS algorithm. Ge [14] extracted semantic key points first, and then fed the
extracted keypoints to the 4PCS algorithm to coarsely register point clouds. The advantages of these
methods are that they have no assumptions about the initial pose, and they are resilient to noise
and outliers, but these methods are usually time-consuming and intolerable for the registration of
large-scale dense TLS point clouds.

Another coarse registration technique is to use 3D local shape descriptors. Keypoints are first
extracted in source and target points and 3D local shape descriptors are extracted for each keypoint.
Corresponding pairs are obtained by feature descriptor matching, and then coarse registration
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parameters are estimated utilizing the matched corresponding feature pairs. Rusu et al. [31] proposed a
robust 16-dimensional feature called Persistent Feature Histograms (PFH) to achieve the registration of
multi-view point clouds. To further improve efficiency, mathematical expressions of PFH are modified
and optimized and a new type of local feature called Fast Point Feature Histograms (FPFH) was
proposed [32]. Zai et al. [15] proposed an adaptive covariance descriptor to achieve coarse alignment
of TLS point clouds. The descriptor was believed to be invariant to rigid transformation and robust
to noise and varying resolutions. Gao et al. [33] proposed to utilize Extended Gaussian Image (EGI)
to find point correspondences and thus achieve initial registration of point clouds. Yu and Ju [13]
used an intrinsic shape signature keypoints detector and the Signature of Histograms of OrienTations
(SHOT) [34] descriptor to find correspondences from point clouds. Then a branch-and-bound algorithm
was proposed to robustly estimate registration parameters using point correspondences with incorrect
matches. Since extracting keypoints from large-scale point clouds is time-consuming and the 3D local
shape descriptors are usually high dimensional, 3D local shape descriptors-based coarse registration
methods are usually inefficient.

Besides 3D local shape descriptors, high-level features, such as line features, plane features,
and semantic features, are also employed for LiDAR point clouds registration. Yang and Zang [35]
proposed to extract crest lines from point clouds to achieve coarse registration. Dold and Brenner [36]
extracted 3D planar patches from laser scanning data and registered overlapping point clouds by
finding corresponding patches. Yang et al. [17] extracted semantic points from point clouds first and
then matched the semantic points using geometric constraints. Finally, registration parameters were
estimated using the matched semantic points. Kelbe et al. [37] managed to register forest laser scanning
point clouds using tree stems extracted from TLS point clouds.

Besides directly using 3D point clouds, coarse registration can also be achieved by 2D images
assisted methods. Yang et al [38] proposed to achieve wide baseline 3D scan alignment by using 2D
image features. To make the 2D image features more robust, dominant planar structures were extracted
from point clouds and used to normalize the camera viewpoint changes. Barnea and Filin [39] first
converted the 3D terrestrial laser point clouds into panoramic range images. Then, key features were
extracted and matched by a combinatorial approach. Finally, registration parameters were estimated by
the matched key features. Weinmann et al. [40] proposed to extract Scale Invariant Feature Transform
(SIFT) features from reflectance images and then back project them to 3D utilizing range images to
obtain 3D conjugates. Coarse registration parameters were estimated using the 3D conjugates.

Coarse registration is a key step that greatly affects efficiency in point clouds registration. Although
numerous methods were proposed trying to solve this problem, it is still challenging. In most cases of
LiDAR scanning, the laser scanner is coarsely leveled and even compensated by built-in inclination
sensors in many cases. In such cases, the 3DOF rotations between two scans are constrained to only
azimuth and the degrees of freedom in registration is reduced from 6 to 4. Cai et al. [12] used this
constraint and proposed to use matched keypoints and a branch-and-bound algorithm to achieve
efficient 4DOF registration. Similar to Cai et al. [12], this paper takes full advantage of this constraint,
and proposes another efficient and automatic method to deal with the 4DOF coarse registration problem.
The proposed efficient and automatic method was achieved by two steps: (1) horizontal translation
vector and azimuth angle estimation by matching generated ortho projected feature images; (2) vertical
translation estimation, achieved by a height difference estimation of overlapping regions after being
horizontally aligned. Compared with existing coarse registration methods, the main contributions
of this paper include: (1) a two-steps framework to achieve 4DOF coarse registration was proposed.
The 4DOF registration was decomposed into two steps. In the first step, the horizontal translation
vector and azimuth angle were estimated. In the second step, the vertical translation was estimated.
(2) Horizontal translation vector and azimuth angle estimation based on ortho projected feature images.
Instead of using panoramic feature images to achieve registration of TLS point clouds, this paper
proposed to use ortho projected feature images to achieve horizontal translation vector and azimuth
angle estimation.
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The remainder of this paper is organized as follows. The experimental point clouds datasets and
the 4DOF coarse registration method are described in Section 2. Experimental results are presented
in Section 3. Discussions about the proposed method and the experimental results are presented in
Section 4. Finally, Section 5 concludes this paper.

2. Materials and Methods

2.1. Experimental Point Clouds Datasets

The proposed method uses intensity information to generate ortho projected feature images.
LiDAR scanners provided by different vendors have their characteristics in intensity value. To test
the adaptability of the proposed algorithm to point clouds scanned by different types of LiDAR
scanners, three TLS point clouds datasets scanned by two different LIDAR scanners were adopted as
experimental datasets. The first one, named “DRIEGL”, includes two stations scanned by a RIEGL
VZ-400 TLS scanner in a square in Wuhan University. The RIEGL VZ-400 scanner is coarsely leveled in
data acquisition. The horizontal scanning step-width and vertical scanning step-width were both set
to 0.015 degrees in data scanning. The used point clouds are exported by RISCAN Pro [41]. Before
exportation, the point clouds are automatically leveled by RISCAN Pro using the inclination sensor
data. Station 1 in the DRIEGL was used for the target points and station 2 was used for the source
points. There are about 88.90 million points in station 1 and 120.03 million points in station 2. Five
spherical balls were installed in the scene and scanned by both stations. The point clouds of station 1,
station 2, and all points before registration are illustrated in Figure la—c, respectively. Figure 1la,b is a
top view of the station 1 and station 2 points. The red triangles in Figure 1a,b indicate the places where
the scanners were placed in data acquisition. The distance between the two scan stations is about 20 m.
It can be seen that there is a rotation between these two station points. In Figure 1c, the station 1 points
are colored in red and the station 2 points are colored in blue. It is obvious that these two station points
are not in a unified frame and need to be registered.

The second dataset was named “DTRIMBLE-1". The two stations of DTRIMBLE-1 were scanned
by a Trimble SX10 TLS laser scanner (scanning total station). Similar to DRIEGL, the laser scanner
was leveled during data acquisition. The scanning step-width of the Trimble SX10 is adjustable.
The scanning step-width was set to a value larger than the RIEGL VZ-400 laser scanner, so the point
density of the DTRIMBLE-1 was lower than that of the DRIEGL. There were about 5.63 million points
in station 1 and 5.56 million points in station 2. Station 1 was used for the target points and station 2
was used for the source points that need to be registered. The source points, target points, and all
points before the registration of DTRIMBLE-1 are illustrated in Figure 1d—f, respectively. Similar to
Figure 1a,b, the positions where the scanners were located are labeled by a red triangle. It can be seen
that the two stations were scanned at almost the same place, but a large rotation angle exists between
the two stations. Similar to the DRIEGL, the station 1 points are colored in red and the station 2 points
are colored in blue in Figure 1f. Figure 1f indicates that these two station points are not in a unified
coordinate frame and need to be registered.

The third dataset was named “DTRIMBLE-2". The two stations of DTRIMBLE-2 were scanned
using the same scanner and scanning parameters as DTRIMBLE-1. In contrast to scanning the two
stations at almost the same place as DTRIMBLE-1, the two stations of DTRIMBLE-2 were scanned at
two stations with a distance of about 16 meters, as indicated by the red triangles in Figure 1g,h. There
are about 5.29 million points in station 1 and 5.61 million points in station 2. Figure 1i illustrates that
the two station points of DTRIMBLE-2 are not in a unified coordinate system.
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Figure 1. Point clouds of DRIEGL, DTRIMBLE-1 and DTRIMBLE-2: (a) target points of DRIEGL;
(b) source points of DRIEGL; (c) points before registration of DRIEGL; (d) target points of DTRIMBLE-1;
(e) source points of DTRIMBLE-1; (f) points before registration of DTRIMBLE-1; (g) target points of
DTRIMBLE-2; (h) source points of DTRIMBLE-2; and (i) points before registration of DTRIMBLE-2.
In (c), (f) and (i), source points are colored in blue and target points are colored in red.

Besides DRIEGL, DTRIMBLE-1, and DTRIMBLE-2, to evaluate the influence of viewpoint changes
and occlusion of TLS point clouds on the ortho projected feature image registration, station 1 of DRIEGL
is used to simulate a pairwise of TLS point clouds. As illustrated in Figure 2a, the points of station 1 in
DRIEGL are partitioned into two parts with overlapping: (1) part 1 in the cyan box; and (2) part 2 in
the black box. There are 78.30 million points in part 1 and 83.63 million points in part 2. The points of
part 2 are first translated in x, y, and z by 1.0 m separately. Then the points are rotated around the
z axis by 45 degrees. Part 1 points and transformed part 2 points are illustrated in Figure 2b. After
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transformation, part 2 points are in a coordinate system different from that of part 1. The simulated
dataset is named as “DSimRIEGL”.

() (b)

Figure 2. DSIimRIEGL point clouds: (a) partitioning of DRIEGL station 1 points into part 1 and part 2;
and (b) part 1 points (red) and transformed part 2 points (blue).

2.2. Ortho Projected Feature Image-Based Coarse Registration Method

The registration of point clouds means to find the optimal transformation parameters between
point clouds scanned from different scan stations. If there are two pointsets, denoted as P and F’,
the transformation between these two-point sets can be described as

X ty x
vV |=|ty |[+R@BY)| v | 1)
z' t, z

where (x yz)" denotes the coordinates of the point in source point cloud P, and (x’ v z’)" denotes

the coordinates of the point in the target point cloud P’. (tx ty tz)T and (a y)T are the registration
parameters, translation vector and rotation angle vector respectively, that need to be estimated. R(a B y)
is the rotation matrix computed from the rotation vector.

If the scanner is leveled in data acquisition, the rotation between the source point and target point
is reduced to around Z axis only. Then the transformation between source point P and target point P’
can be simplified from Equation (1) to Equation (2). In such a situation, the goal of registration is to

T
estimate translation vector (tx ty tz) and azimuth angle y.

x’ by X
vV |=|t |[+RO| v | 2
z/ t, z

This paper takes full advantage of the fact that in many cases the TLS laser scanner is leveled
and/or compensated by inclination sensors in terrestrial LIDAR scanning. Only the translation vector

(tx ty tz)T and azimuth angle y are enough for coarse registration of such point clouds, and thus the
degrees of freedom are reduced from 6 to 4. Figure 3 shows the workflow of the proposed 4DOF
coarse registration method. To improve coarse registration efficiency, the 4DOF coarse registration is
decomposed into two steps: (1) the estimation of horizontal translation vector (tx, ty) and azimuth
angle y; and (2) the estimation of vertical translation ¢,. The estimation of the horizontal translation
vector and the azimuth angle is achieved by the registration of generated ortho projected feature
images, which is described in detail in Sections 2.2.1 and 2.2.2. The vertical translation is estimated
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by the height differences of the source points and the target points in overlapping regions after being
horizontally aligned, which is described in detail in Section 2.2.3.

Target Point Cloud Source Point Cloud N Horizontal Translation Vector and Azimuth

\—f__ \—’I/__ Angle Estimation

Feature Image Feature Image ) Horizoptally Tareet Point Cloud
Generation Generation Aligned Point Cloud g

v
Ortho Projected Ortho Projected ] . o
wﬁL wgek Vertical Translation Estimation
: !
Image Matching ol Coarsely Registered Point Cloud

Figure 3. The workflow of the proposed 4 Degrees of Freedom (4DOF) coarse registration method.
2.2.1. Ortho Projected Feature Image Generation

To generate ortho projected feature images of source points and target points, feature image grid
resolution S is first determined. Then, the minimum value of x, y, and z coordinates are found, denoted
as Xpyin, Ymin, and z,;,, respectively. A point p(x, y,z) in the point cloud is assigned to image pixel with
row number and column number computed by Equation (3) and Equation (4). INT(.) means the floor
integer value.

row = INT(%), 3)
col = INT(%), @)

More than one point may locate in the same image pixel of the feature image. The pixel value is
computed by the average intensity and average height of all points that locate in the same image pixel.
Firstly, the average intensity and height of points that locate in the same pixel are computed. Then,
the average intensity and average height are scaled to [0, 255], using the maximum and minimum
intensity and height values. The intensity information is obtained by Equation (5), where 7 is the
number of points in the same image pixel, r; is the intensity value of the ith point, 7., and 7y
are the minimum intensity value and the maximum intensity value of the point cloud. The height
information is obtained by Equation (6), where z; is the height/elevation of the ith point. z,;, and
Zmax are the minimum and maximum elevation of the point cloud. The final pixel value is computed
by combining intensity information and height information according to Equation (7), where a is a
parameter that determines the relative proportion of intensity information and height information in
the final pixel value.

i=17i

—
v, = 255 —L " ®)
Tmax — Vmin
i1 Zi
7~ Zmin
Ve =255 —MM 6)
Zmax — Zmin
v=ax*xv,+ (1-a)ov,, (7)

2.2.2. Horizontal Translation Vector and Azimuth Angle Estimation

The feature images generated by Section 2.2.1 are ortho projected feature images. The translation
vector and azimuth angle to align the ortho projected feature images are the same as the horizontal
translation vector and azimuth angle between source points and target points. Thus, the estimation
of horizontal translation vector and azimuth angle between source points and target points can be
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achieved by image registration of ortho projected feature images. In this paper, the SIFT feature
proposed by Lowe [42,43] is used to detect distinctive keypoints and extract local feature descriptors
from ortho projected feature images generated from source and target points. The SIFT descriptor
is invariant to image scale and rotation, and is believed to be robust enough to affine distortion, 3D
viewpoint changes, and illumination changes. Since the differences between ortho projected feature
images of source and target points mainly include image rotation and 3D viewpoint changes, SIFT
is suitable for keypoints detection and local feature descriptor extraction of ortho projected feature
images. The details of the SIFT feature can be found in Lowe [42,43].

After SIFT descriptors extracted from feature images, keypoints from source feature image are
matched with k nearest keypoints extracted from the target points feature image, using Euclidean
distance by approximate nearest neighbor algorithm [44]. The matched k nearest keypoints are ordered
by Euclidean distance. In the matched k nearest keypoints, the distance ratio between the nearest
distance and the second nearest distance is a good indicator that reflects the match quality. The smaller
the distance ratio, the better the match. To only reserve reliable correspondences, match results with
distance ratios larger than 0.6 are eliminated.

The image match results are in the image pixel coordinate system. To estimate horizontal
translation vector and azimuth angle between source points and target points, the coordinates of image
match results in scanner coordinate system are reconstructed by Equations (8) and (9), where u and v
are keypoints in image pixel coordinate system, x,;;, and v, are minimum x and y coordinates, S is
image grid resolution.

X =u*S+ Xpin, (8)

Y =0*S+ Ypin, )

The keypoints in source points and target points are denoted as Pg and Pr. The horizontal
translation vector and azimuth angle are estimated using Ps and Pt by Singular Value Decomposition
(SVD) approach [45]. First, the centroids of Ps and P are found through Equations (10) and (11), where
N is the number of keypoints. Then a matrix H, similar to the covariance matrix, is accumulated by
Equation (12) and decomposed to U, S, V by SVD algorithm, as described in Equation (13). The rotation
matrix from source points to target points can be calculated by V and U, using Equation (14).
The azimuth angle can be easily computed from the rotation matrix. Finally, the horizontal translation
vector can be estimated by Equation (15).

o1 N
centroidg = N Zi:l P, (10)

o1 N
centroidr = N Zn‘:1 P, (11

N [ ‘ , o A\T

H= Zi:l(PlS - centrozdg)(P’T - centrosz) , (12)
[U,S,V] = SVD(H), (13)
R=VvUT, (14)
t = —R = centroidg + centroidr, (15)

2.2.3. Vertical Translation Estimation

The source points are first transformed using the horizontal translation vector and azimuth angle
estimated by the method described in Section 2.2.2 to make the source points horizontally aligned to
target points. Since the source and target points have been horizontally aligned, the vertical translation
can be estimated by the height differences of the source points and the target points in the overlapping
regions. To estimate the height difference in the overlapping regions, a grid is created with the cell
size equaling to feature image grid resolution S. All the source and target points are assigned to the
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grid. For a grid cell C in the overlapping region, the average z value of source points and target points
located in the cell C are computed separately, and denoted as ng and ng. Thus, the height difference
between mzé and ng, denoted as dzc, is computed. The vertical translation between source points
and target points is estimated by averaging all dz¢ in the overlapping regions. Source points are then

vertically aligned to target points using the estimated vertical translation.

2.2.4. Accuracy Evaluation Criteria

Since the proposed Ortho Projected Feature Images (OPFI) based method registers the source
point cloud to the target point in the horizontal and vertical direction separately, this paper evaluates
the accuracy of registered source points in the horizontal and vertical direction separately, using ground
truth points. The horizontal distance and vertical distance between the ith registered point and its
corresponding ground-truth point are calculated and denoted as d;l and di. The Horizontal Root Mean
Squares Error (HRMSE) and Vertical Root Mean Squares Error (VRMSE) are calculated by Equation (16)
and Equation (17). In Equations (16) and (17), N is the number of registered points. Small HRMSE and
VRMSE indicate good registration accuracy.

N2
* 4
HRMSE — L (4) , (16)
N
\2
Y4
VRMSE = Z";\] ‘) , (17)

3. Results

The point clouds datasets described in Section 2.1 are used to conduct experiments to verify the
proposed method. DSimRIEGL, DRIEGL, DTRIMBLE-1, and DTRIMBLE-2 are all registered by the
proposed ortho projected feature image-based method. First, the ortho projected feature images of
source points and target points are generated with an image grid resolution of 0.1 meters. In feature
image generation, the a value is set to 0.5, to take advantage of both intensity and height information.
Besides, to avoid large-scale empty pixels in feature images, points with a scanning distance larger
than 100 m are eliminated for DSImRIEGL and DRIEGL. The point cloud obtained by the Trimble SX10
scanner is much sparser than the point clouds obtained by RIEGL VZ-400, and points with a scanning
distance larger than 70 m are eliminated for DTRIMBLE-1 and DTRIMBLE-2.

SIFT features are then extracted from the generated ortho projected feature images and matched
by k nearest neighbor algorithm. Figure 4 shows the generated ortho feature images and the SIFT
matching results. In Figure 4a—d, the left parts are the ortho projected feature images generated
from target points, and the right parts are the ortho projected feature images generated from source
points. Different objects, such as squares, buildings, and trees, can be clearly distinguished in the
feature images. The matched keypoint correspondences are connected by a color line. A total of
1484 correspondences were matched for DSImRIEGL. To illustrate the SIFT matching results more
clearly, only SIFT matching results with distance ratio smaller than 0.1 (16 pairs) are drawn in Figure 4a.
A total of 65 correspondences, 251 correspondences, and 23 correspondences were matched for DRIEGL,
DTRIMBLE-1, and DTRIMBLE-2, respectively. To show the correspondences more clearly, only five
representative correspondences were chosen and drawn in Figure 4b—d. The matched correspondences
in DRIEGL, DTRIMBLE-1 and DTRIMBLE-2 are much less than that of DSImRIEGL, which indicates
that viewpoint changes and occlusion in TLS scanning will affect the SIFT matching result. But the
results indicate that enough correct correspondences can be found from ortho projected feature images
generated from both simulated and real captured TLS point clouds to accomplish 4DOF registration.
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(a)

(b)

(d)

Figure 4. Scale Invariant Feature Transform (SIFT) matching results of ortho projected feature images:
(a) result of DSimRIEGL; (b) result of DRIEGL; (c) result of DTRIMBLE-1; and (d) result of DTRIMBLE-2.
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After enough correspondences were found from the ortho projected feature images, the horizontal
translation vector and the azimuth angle were estimated using the matched correspondences. Then,
the source points were horizontally aligned to the target points using the estimated horizontal translation
vector and azimuth angle. The vertical translation was then estimated by the height difference of the
source points and target points in overlapping regions after being horizontally aligned. Figure 5 shows
the registration results of DSImRIEGL, DRIEGL, DTRIMBLE-1, and DTRIMBLE-2. Figure 5al,bl,c1,d1
shows the overviews of the registration result of DSimRIEGL, DRIEGL, DTRIMBLE-1, and DTRIMBLE-2,
respectively. The target points are colored in red and the source points after registration are colored in
green. It can be seen from Figure 5al,bl,c1,d1 that the registered source points match the target points
well, which indicates that the source points are visually well registered to the target points. To identify
the registration results more precisely, a small part of the registration results of each dataset (labeled in
the black box in Figure 5al,b1,c1,d1) are zoomed in and shown in Figure 5a2,b2,c2,d2. It can be seen
from Figure 5a2,b2,c2,d2 that the walls scanned from target points and source points match each other
very well, which indicates that the source points are precisely registered to target points.

Figure 5. Cont.
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(c1) (c2)

(d1) (d2)

Figure 5. Coarse registration results. (al) result of DSimRIEGL; (a2) the zoom in view of the part in
the black box in (a1); (b1) result of DRIEGL; (b2) the zoom in view of the part in the black box in (b1);
(c1) result of DTRIMBLE-1; (¢2) the zoom in view of the part in the black box in (c1); (d1) result of
DTRIMBLE-2; and (d2) the zoom in view of the part in the black box in (d1). The registered source
points are colored in green and the target points are colored in red.

To compare the registration result of OPFI with other state-of-the-art methods, the four datasets were
also registered by the FMP-BnB method [12], the BnB method [12], the 4DOF version of Lifting Method
(LM) [46] and the 4DOF RANSAC method [27]. The C++ codes of these algorithms implemented by
Cai et al. [47] were used. The C++ codes can be accessed through the GitHub repository (https://github.
com/ZhipengCai/Demo---Practical-optimal-registration-of-terrestrial-LiDAR-scan-pairs). The default
parameter values used in the C++ codes were adopted. To evaluate the registration results, the ground
truth of registration parameters and registration results are first obtained. For the DSIimRIEGL dataset,
part 2 points without transformation are used as ground truth. The translation vector is —1.0 m in
x, ¥, and z. The azimuth angle is —45 degrees. The ground truth of DRIEGL is obtained by artificial
marker-based coarse registration and the ICP fine registration algorithm. The coordinates of five
spherical balls in the scene were obtained by ball fitting in commercial software RISCAN Pro [41] and
used to coarsely register station 2 points to station 1 points. The ICP algorithm was then applied to
the coarse registration result. The registration parameters were finally computed by the point pairs
before and after registration. The ground truth of DTRIMBLE-1 and DTRIMBLE-2 were obtained
by manually picked point correspondences-based coarse registration and the ICP fine registration
algorithm. Five point correspondences were manually picked from station 2 and station 1 using the
open source software CloudCompare [48]. Coarse registration was achieved using the five picked
point correspondences. The ICP algorithm was then applied to the coarse registration result. Similar
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to the DRIEGL dataset, the registration parameters were computed using the point pairs before and
after registration.

Figure 6 shows the accuracy of the estimated registration parameters. For the DSimRIEGL
dataset, the translation vector accuracies of all algorithms are better than 0.05 m and the azimuth angle
accuracies are better than 0.025 degrees. The RANSAC method achieves the best accuracy in translation
vector estimation, and the OPFI method achieves the best accuracy in azimuth angle estimation. For the
DRIEGL dataset, the OPFI method achieves the best accuracy in horizontal translation vector estimation.
The vertical translation accuracy of OPFI is better than the FMP-BnB and BnB methods. The azimuth
angle accuracy of OPFI is better than the RANSAC method. For the DTRIMBLE-1 dataset, OPFI
achieves the best accuracy in vertical translation and x-direction of horizontal translation. The azimuth
angle accuracies of all algorithms are better than 0.16 degrees. For the DTRIMBLE-2 dataset, OPFI
achieves much better vertical translation accuracy than the other four algorithms, and achieves better
accuracy than FMP-BnB and BnB in x and y-direction. In addition, the OPFI method achieves better
azimuth angle accuracy than the other algorithms except for RANSAC.
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Figure 6. Cont.
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Figure 6. Accuracy of estimated registration parameters: (a) translation vector accuracy of DSImRIEGL;
(b) azimuth angle accuracy of DSimRIEGL; (c) translation vector accuracy of DRIEGL; (d) azimuth
angle accuracy of DRIEGL; (e) translation vector accuracy of DTRIMBLE-1; (f) azimuth angle accuracy
of DTRIMBLE-1; (g) translation vector accuracy of DTRIMBLE-2; and (h) azimuth angle accuracy
of DTRIMBLE-2.

Tables 1 and 2 show the HRMSE and VRMSE of results registered by OPFI and comparison
methods. For the DSImRIEGL dataset, the HRMSE of OPFl is 0.06 m and slightly worse than the other
four algorithms. The VRMSE of OPFI is the same as the LM and RANSAC methods, and better than
that of the FMP-BnB and BnB methods. For the DRIEGL dataset, the HRMSE of OPFI is better than
the FMP-BnB, BnB and LM methods and slightly worse than the RANSAC method. The VRMSE of
OPFI is better than the FMP-BnB and BnB methods, and slightly worse than the LM and RANSAC
methods. For the DTRIMBLE-1 dataset, even though the HRMSE of OPFl is larger than the other four
algorithmes, it is still better than 0.1 m. The VRMSE of OPFI is the same as that of LM and better than
FMP-BnB, BnB, and RANSAC. For the DTRIMBLE-2 dataset, OPFI achieves comparable HRMSE to the
RANSAC algorithm, and is better than the other three algorithms. The OPFI achieves the best VRMSE
among the five algorithms for the DTRIMBLE-2 dataset. The results in Tables 1 and 2 indicate that the
proposed OPFI method can achieve centimeter registration accuracy, and the accuracy is comparable
to other state-of-the-art methods.

Table 1. Horizontal Root Mean Squares Error (HRMSE) of the registration results (m).

OPFI FMP-BnB BnB LM RANSAC
DSimRIEGL 0.06 0.04 0.04 0.01 0.01
DRIEGL 0.02 0.09 0.09 0.05 0.10
DTRIMBLE-1 0.07 0.02 0.02 0.01 0.06
DTRIMBLE-2 0.07 0.15 0.15 0.13 0.06

Table 2. Vertical Root Mean Squares Error (VRMSE) of the registration results (m).

OPFI FMP-BnB BnB LM RANSAC
DSimRIEGL 0.01 0.04 0.04 0.01 0.01
DRIEGL 0.02 0.08 0.08 0.01 0.01
DTRIMBLE-1 0.01 0.03 0.03 0.01 0.09
DTRIMBLE-2 0.01 0.08 0.08 0.07 0.17

Figure 7 shows the registration error of each point in each dataset as a heat map. The 3D Euclidean
distance between a point after registration and its corresponding point in the reference data was used
as a registration error. The color of each point ranging from blue to red reflects the magnitude of the
registration error. It can be seen from Figure 7a—d that most points were registered with good accuracy
(blue and green points). Some points (red points in Figure 7a—d) with long scanning distances have a
relatively lower registration accuracy compared with those with shorter scanning distances.
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(a) (b)

(c) (d)

Figure 7. The registration error of each point rendered as heat map: (a) DSImRIEGL; (b) DRIEGL;
(c), DTRIMBLE-1; and (d) DTRIMBLE-2. The unit of distance in the color scale bar is meter.

The proposed OPFI method and comparison methods are all implemented using C++. All the
experiments were conducted on a laptop with an Intel Core i9-8950 HK CPU and 32 Gigabyte memory.
The run time of the proposed OPFI method and comparison methods were recorded and are shown in
Figure 8. For OPFI, the time of ortho projected feature image generation, the match of ortho projected
feature image, the horizontal translation vector and azimuth estimation, the vertical translation vector
estimation, and the transformation of the source points are included. For all four datasets, the proposed
OPFI method takes the least time, compared with the other four algorithms. The time used by the
proposed OPFI method is less than half that of the other four algorithms. This result indicates that the
proposed method is more efficient compared with the other four algorithms.

120.0
100.0
80.0

60.0
400 —I
20.0 . _

DSimRIEGL DRIEGL DTRIMBLE-1 DTRIMBLE-2
dataset

BOPFI ®WFMP-BnB ®BnB ®LM BRANSAC

run time (s)

Figure 8. Run time of registration algorithms.
4. Discussion

4.1. Parameter Setting

The image grid resolution S of the feature image may affect the estimation accuracy of the
horizontal translation vector and azimuth angle. Theoretically, the smaller the image grid resolution,
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the higher the accuracy. But in reality, the image grid resolution should be set according to the density
of the point cloud. Image grid resolution smaller than point cloud density will lead to too many empty
pixels in the feature image, and thus affect the registration of feature images. We used the DSimRIEGL
dataset and set the image grid resolution from 0.05 m to 0.5 m to exploit the influence of the image
grid resolution on coarse registration accuracy. In the experiment, the a value was set to 0.5 in feature
image generation. Figure 9 illustrates coarse registration accuracy with different image grid resolution.
The horizontal accuracy is more sensitive to image grid resolution and the vertical accuracy is almost
not affected by the image grid resolution. Horizontal registration accuracy of about half of the image
grid resolution can be achieved by the proposed coarse registration method.

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

RMSE (m)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Image Grid Resolution (m)

e HRMSE VRMSE

Figure 9. Registration accuracy with different image grid resolution in feature image generation.

The value of a in feature image generation determines the contribution of intensity and height
information to the final feature image, and would thus affect the registration of feature images. Figure 10
illustrates the number of correct matched SIFT correspondences with different a values. Figure 10
shows that intensity contributes well to the SIFT feature image registration. The larger the a value,
the more SIFT correspondences can be found. But when «a is larger than 0.6, the number of matched
SIFT correspondences increases slowly. In order to take full advantage of both intensity and height
information, « value is recommended to be set to a value between 0.5 and 0.7.
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1200
1000
800
600
400
200

Number of SIFT Matches

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
a value

Figure 10. Matched SIFT correspondences with different a values.
4.2. Registration of Point Clouds with Different Point Density

The density of point clouds varies in different applications. Suitability for point clouds with different
density is important for a coarse registration method. Figure 11 illustrates the coarse registration results of
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point clouds with different point density. The point clouds are intentionally sampled to resolutions from
0.05 m to 0.5 m by a voxel grid sample algorithm. In feature image generation, the value of image grid
resolution is set to the same as point resolution. Figure 11 shows that the vertical accuracy is almost
not affected by the point resolution. The larger the point cloud resolution, the worse the registration
accuracy. The horizontal accuracy is about half of the point resolution.

0.3
0.25
0.2
0.15

~ 0.05

0
005 010 015 020 025 030 035 040 045 0.0

Point Cloud Resolution (m)

Coarse Registration RMSE
m)
(@]
[

e HRMSE VRMSE

Figure 11. Coarse registration result of point cloud with different point resolution.
4.3. Accuracy and Efficiency

In the experiments, the proposed coarse registration method accomplished coarse registration of
DSimRIEGL, DRIEGL, DTRIMBLE-1 and DTRIMBLE-2. The horizontal accuracy of coarse registration
is 0.06, 0.02, 0.07, and 0.07 m for DSimRIEGL, DRIEGL, DTRIMBLE-1 and DTRIMBLE-2, respectively.
The vertical accuracy is 0.01, 0.02, 0.01, and 0.01 m, respectively. The registration accuracy is
comparable to that of FMP-BnB, BnB, LM, and RANSAC algorithm. The experimental results indicate
that centimeter registration accuracy can be achieved by the proposed OPFI method, which is sufficient
for coarse registration.

In the experiments, the proposed OPFI method only takes dozens of seconds to achieve coarse
registration of millions of TLS points. Compared with the FMP-BnB, BnB, LM, and RANSAC algorithms,
the proposed OPFI method takes less than half of the time to register the same datasets. It is far
more efficient. The proposed OPFI method provides an alternative to efficient and automatic coarse
registration of large-scale dense TLS point clouds.

4.4. Robustness of Feature Image Matching

Accurate and robust feature image matching is the key to the proposed OPFI 4DOF coarse
registration method. Because of occlusion, different viewpoints, and intensity variation [49] of the
TLS point clouds, the matching of feature images is difficult and challenging. The SIFT matching
correspondences of DRIEGL, DTRIMBLE-1, and DTRIMBLE-2 are much less than that of DSImRIEGL.
This indicates that the SIFT feature matching of ortho feature images is affected by occlusion, different
viewpoints, and intensity variation of the TLS point clouds. The SIFT feature matching may fail to find
enough correspondences in some cases, especially for point clouds acquired by different laser scanners
and different platforms. Lines or edges are more invariant to occlusion, viewpoint changing and
intensity variation. Line-based [50,51] or edge-based [52] image matching methods could be applied to
improve the robustness of feature image matching.

5. Conclusions

To improve the coarse registration efficiency of large-scale dense TLS point clouds, this paper
proposed to reduce the 6DOF registration problem to 4DOF, by fully considering the fact that the
laser scanner is usually leveled and compensated by built-in inclination sensors in data acquisition.
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An efficient and automatic 4DOF coarse registration framework is proposed. In the proposed
framework, the horizontal translation vector with the azimuth angle and the vertical translation vector
is estimated separately. The horizontal translation vector and azimuth angle are estimated by the
registration of ortho projected feature images generated by source and target points. The vertical
translation is estimated by the height difference of source points and target points in the overlapping
regions after being horizontally aligned. Simulated pairwise TLS point clouds and point clouds
scanned by the RIEGL VZ-400 and the Trimble SX10 are used to validate the proposed method.
The experimental results demonstrate that the coarse registration result of the proposed method is at
centimeter-level, and only dozens of seconds are needed to coarsely register millions of points.

Because of occlusion, different viewpoints, and the fact that the intensity of laser scanning is
affected by many factors, the registration of feature images is challenging. In some cases, the SIFT
feature matching may fail to find enough correspondences from feature images of the source point
cloud and the target point cloud. Large-scale edges and lines can be extracted from the feature images
and they are less affected by occlusion, different viewpoints, and intensity variation. Line-based
or edge-based matching methods could be applied to the matching of feature images to improve
robustness in the future.
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