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Abstract: Earthquake-induced rubble in urbanized areas must be mapped and characterized. Location,
volume, weight and constituents are key information in order to support emergency activities and
optimize rubble management. A procedure to work out the geometric characteristics of the rubble
heaps has already been reported in a previous work, whereas here an original methodology for
retrieving the rubble’s constituents by means of active and passive remote sensing techniques,
based on airborne (LiDAR and RGB aero-photogrammetric) and satellite (WorldView-3) Very High
Resolution (VHR) sensors, is presented. Due to the high spectral heterogeneity of seismic rubble,
Spectral Mixture Analysis, through the Sequential Maximum Angle Convex Cone algorithm, was
adopted to derive the linear mixed model distribution of remotely sensed spectral responses of pure
materials (endmembers). These endmembers were then mapped on the hyperspectral signatures of
various materials acquired on site, testing different machine learning classifiers in order to assess
their relative abundances. The best results were provided by the C-Support Vector Machine, which
allowed us to work out the characterization of the main rubble constituents with an accuracy up to
88.8% for less mixed pixels and the Random Forest, which was the only one able to detect the likely
presence of asbestos.

Keywords: seismic post-emergency; disaster management; environmental analysis LiDAR; remote
sensing; WorldView-3; COPERNICUS; multispectral; hyperspectral; urban rubble; spectral mixture
analysis; machine learning; asbestos

1. Introduction

The enormous amount of rubble from partial or total collapse of buildings/structures caused by an
earthquake hitting urbanized areas with vulnerable historical centres, like those of many Italian towns,
must be rapidly mapped and characterized after catastrophic events. This activity is mandatory to
support the emergency activities and ensure the accessibility, rescue and first assistance to population.
During the post-emergency phase, reliable information about the distribution and characterization of
seismic rubble in term of volume/weight and typology is fundamental for their proper management
which involves handling, removal, pile up and transportation to recycling facilities or final disposal
sites [1]. Despite this information being particularly valuable for optimizing the post emergency
responses, there are not many methods to provide extensive and reliable estimates of the amount of
seismic urban rubble in terms of volume/weight and typology distribution, including the detection
of possibly dangerous materials. With this aim, remote sensing techniques, coupled with GIS, can
provide valuable opportunities [2–6].
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In addition to airborne surveys based on altimetric LiDAR (Laser Imaging Detection and Ranging)
and photogrammetric data, High Resolution/Very High Resolution (HR/VHR) satellite imagery has
been widely used for assessing damages and rubble detailed distributions linked to catastrophic
events including earthquakes [7–12], since it makes it possible to exploit the intrinsic capacity for
repetitive, multispectral and possibly stereoscopic acquisition, capable of supporting the monitoring
of evolution of post-emergency scenarios. Indeed, Sentinel-2 data were exploited by Copernicus
Emergency Management Service (EMS) [13,14] in order to derive the building damage maps, which
we used for localizing and delimiting the rubble heaps’ boundaries [1].

The Italian Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)
has been involved in several activities for supporting the post event activities after the earthquake
occurred on the August 24, 2016 in Central Italy. In a previous paper, we proposed an original
application based on EO (Earth Observation) in order to characterize the urban rubble heaps’ volume
originating from buildings affected by partial or total collapse. The study focused on the area of
Amatrice town, one of the most affected urban areas of Central Apennine during the long-lasting
seismic event of 2016-2017 [1]. These activities aimed at the optimization of the management of relevant
quantities of urban rubble following seismic event and the implementation of good practices and
specific procedures to efficiently plan the subsequent removal and transport operations [15]. Moreover,
in order to share geospatial data and outputs with the Public Authorities involved (i.e., Civil Protection)
a specific Spatial Data Infrastructure (SDI) was developed [16,17] and implemented (it is hosted by
ENEA and accessible by means of a WebGIS interface).

The main urban rubble features to be assessed are heaps’ location and delimitation, their volume
and weight, and the typologies of the principal collapsed building materials, including dangerous
constituents (i.e., asbestos), which may have a high impact on their handling.

Due to the high spectral and spatial heterogeneity of urbanized areas, which dramatically increases
in the case of rubble, this information is often difficult to assess using only the usual methods, which
are mainly based on in situ surveys [5,18,19]. After a catastrophic event, local conditions often reduce
the possibility of reaching many locations and carrying out field sampling procedures, thus affecting
the timeliness and stability of results. Indeed, surveys including altimetric LiDAR and orthophotos
from aerial platforms can provide detailed and synoptic information [8,11,20], but the necessity of
repetitive and extensive monitoring of the emergency areas in order to follow the phenomena and
crisis scenario evolution make them extremely burdensome and expensive. Currently, these needs
can be better met by integrating EO data, provided by the last-generation satellite missions equipped
with active (SAR) and passive (multi/hyperspectral) HR/VHR (High-Resolution/Very High-Resolution)
sensors, even with the possibility of being further complemented and calibrated/validated using data
provided by in situ measurements and other aero-spatial proximal platforms (i.e., UAV, Unmanned
Aerial Vehicle) in a suitable GIS environment [2,21–24].

The information derived from the aerial surveys carried out in the aftermath of a seismic
event could provide a robust calibration basis for all data subsequently detected by high resolution
multispectral satellite sensors, which would thus allow adequate monitoring in all post-emergency
phases [9]. The Sentinel-2 and other Landsat-like HR satellite sensors have been extensively exploited
for urban assessment in various EO-based applications [24–27].

In the present paper, taking into account previous works [1,3,28,29], a methodology for assessing
the typologies of rubble heaps in a real seismic emergency/post emergency scenario was reported.
To this end, the available EO data (altimetric LiDAR, multi/hyperspectral satellite and airborne VHR
images) were conveniently coupled with GIS techniques. On the other hand, the methodology
implemented in the present paper can be usefully exploited not only for supporting the post-emergency
interventions and assessments, but also for providing a valuable tool for the building and infrastructures
seismic vulnerability/risk analysis in pre-emergency and preparedness phases [7,8].

Considering the relevant impact of significant concentrations of dangerous asbestos materials
within the rubble piles upon their handling, the detection and quantification of this cover component
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through the acquired VHR multispectral data was also tested [30,31]. To better discriminate the
high heterogeneity of seismic rubble, Spectral Mixture Analysis (SMA) was preferred to commonly
used hard classification schemes, which are more effective in cases of the prevalence of pixels with
homogeneous covers, which can be univocally labelled according to their spectral signature. The SMA
is based on the so-called soft classification approach, where each pixel is characterized by the presence
of different pure materials (endmembers), each of which has its own spectral signature and contribute
to the pixel reflectance spectrum proportionally to its relative abundance. SMA has been widely applied
to overcome the mixed pixel problem, a typical issue associated with medium and coarse-resolution
remote sensing imagery also in urban application [32–36]. The spectral endmember signatures can be
obtained from the imagery or laboratory/field measurements. Generally, however, due to different
spectral configuration, atmospheric noises and difference in acquisition conditions, these latter are
not in agreement with the spectral response of airborne or satellite digital imagery. Therefore, it can
be advantageous to extract endmembers directly from imagery. Usually, the derivation of spectral
endmembers from multi/hyperspectral imagery is typically achieved through the implicit Pixel Purity
Index (PPI) or explicit use of convex geometry in multidimensional spectral space where pixels
reflectance spread out. In general, PPI is used with hyperspectral imagery after their Minimum Noise
Fraction (MNF) transform to minimize noise in selected components, whereas convex geometry methods,
like Sequential Maximum Angular Convex Cone (SMACC), focus on extreme pixels in spectral
channel multidimensional distributions as good candidates for endmembers [32–35]. In addition to
endmembers, the various SMA approaches also make it possible to obtain their abundances within the
pixel, using its mixed reflectance responses through different algorithms, including SMACC [19,37].

Even if urban and suburban environments, characterized by complex landscapes and elements
with different spectral signatures, may reduce the performance of traditional SMA approaches with a
fixed set of endmembers, the improvement of radiometry, spatial and spectral resolution of the new
generation of VHR sensors make it possible to obtain sub-meter performances [37,38]. In fact, although
the SMA approach has been widely used for urban EO applications using the hyperspectral reflectance
data, it also provides useful results by exploiting multispectral VHR satellite information coupled with
advanced machine learning algorithms within classification and regression schema [24,33,38,39]. In this
study, the SMA approach was applied to WorldView-3 (WV3) pansharpened data, after their geometric
and atmospheric pre-processing, to provide the related spectral endmember sets and abundances
through the SMACC algorithm [40].

The dramatically augmented availability of the VHR multi/hyperspectral and Synthetic Aperture
Radar (SAR) data provided by increasing number of operative satellite remote sensing missions must
be suitably coupled with advanced approaches based on data mining, machine learning and clustering
scheme for properly monitoring and characterizing increasingly heterogeneous, complex and wide
urban areas. In this context, the most recent machine learning algorithms based on Artificial Neural
Network (ANN), Support Vector Machine (SVM), K-Nearest Neighbour (KNN) and Random Forest
(RF) play a relevant role [41]. In our implemented methodology, once the in situ acquired spectral
signatures had been resampled to the same sensor configuration, these algorithms were tested within a
supervised learning scheme, for mapping (classifying) the endmembers provided by SMA into the
rubble material of interest detected on site.

2. Study Area

Central Italy is a rural and mountain landscape with several small ancient villages characterized
by poorly engineered buildings (older residential units) and modern structures (newer buildings and
life-lines made with anti-seismic criteria). The Apennines are a NW-SE oriented mountain belt affected
by a multiphased contractioned and extensional tectonics [1]. It is one of the most seismically active
areas in Italy and Europe, as African European continental margin pile-up during the Neogene formed
a fault and thrust system belt. Earthquakes and aftershocks periodically hit Central Italy (where Lazio,
Umbria, Marche and Abruzzo Regions are located).



ISPRS Int. J. Geo-Inf. 2020, 9, 262 4 of 26

The study area was struck by a Mw 6.0 mainshock on 24 August 2016. About 300 people died and
20,000 homeless were left on a wide area. The seismic sequence was characterized by a subsequent
Mw 5.9 mainshock on 26 October, followed by a Mw 6.5 near the town of Norcia on the 30 October.
The last mainshock, with a maximum Mw of 5.5, occurred in the southern part on 18 January 2017, but
it triggered an avalanche that wiped out the Rigopiano Hotel, causing another 29 victims.

The central Apennine is periodically affected by normal-faulting sequences. The area was already
severely damaged by the great earthquakes of Naples and Aquila of January-February 1703 and
previously the source of a strong earthquake in October 1639, parameterized in CPTI15 (Parametric
Catalogue of Italian Earthquakes) with a Mw 6.2, and with a less extensive severe damage distribution
and lesser intensity achieved compared to this of 2016. Struck at the time were some fractions of
Amatrice located to the west of it (Figure 1b), while the earthquake was felt in L’Aquila, Ascoli Piceno
and Rieti, but not in Rome. Overall, the earthquake of 2016 could be a twin event to that of 1639,
generated—with the due differences in rupture length and directivity—from the same seismogenic
source related to extensive tectonics. Therefore, such events are frequently followed by a long-lasting
aftershock with many low-energy tremors. Between 2016 and 2017, more than 70,000 earthquakes
were recorded in the study area [1].
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Figure 1. (a) Amatrice location (Central Italy); (b) WorldView-3 image (Amatrice inner city within
the red box); (c) Example of LiDAR Point Cloud coverage and derived DSM; (d) Amatrice inner
city post-event 3-D rendering (DSM derived from LiDAR Point Cloud and orthophotos textures);
(e) Example of rubble heap delimitation within Amatrice.

The consequences of such a long series of seismic events is that building collapse can occur several
days after being seriously damaged by the most intense earthquakes.
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3. Materials and Methods

3.1. Dataset

The following territorial data and information were used:

• a WorldView-3 (WV3) Very High Resolution (VHR) satellite frame (1.35 m above ground
resolution—a.g.r.—for the 8 (VIS-NIR) multispectral channels; 0.33 m a.g.r. for panchromatic
channel) acquired on 08/25/2016, after the first seismic event in Amatrice;

• hyperspectral signatures of the main urban constituents of the seismic rubble acquired, through
an ASD-FieldSpec Pro hand-held radiometer, on rubble piles of test areas located in the centre of
Amatrice, during a specifically designed survey carried out in December 2016. The hyperspectral
signatures (2300 narrow bands, wavelength between 350–2500 nm. 1.4–2 nm as FWHM:
Full-Width-Half-Maximum) were acquired by placing the ASD probe perpendicularly at distance
of about 0.25 m from the surface of the different rubble typologies visually recognized. The 25◦

FOV provided by optic accessory allowed us to capture the reflectance from a circular surface
area with about 11 cm of radius. These hyperspectral signatures were used in the adopted SMA
approach to better deal with the spectral and spatial heterogeneity of the urban rubble, typically
smaller than the WV3 pixel;

• two hyperspectral signatures of uncoloured typical cover (grey-looking, similar to concrete)
containing asbestos, at different aging levels, involving colonization by typical micro flora of roofs
additionally introduced from literature [42], as significantly representative of those dangerous
materials likely present in seismic rubble;

• 1 m pixel Digital Terrain Model (DTM) derived from LiDAR data acquired during 2016
flight and RGB orthophotos (0.15 m ground spatial resolution, 2016 flight) for satellite images
geometric orthocorrection;

3.2. Data Processing

The whole methodology was developed according to the general scheme depicted in Figure 2
and described in the following paragraphs. The left side of Figure 2 (dashed box), regarding the
procedures for retrieving the rubble heaps boundaries and the relative volumes, was actually the
objective of a previous work [1]; hence, its description is reported only in the Appendix A, whose
objective is to add crucial information regarding the main (surface) constituents of rubble heaps to this
geometric information.

3.2.1. Determination of Heap Volume

The rubbles heaps boundaries were basically provided by the Copernicus EMS mapping,
furtherly improved (according to our purpose) by visual interpretation of a 15 cm RGB orthophotos
photointerpretation. For the volume estimation, Digital Elevation Model of terrain (DTM) and Digital
Surface Model (DSM), produced from LiDAR surveys, were exploited: in particular pre-event DTM
(DTMpre) and post-event DTM and DSM (DTMpost and DSMpost) were considered.

To each polygon (i.e., heap boundary) the building’s base elevation value was manually assigned,
deriving it from the DTMpost in correspondence with a visible point (e.g., portion of the surrounding
streets free of rubbles), identified close to the considered rubble. The volume of a single rubble heap was
estimated as the solid (3-D space) included between the bottom surface represented by the building’s
foundation developing at a constant altitude and the upper uneven surface represented by the DSMpost
values over the polygonal area itself. In other words, the volume is assessed through the difference
between the DSMpost and the DTMpost values (constant altitude) over the area identified by the heap’s
perimeter. An alternative approach has made it possible to perform the assignment of the elevation
values of rubble’s base automatically. The base values are automatically extracted by the pre-event
DTMpre, which can be assumed as the bottom surface. Therefore, the volume calculation is directly
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obtained by the difference in elevation between post-event DSMpost and pre-event (DTMpre over the
rubbles’ perimeter). For further information about volume heap calculation of Cappucci et al. [1], see
Appendix A.ISPRS Int. J. Geo-Inf. 2020, 9, 262 6 of 26 
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Figure 2. Flow diagram of the implemented procedure. The input data are: (1) LiDAR point cloud
data, RGB aerophotos, Copernicus EMS building damaging grade map; (2) WorldView-3 multispectral
data; (3) hyperspectral signature library; (4) polygonal cover and related attributes of rubble heaps,
from previously developed procedure [1], in input to SMACC and GIS processing. The rough outline
of rubble volume estimates procedure (dashed box) has been included here only for completeness.

3.2.2. In Situ Data Collection and Pre-Processing

The hyperspectral signatures of rubble materials were collected during a field survey carried out
on the 6th and 7th of December 2016. Up to 150 hyperspectral signatures (each made up of about
2300 spectral narrow bands) were acquired. Most of them referred to the five principal building materials
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(rubble debris, concrete, tiles, bricks, natural stones) and the others to secondary/accessory materials
(i.e., zinc/copper gutter, bitumen sheath). It is worth noting that the spectral signatures of the five principal
building materials differed significantly among the various piles/urban places. Consequently, after the
usual pre-processing (interpolation in the water vapor absorption bands, filtering and normalization in
case of calibration faults), for each of the main five building materials, four different averaged signatures
were worked out and stored in the spectral library. Therefore, the spectral library resulting from the in
situ measurements included eight macro-classes (the abovementioned five main building materials
plus the three accessory materials), characterized by twenty-three averaged signatures, with twenty
(5 × 4) related to the main five building constituents and three to the accessory materials).

Additionally, two hyperspectral signatures of differently aged and colonized (by vegetal species)
asbestos building materials were retrieved from the literature and included in the library, in order to
test the possibility of also detecting this dangerous material through satellite data [42]. Therefore, in the
end 25 hyperspectral signatures distributed into 9 macro-classes (considering one asbestos macro-class
subdivided into the two different aging stages) were finally available.

To make these hyperspectral signatures compatible with the spectral configuration of the WV3
sensor, they were resampled using the related band spectral filters functions. The satellite sensors use
electronic band-pass filters to achieve the different spectral band responses from the broad spectrum
captured signal. Their analytic expression filter functions, indicated as fij, (i, j indicating, respectively,
wavelength and band) and ranging between 0 and 1, can be used to derive the multispectral signatures
from the hyperspectral ones by convolving them as follows:

b j =

∑
fi j Ri∑

fi j
(1)

where bj stands for multispectral response in band j, fij is the filter function of j band of satellite
sensor (available from the data provider) and Ri the hyperspectral reflectance data. In this context,
this resampling step is mandatory to make the in situ hyperspectral signatures compatible with the
multispectral ones derivable from the WV3 data.

3.2.3. Satellite Data

Acquisition and pre-processing (geometric, radiometric and atmospheric corrections) of VHR
satellite remotely sensed and auxiliary data.

The geometric pre-processing and the orthocorrection of WV3 frames were accomplished using
suitable DEM and the rational polynomial coefficients (RPC) provided with the WV3 files with the
support of detailed cartography in the WGS 84 / UTM zone 33N projection [43].

In general, satellite imagery is affected by light-wave scattering and attenuation from air molecules,
haze, water vapor and particulates, depending on atmospheric turbidity. These noise factors may be
present in any given scene and they are typically not uniformly distributed. Given the thickness of the
atmosphere crossed by the satellite signals coming from earth surface, the degrading effects introduced
may be relevant in many cases, even in some cases making remotely sensed imagery unusable. In our
case, aiming at exploiting the field hyperspectral reflectance of specific building materials, the removal
of atmospheric effects from satellite imagery is necessary in order to retrieve the corresponding
reflectance at ground level. To this end we used the FLAASH (Fast Line-of-sight Atmospheric Analysis
of Hypercubes) code, integrated in L3HARRIS Geospatial ENVI® image analysis software, which
allows the automatic retrieval of aerosol optical thickness on processed frames using well established
algorithms [44,45]. It is worth noting that among the two options we tested—atmospherically correcting
the WV3 images first and then performing pansharpening versus first performing the pansharpening
and then the atmospheric correction—the latter provided the better results when checked visually.

Moreover, in order to improve the geometric accuracy of the final results, the panchromatic data
provided by WV3 sensor at 0.33 m a.g.r. were exploited using the Gram-Schmidt pansharpening
method. This choice represented a compromise to preserve both spectral and spatial information,
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so as to improve the geometric accuracy of final results [46]. Although its performances for spectral
features are not at top, it was selected on the basis of preliminary visual interpretation of the results
obtained using atmospherically corrected data [47]. In addition, considering that our interest was in
improving spatial resolution and that the quality assessment of pansharpened images is still an open
issue, the selection was determined also by easy to use and robust implementation of the algorithm
within the most diffuse packages for satellite remotely sensed data processing [46,47].

In general, the pansharpening and atmospheric pre-processing of satellite data are performed to
improve the results of subsequent classification (based on categorical labelling approach) or regression
(based on continuous variables modelling) processes. Few authors have dealt with the evaluation of
the suitability of the sequence in performing these two pre-processing steps (commutability) for these
two different needs [48]. However, in agreement with the approach adopted here, it was reported that
performing the atmospheric correction after the pansharpening, provides better results in continuous
modelling approaches, [49].

3.2.4. SMA-SMACC

Data provided by the abovementioned multispectral synthetic image were used as input to the
SMA procedure. Indeed, the composite nature of remotely sensed spectral information often hampers
the detailed identification and mapping of targeted constituents of the earth’s surface. SMA is a
well-established and effective technique to address this spectral mixture problem. SMA models the
pixel mixed spectrum as a linear or nonlinear combination of its constituent spectral components
(or spectral endmembers) weighted by their subpixel fractional cover. By model inversion SMA
provides subpixel endmember fractions [50]. SMA models can be classified into linear and nonlinear
ones, depending on the way they model the complexity of light scattering in the spectral mixture
analysis. In this paper, we consider linear spectral mixtures, which is considered more effective in the
case of an absence of interaction between the component responses, and which may be expressed as:

Y(i, k) =
n∑

j=1

f j (i) X j(i, k) + v(i, k) (2)

where:

Y(i,k) = ith pixel spectral response in kth spectral band;
Xj(i,k) = ith pixel spectral response of jth endmember in kth spectral band;
fj(i) = pixel fractional abundance of jth endmember;
v(i,k) = pixel residual noise in the kth band;

with
∑n

j f j(i) = 1 as basic constraint to fractional pixel reflectance contributions.
In the Equation (2), Xj(i,k) indicates the spectral signature of the jth endmember, Y(i,k) is pixel

reflectance response, found through SMACC algorithm by applying consecutively the maximum convex
cone constraint. The algorithm also assesses the related fractional abundance fj(i) by minimizing the residual

term v(i,k). In the case of an a priori fixed number of endmembers, usually the
n∑

j=1
f (i) j < 1 constraint is

assumed to improve the effectiveness of the algorithms by introducing also a shadow endmember. This
latter includes the remaining of reflectance contribution to unity, arising for example from possible
different illumination condition of the endmember portions within the pixel. Assuming the shadow
endmember includes proportionally all the less illuminated parts of all others, estimated through SMA,
their preventive normalization at pixel level is required, using their sum as normalization factor.

To retrieve the endmembers, the SMACC algorithm selects the extreme points at borders of the
multidimensional distribution of pixels’ spectral signatures establishing a convex cone delimited by
the related extreme pixel spectral vectors (endmember spectral signatures), which are located and
used as spectral endmembers. The algorithm starts with a single endmember with maximum albedo
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and incrementally increases their number using the oblique projection that maximize angle between
the previous set of pixel extreme vectors to find the subsequent endmember. The cone grows by
encompassing the new endmembers, and the iterative procedure repeats until an endmember is found
that is already contained within the convex cone, or until the user-defined maximum number of
endmembers has been reached. The convex cone formed by extreme vectors or endmembers contains
the remaining data vectors that can be modelled by a linear combination of endmembers with the
positive coefficients being identified as abundances of the endmembers. It is worth noting that the
number of endmembers can ideally exceed that of used spectral channels of the sensor. This is a
very useful feature especially when we deal with multispectral data having a limited number of
reflectance bands. However, their number should be maintained at a similar level, even when a limited
endmembers basis may represent/guarantee just a coarse approximation of the many materials and
their spectral variations found in seismic rubble, in order to ensure that a well-conditioned and linearly
independent model is obtained. In fact, endmember extraction from hyper/multispectral data remains
a challenge task, considering the within-class spectral reflectance variance and noise contributions
from various factors (sensor, atmosphere, illumination) to the endmember signatures. Sometimes an
endmember may characterize a mixture of materials having very similar spectral signatures rather
than represents a single material. More endmembers than pure covers are often retrieved in a remotely
sensed imagery and frequently some of them, less important for scene description, can be coalesced in
the above introduced shadow endmember.

The SMA through SMACC was performed on the data from the 8-band multilayer at 0.3 m. of
a.g.r., obtained from WV3 pansharpening and atmospheric correction processes, considering only the
pixels belonging to the identified rubble heaps. The area investigated through SMA corresponds with
pixels belonging to the identified rubble heaps furtherly reduced by excluding those pixels whose
vegetation cover was too relevant (e.g., rubbles spread on tree-covered scarps). This was achieved
by selecting only pixels whose Normalised Difference Vegetation Index (NDVI) values were below a
suitable threshold.

Taking into account the number of available bands and the number of the materials to be
discriminated, the number of endmembers to be worked out by SMA was fixed at 10 (plus shadow),
being aware that a small excess may be tolerated by the method without compromising its robustness
too much. In addition, the SMA algorithms provided the percentage of these endmembers for each
pixel within the heap surface.

3.2.5. Machine Learning

Then we adopted a supervised classification schema based on various machine learning algorithms,
using the 25 resampled spectral signatures of the materials included in the (spectral) library as a training
set in order to link these spectral signatures to the endmembers retrieved by SMACC. It is worth
underlining that the association of the retrieved endmembers with the signatures of rubble materials
acquired on field was rather complex, due to both the above-cited noise factors affecting remotely
sensed techniques and the intrinsic spectral variability of field data, characterized indeed by multiple
signatures for the same building material. Six typical machine learning algorithms were preliminarily
selected for supervised classification of endmembers, taking into account their different capabilities
and performance in various situation of noise, limited class samples and outlier presence in input data.
The selected algorithms were: C4.5 (decision tree), C-SVC (Core Support Vector Machine—discrete
class, continuous input), BVM (Ball Vector Machine), KNN (K-nearest neighbours), RF (Random
Forest), ANN (Artificial Neural Network). The latter, though, preliminarily provided very poor results,
so it was not considered anymore in the processing chain.

C4.5 makes it possible to implement easy-to-interpret classification models by hierarchically
splitting the training data set. This algorithm selects the best subset of attributes based on an entropy
measure and organizes the classes in a decision tree rule-based structure. Each node of the tree relates
to a split in the feature space, which is always orthogonal to its axes [50–52]. C-SVC, more often used
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in the per-pixel classification context, is a non-parametric supervised statistical learning technique with
robustness against outliers and limited train. It is able to estimate a hyperplane in the feature space
that minimizes misclassifications [41,52]. BVM is an improvement of standard SVM algorithm which
combines techniques from computational geometry based on hyper-spheres to efficiently achieve a
close-to-optimal solution [53]. The K-nearest neighbour algorithm (KNN) is a method for classifying
objects based on the closest training examples in an n-dimensional feature space. Given an unknown
feature pattern, the classifier searches the pattern space for the k training tuples that are closest to the
unknown one [53]. The ANN nonparametric algorithms are based on the neural network concepts
and work without assumptions about input data distribution and independency. They learn from
the training dataset and build relationships (networks) between input (features) and output nodes
(classes) through hidden neurons layer connection weights modulation. In our context, a critical issue
for ANN effectiveness may be the amount of training occurrences [41]. The Random Forest classifier
consists of a group of decision trees induced with different sub-sets of the training data. Each tree of
the forest casts a vote for the class to which a given analysis unit (in this case, a given segment) should
be associated. The class with most votes is the one associated with the segment [41,54].

These machine learning algorithms were tested as classifiers of endmembers with the objective of
evaluating their capability to discriminate as much as possible among the 25 materials present in the
library including asbestos. The selection was performed on the basis of error rate minimization in
recognizing the classes of training set coupled with the assignment of the maximum number of main
materials to endmembers.

3.2.6. Accuracy Assessment

The accuracy assessment of the thematic maps obtained from the usual hard classification scheme
is a mandatory step to be accomplished using randomly selected samples, where the categorical
class assignment provided by the classifier algorithm is verified through independent observations.
However, this approach was not directly applicable to the results of SMACC SMA analysis, which
provide continuous distributions of endmembers abundances within each pixel. Therefore, an original
approach that also allowed us to assess accuracy for SMA-derived endmember abundance distributions
was implemented. To this end, only the pixels where one endmember predominates the others and
its abundance is superior to a predefined threshold were selected to be considered quasi pure in a
spectral sense. To this end the pixel Predominant Endmember class Distribution (PED) was obtained
by the maximum abundance distribution (PMA), in turn derived from the endmember distributions
using different thresholds to exclude the pixels with lower PMA values. This allowed us to transform
the multilayer of endmember abundances continuous distributions into a categorical distribution of
predominant endmember classes (PED) to which a classical accuracy assessment scheme was applied.

Thus, the accuracy of the PED obtained from the results of the SMACC SMA, using the 0.3 m
pan-sharpened WV3 data, was tested using a photointerpretation approach of random point samples
reported on the RGB aero-photos (0.25 m a.g.r.), supported by preliminary unsupervised clustering
analysis. To facilitate the photointerpretation approach, the five macro-classes of main rubble materials
(Table 1) were grouped into three more visually discriminable categories:

• 1st—debris-concrete (characterized by light grey shades);
• 2nd—tiles-bricks (characterized by reddish shades);
• 3rd—natural stone (characterized by dark grey shades).
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Table 1. Considered urban rubble constituents.

N Material (Macro-Classes) Label
1 rubble debris calc
2 Concrete cem
3 Tiles lat
4 Bricks matc
5 natural stones matn
6 zinc gutter zn
7 bitumen sheath gua
8 copper gutter cu
9 Asbestos asb

Accordingly, the PED was recoded on the three previous groups (categories) through the
classification output obtained by the machine learning algorithm to produce a three classes thematic
map of the predominant endmembers. Then, the accuracy of this former was estimated using a randomly
selected point sample whose classes were independently derived by means of photointerpretation
on the corresponding RGB aero-photos. However, it is worth noting that excluding the few pixels
exploited for deriving the SMACC endmembers (statistically insufficient for an effective accuracy
assessment), most of rubble pixels are a mix of the three categories previously introduced. At the pixel
level, the predominant (maximum abundance) endmembers are characterized by different abundances
less than 1. In particular, the first category (debris-concrete) was prevalent in the majority of pixels and
showed the highest sensible abundance values with respect to the other two classes.

Generally, the endmember maximum abundance values of the others two classes were lower,
and these classes were prevalent in a minor number of pixels. Of course, greater is the abundance
of the specific category in the pixel and more effective is the photointerpretation and consequent
labelling. Therefore, increasingly rising abundance threshold values were adopted in order to provide
a statistically sufficient number of samples for all three of the classes introduced above.

Accordingly, three related confusion matrices, one for each selected abundance threshold,
were calculated, showing different overall accuracies and k-statistics parameters. Then, using
the classification of the endmembers into the 25 classes of the library provided by machine learning
classifiers, the percentage distribution of these classes was worked out.

3.2.7. GIS Processing

Finally, the characterization of rubbles within the test area was obtained through zonal GIS
processing of the heaps’ polygonal cover. In particular, for each heap, the mean values of the fractional
abundancies of the three main constituents were assessed. Of course, by multiplying each average
value by the number of pixels of the heaps, the surface percentage of the corresponding (surface)
materials abundancy, at heap level, is calculated.

4. Results

Eight principal constituents (macro-classes) of urban rubble were identified in the field during
the two-day survey, during which 150 hyperspectral signatures (about 2300 narrow bands for each
spectral signature) were acquired. In Table 1, the nine related macro-classes, including the asbestos
macro-class, whose spectral signatures were derived from the literature, are reported.

The majority of these field data refer to the more abundant rubble materials, which correspond to
the first five macro-classes, whose spectral signatures differed significantly among the various piles and
urban places. Therefore, after a preliminary analysis and in order to preserve the spectral variability of
these five materials, four different averaged signatures were recorded for each of them.

In Figure 3, the four graphs show: the in situ hyperspectral signatures acquired on concrete
(top left graph) and brick (top right graph) after the first pre-processing phase but before smoothing by
filtering; the corresponding filtered spectral signatures of the concrete (lower left graph) and brick
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lower right graph) categories. The bottom image of Figure 3 represents some samples of the eight
types of rubble materials.ISPRS Int. J. Geo-Inf. 2020, 9, 262 13 of 26 
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Figure 3. In situ hyperspectral signatures of concrete (top left) and brick (top right) after the first
pre-processing phase but before smoothing by filtering and corresponding filtered spectral signatures
of the concrete (lower left) and brick (lower right) categories. In the bottom image some samples of
the eight types of rubble materials (white numbers to be matched with the legend on the left lower
corner of the image) are displayed.
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The graph in the upper part of Figure 4 shows the multispectral signatures resampled using the
WV3 sensor filter function (the asbestos signatures were omitted for clearness). The multispectral
signatures of the 10 endmembers, extracted via SMACC from WV3 data of rubble heaps, are reported
in the lower graph of Figure 4.ISPRS Int. J. Geo-Inf. 2020, 9, 262 14 of 26 

 

 
Figure 4. Resampled multispectral signatures of the 23 in situ rubble materials (upper graph); 
Multispectral signatures of endmembers extracts using SMACC algorithm (lower graph). 

From the WV3 pansharpened pre-processed imagery a small number (10) of pure material 
signatures, i.e., endmembers, were derived through the SMACC algorithm to be used as reference 
for the main material classes of urban rubble, by matching them with the resampled multispectral 
signatures of the in situ materials using machine learning classifiers. The SMACC algorithm thus 
provided a multilayer distribution of ten endmembers, plus shadow, whose basic statistics are shown 
in Table 2. 

The first five endmembers except end3, plus shadow, are the most abundant, on average, as 
reported in Table 2. In particular, the shadow shows high abundance values in a relevant number of 
pixels, as shown in Figure 5, where the distributions of the abundance of the shadow and first five 
endmembers are depicted.  

Table 2. Basic statistics for the EMs abundance distribution of WV3 pansharpened data. 

Endmembers      Min      Max     Mean    Stdev 
   Shadow  0 0,93912 0,36339 0,146687 
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Figure 4. Resampled multispectral signatures of the 23 in situ rubble materials (upper graph);
Multispectral signatures of endmembers extracts using SMACC algorithm (lower graph).

From the WV3 pansharpened pre-processed imagery a small number (10) of pure material
signatures, i.e., endmembers, were derived through the SMACC algorithm to be used as reference
for the main material classes of urban rubble, by matching them with the resampled multispectral
signatures of the in situ materials using machine learning classifiers. The SMACC algorithm thus
provided a multilayer distribution of ten endmembers, plus shadow, whose basic statistics are shown
in Table 2.

The first five endmembers except end3, plus shadow, are the most abundant, on average, as reported
in Table 2. In particular, the shadow shows high abundance values in a relevant number of pixels, as
shown in Figure 5, where the distributions of the abundance of the shadow and first five endmembers
are depicted.
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Table 2. Basic statistics for the EMs abundance distribution of WV3 pansharpened data.

Endmembers Min Max Mean Stdev

Shadow 0 0.93912 0.36339 0.146687
end1 0 1 0.190493 0.106564
end2 0 1 0.29274 0.110257
end3 0 1 0.003201 0.01491
end4 0 1 0.032382 0.054795
end5 0 1 0.05461 0.100344
end6 0 1 0.005747 0.019549
end7 0 1 0.020902 0.054293
end8 0 1 0.018761 0.048809
end9 0 1 0.015537 0.033174

end10 0 1 0.002235 0.016989
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Figure 5. Histogram distribution of the first EM abundances including shadow.

After the spectral resampling, each of the 25 resampled signatures, corresponding to one of the
nine main macro-classes of urban rubble materials identified on field, was matched (classified) with
those of EMs derived from the WV3 pansharpened data using several machine learning algorithms.
The related results are reported in Table 3. Please note that the x suffix, x = 1 to 4, in the first five class
labels and x = 1 to 2 in the asbestos labels, refers to the four averaged signatures stored in the library
for each of the five main rubble materials and to the two signatures available for asbestos, respectively.
In the first 25 rows of Table 3, the train classes corresponding to the 25 spectral signatures stored in the
library (“Training” column) and the related class labels assigned by the exploited classifiers (3rd to 7th
column) are reported, respectively.

Moreover, in the first row of Table 3, beneath each classifier label, the related error rates (number
of wrong classified samples/total number of samples) achieved are reported, indicating C-SVC and RF
as the best performing algorithms (minimum error rate; note that RF’s 100% suitability against the
training set is a priori guaranteed by definition). In the remaining row, the classification of the ten
endmembers (end1÷end10), by means of each classifier, are shown.

Since the C-SVC algorithm is recognized to be robust against a poor training set and it was
able to discriminate one main class more (i.e., the natural stone) than the RF, these classification
results were selected to assess the distribution of the main materials. Instead, the results of RF were
exploited to detect the presence of asbestos. Starting from the multilayer of endmembers abundance,
the predominant endmember distribution (PED), for the three main grouped categories defined
for the accuracy assessment, was derived through that of pixel maximum abundance (PMA) using
suitable thresholds.
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Table 3. The results obtained with different machine learning algorithms for endmember-supervised
classification to assign the rubble typology labels to them, are reported in the last 10 rows of table
(in light grey and darker grey for C-SVC, exploited in the subsequent steps). The first 25 rows show
the training results for the different machine learning algorithms tested: BVM, C-SVC, KNN, RF, C4.5.
The error rate in training was reported under the column label indicating the algorithm.

Training BVM (0.36) C-SVC (0.00) KNN (0.72) RF (0.00) C4.5 (0.84)

1 calc1 asb2 calc1 asb2 calc1 calc1
2 calc2 asb1 calc2 gua calc2 calc1
3 calc3 matn3 calc3 matn3 calc3 calc3
4 calc4 matn2 calc4 matn3 calc4 calc3
5 cem1 asb2 cem1 asb1 cem1 calc1
6 cem2 matn3 cem2 matn1 cem2 calc3
7 cem3 cem3 cem3 matn1 cem3 cem3
8 cem4 cem4 cem4 matn1 cem4 calc3
9 lat1 lat2 lat1 calc3 lat1 calc1

10 lat2 lat2 lat2 matn4 lat2 calc1
11 lat3 lat3 lat3 matn3 lat3 cem3
12 lat4 asb2 lat4 grocu lat4 lat4
13 matc1 gua matc1 calc2 matc1 lat4
14 matc2 asb1 matc2 matc2 matc2 lat4
15 matc3 matc3 matc3 lat4 matc3 lat4
16 matc4 matc4 matc4 matc4 matc4 lat4
17 matn1 matn3 matn1 matn1 matn1 calc3
18 matn2 matn2 matn2 matn3 matn2 calc3
19 matn3 matn3 matn3 matn3 matn3 calc3
20 matn4 asb2 matn4 asb2 matn4 cem3
21 Cu asb2 cu calc1 Cu cem3
22 Gua asb1 gua gua gua lat4
23 Zn asb2 zn matn4 Zn cem3
24 asb1 asb1 asb1 gua asb1 calc1
25 asb2 asb2 asb2 calc1 asb2 cem3
26 end1 cem4 cem4 cem4 cem4 calc3
27 end2 matc3 matc3 matc3 matc3 lat4
28 end3 lat3 lat3 lat3 cem4 calc3
29 end4 matc4 matc4 matn4 calc1 lat4
30 end5 matc4 cem3 matn3 asb2 cem3
31 end6 cem4 cem4 lat3 cem4 calc3
32 end7 cem4 cem4 cem4 cem4 calc3
33 end8 matc4 matc4 matn4 lat4 lat4
34 end9 matn1 matn1 matn3 cem4 calc3
35 end10 gua matc1 matc2 matc1 lat4

As shown in Figure 6, the abundance of the first macro-class (concrete-rubble debris) is prevalent
in a large number of pixels (see Figure 6b—PED) and shows the highest values (as shown in
Figure 6a—PMA), while those of the other two macro-classes are lower in value and prevalent in a
minor number of pixels.

Taking into account the abovementioned results, the PED categorical distributions corresponding
to different minimum PMA thresholds (0.25, 0.35 and 0.45), selected on the basis of the PMA’s histogram
(Figure 7), were calculated to be used for the accuracy assessment. In this way the three rightmost
fractions of the histogram distribution (Figure 7) were selected to generate the maps whose accuracy
was assessed.
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In Figure 8 the recoded PED distribution obtained using a 0.25 PMA threshold is displayed.
The accuracy assessment was then performed by comparing the PED classes at randomly

selected points with the classes independently derived (for the same points) by photointerpretation.
The accuracy assessment results obtained using the three thresholds for PMA, are reported in the
following confusion matrices with the related accuracy parameters (Tables 4–6).
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Table 4. Confusion matrices for the recoded PED maps obtained using the 0.25 PMA threshold
(461 samples).

Concrete-Debris Brick-Tile Nat. Stone Producer Accuracy User Accuracy

concrete-debris 230 68 2 0.772 0.767
brick-tile 59 79 2 0.520 0.564

nat. Stone 9 5 7 0.636 0.333

Overall Accuracy = 0.685. K = 0.493.

Table 5. Accuracy parameters of three recoded PED maps obtained using the 0.35 PMA threshold
(477 samples).

Concrete-Debris Brick-Tile Nat. Stone Producer Accuracy User Accuracy

concrete-debris 298 57 2 0.884 0.835
brick-tile 38 69 1 0.539 0.639

nat. Stone 1 2 9 0.750 0.750

Overall Accuracy = 0.788, K = 0.592.

Table 6. Accuracy parameters of three recoded PED maps obtained using the 0.45 PMA threshold
(252 samples).

Concrete-Debris Brick-Tile Nat. Stone Producer Accuracy User Accuracy

concrete-debris 175 14 1 0.956 0.921
brick-tile 7 45 4 0.750 0.804

nat. Stone 1 1 4 0.444 0.667

Overall Accuracy = 0.888, K = 0.754.
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The random sample was about 1–2% of the entire population, being at its maximum when the
0.25 threshold was used and decreasing sensibly with the threshold rise (Figure 6). However, it must
be underlined that the samples number effectively exploited for 0.25 PMA threshold is lower than that
related to the 0.35 one, due to the exclusion of samples found contaminated by vegetation.

According to the RF classification results, endmembers n. 5 (proxy of the asbestos’ distribution)
was worked out and reported in Figure 9. The different colours represent the asbestos relative
abundance on rubble heaps.
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pan-sharpened true colour.

It must be highlighted that, probably due to misclassification of aged dark-red tiles erroneously
assigned to worn asbestos, which is also caused by diffuse colonization of local roofs by micro
flora, the asbestos distribution initially showed unlikely highest concentrations (abundance > 0.3)
corresponding to intact tile roofs (rubble heaps n. 23–26, 27–29). Therefore, after a visual analysis,
a maximum accepted value of 0.25 was applied to avoid this overestimate, providing a more realistic
distribution of asbestos within rubble. Then, as shown in Figure 10, the n. 2, 4, 8, 9, 10, 42 heaps are
those characterized by areas with the highest asbestos’ concentrations.

Finally, the zonal processing of the raster map derived from the classification implementing the per
pixel distribution of endmembers percentages, provided us with the relative percentages of the three
main categories used for the accuracy assessment within the rubble heaps. The estimated distributions
of the main materials’ typologies are shown in Figure 9. The most abundant rubble heap typology
(macro class) is represented by concrete/debris (range: 40–50%), followed by brick/tiles (range: 25–30%)
and natural stones (range: 7–17%), with other materials (metal, plastic, bitumen sheath, etc.) deriving
from the remaining endmembers completing the list (range: 3–25%).

In Table 7 an example of the quantitative results provided by the whole procedure is reported for
several rubble heaps. Indeed, for each heap the procedure makes it possible to determine the volume
and the main constituents’ percentages, including the information regarding the presence of asbestos.
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Figure 10. Estimated percentage distributions of the types of materials found within the rubble heaps in
the centre of Amatrice town. The four maps refer respectively to: bricks (a), other building materials (b),
concrete-debris (c) and natural stone (d).

Table 7. Volumes and main constituents (for a sample of rubble heaps located in the most affected area).
For each heap the asbestos’ presence is also indicated.

Id Pile Volume
(m3)

Concrete-Debris
(%)

Bricks-Tiles
(%)

Natural
Stones (%)

Others
Materials (%)

Asbestos
Presence

1 2478.63 54 28 10 8
2 1494.47 50 28 12 10 y
3 3471.36 56 31 6 7
4 4199.4 57 27 10 6 y
5 1490.97 54 29 10 7
6 2010.39 52 29 10 9
7 865.79 53 30 8 9
8 876.678 56 29 8 7 y
9 5118.51 54 29 8 8 y

10 7140.05 56 30 7 7 y
11 1314.63 49 27 10 14
12 1228.15 55 30 8 7
13 4612.94 55 29 8 8
14 1221.36 57 31 7 5

5. Discussion

The selection and exploitation of machine learning algorithms for matching (classifying) the
SMACC endmembers’ spectral signatures to those derived from the field hyperspectral signatures was
an important and critical step of the work.

The global assessment of the algorithms’ performance was accomplished taking into account both
the right classification of training materials, summarized by the related error rate (Table 3), and the
number/typology of main materials (including asbestos) detected through the endmembers.
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The endmembers labelled by BVM classifier accounted for the four main materials (cem, matc, lat,
matn) plus gua (see Table 3), but failed to discriminate the training samples. In addition, the results
showed an unreliable assignment of the asbestos class. Conversely, the C-SVC performed the best
with regard to training sample classification, and was also able to associate the four endmembers with
the four main materials. Although the KNN performance in classifying the training set was slightly
better than that of BVM, it wasn’t able to avoid unrealistic asbestos labelling for the three training
samples with respect to other rubble materials. However, this algorithm was able to account for four
main rubble materials through the endmembers so as the RF. The latter was, in particular, the only one
able to detect the likely presence of asbestos (end5). The related endmember (n. 5) showed an average
abundance of few percent but with the highest standard deviation meaning a significant concentration
of this dangerous material in specific heaps (Table 5). Finally, the C4.5 was the worst performing, both
in classifying the training set and in the number of main materials associated with endmembers.

Following these criteria, the C-SVC and RF were the best performing. Moreover, these two
algorithms agreed with the labelling of the five endmembers. They were able to discriminate four
main materials with differences in terms of natural stones (matn), which was detected by C-SVC but
not by RF, which instead was able to classify rubble debris (calc), which was missed by the other
classifier. Therefore, the ten endmembers provided by the SMA from pansharpened WV3 data were
satisfyingly mapped to the in situ spectral signatures of the rubble materials using C-SVC machine
learning algorithm, which made it possible to obtain the most effective discrimination of the main
building materials (first 5 endmembers of Table 1).

In agreement with the general schema of the mapping model, which includes validation and
accuracy assessment based on independent measurements, an original method for accomplishing this
necessary test on the obtained continuous distribution of rubble typologies was implemented. It is based
on the pixel maximum abundance (PMA) and predominant endmember (PED) distributions, derived
from the SMA outputs. The PMA histogram distribution (Figure 6) confirms once again the extreme
spectral heterogeneity of rubble, with a maximum of less than 0.3. Such an approach allowed us to
assess various PED distributions (obtained using different PMA thresholds) using photointerpretation
method, i.e., by comparing corresponding locations on the RGB high-resolution aerophotos. According
to the typical thematic accuracy assessment it was possible to evaluate overall accuracy (O.A.) and K
parameters through related confusion matrices. As expected, the overall accuracy (O.A.) assessed for
the three PMA rising thresholds (Tables 4–6) increases with the threshold increase due to endmember
predominance increasing at pixel level, which in turn makes correct photointerpretation easier. Indeed,
both O.A. and K accuracy global parameters are maximum (i.e., 0.888 and 0.754, respectively) at the
0.45 threshold, which is in substantial agreement with the photointerpretation results. Although this
relative abundance value is low, it seems sufficient to allow the pixel main material to be recognized by
the independent expert interpreter.

Additionally, the PED maps obtained with the two lowest thresholds (0.35 and 0.25) correspond
to a poorer/moderate agreement with the photointerpretation according to the decrease in endmember
predominance [55].

The classification of materials present on the surface of rubble heaps is one of the most important
results achieved in the present study. Among these, asbestos is of great interest due to its implications
for human health (for both earthquake survivor population and rescue teams). The present work
showed that concrete debris and brick tiles are more abundant (Table 7 and Figure 11a) within the
study area and about 50% of the rubble heaps may contain asbestos (in different quantities; Table 7 and
Figure 11b).

It does not mean that 50% of rubbles contains asbestos in concentrations that could be harmful to
human health. However, the present research demonstrate that it is possible to identify the potential
presence of this hazardous substance and support management of waste and rubbles to be removed.
Sustainable land reclamation is one of the main goals of ENEA as it has a great socioeconomic
importance with a high impact on economic development [56]. Results of the present study are of
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extreme practical and logistical relevance, and it could be replicated to improve the effectiveness of
management in post-earthquake emergencies around the world.
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6. Conclusions

The radiometric and geometric resolution parameters of the remote sensors play an important
role in allowing suitable mapping of the spectral-spatial heterogeneity typical of urban and
industrial/infrastructure areas. In particular, they are fundamental for the discrimination of the seismic
rubble at the required scale. To achieve this goal, the panchromatic and multispectral information provided
by WV3 sensors were fused using the Gram-Schmidt pansharpening method. Subsequently, they were
atmospherically corrected in order to obtain a suitable input at 31 cm of a.g.r. for the SMA procedure.
In general, even though widely exploited for their improved geometric resolution, the quantitative use
of synthetic spectral reflectance of pansharpened products is not widespread, since the degradation
of the quality during the fusing processes does not make it possible to fully preserve the original
spectral properties of the acquisition channels. In this case, rather effective results were obtained
by performing the pansharpening process using the spectrally conservative Gram-Schmidt method
prior to atmospheric correction. The inverse procedure (atmospheric correction carried out before
pansharpening process) did not produce the quality level in the results.

The implemented methodology provided the relative abundance distribution of the considered
rubble materials. The results are in agreement with the information that has been made available until
now with respect to transportation and final disposal. Indeed, concrete and rubble debris were the
most abundant seismic rubble typologies. These findings are consistent with the typical proportion of
building materials within the centre of Amatrice and the propensity of debris to spread over heaps
surface in case of building collapses (Figure 7, Figure 9). The clean-up and removal of rubble has not
yet been completed in the central Apennines, and relevant information obtained in the future will be
useful for refining the implemented methodology. For instance, one of the crucial feedbacks will be the
correspondence between the material distribution retrieved at the surface and the inner part of the
rubble heap.

Although detailed information about the asbestos distribution over rubble heaps was not available,
the global presence of this dangerous material, mainly as a constituent of roof covers, has been reported
by various independent observations made in the field and by transportation operators in charge of
clearing the rubble from the centre of Amatrice. In this context, it was not possible to test the accuracy
of the asbestos distribution retrieved through RF machine learning algorithm.

In the context of post-event activities related to seismic events, the effective management of
the huge amount of resulting rubble and debris in urban areas represents one of the major issues
and can be usefully supported by EO-based monitoring and mapping applications, also exploiting
the last generation of multispectral satellite VHR sensors. The surveys from the aerial platform can
provide detailed up-to-date information, but are extremely expensive for the continuous monitoring
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of emergency areas required for controlling the evolution of the earthquake urban scenario, which
instead can be repetitively mapped by available sensors on board orbiting satellite platforms, which
can provide an increasing amount of territorial data with continuously improving spatial and spectral
resolution. Results obtained at the present time through the innovative methodology developed in this
work show the applicability of the WV3 satellite VHR data for providing effective surface estimates
of the distribution of seismic rubble types in heaps distributed within urban areas. This information
can be advantageously integrated with that from related volumes derived from aerial surveys carried
out in the aftermath of the earthquake (Tables 2 and 7; Figures 8 and 10), providing suitably support
to the management activities related to the urban rubble. The stereoscopic acquisition capabilities of
VHR satellite sensors could also support the estimation of volumes in monitoring the evolution of the
emergency scenario, possibly with a “one-off” calibration based on the LiDAR information deriving
from an initial aerial survey. The preliminary analysis of rubble heaps with EO tools can also have a
relevant impact on cost of post emergency action like rubble management and the definition of priority
in order to guarantee human health protection.

Thus, this original EO-based methodology allowed us to produce realistic estimates of the types
and volumes of seismic rubble in the historical centre of Amatrice. It can be generalized with a high
degree of automation and can be easily applied to similar situations, even with possible improvements
deriving from the integration of the SAR (Synthetic Aperture Radar) and hyperspectral data provided
by ongoing EO missions (Copernicus Sentinel-1, Cosmo SkyMed, PRISMA, EnMap). Future activities
will include a greater exploitation of high-resolution and hyperspectral satellite data, for assessing
both volumes and typologies of earthquake rubble heaps, also investigating the possibility to detect
hazardous rubble materials (i.e., asbestos).
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Appendix A

Method 1

The implemented methodological approach, outlined in the left side of Figure 2, is structured into
the following steps:

1. The collapsed buildings (rubble heaps perimeters) were delimited by means of visual
photo-interpretation, taking advantage of orthophotos’ high resolution (15 cm) as well as
using the already available Copernicus EMS data. The polygons (P) were traced considering
the displacement caused by the oblique photo acquisition (e.g., by integrating the DTMpost and
DSMpost in the assessment). Wherever possible, i.e., when a single building was effectively

www.eisac.it
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recognizable as a well-defined single structure, a unique rubble heap was digitized for each
single building; a pooled polygon referring to a group of (not distinguishable) buildings was
sketched otherwise.

2. A suitable classification of “level of damage” has been reported, by assigning specific codes to
each polygon: (1) “totally collapsed”; (2) “partially collapsed”, (3) “rubbles piled over a slope”;
(4) “uncertainty in defining the level of damage”.

3. In addition, a classification of building’s typology was performed (assigning a specific class,
e.g., “religious”, “residential”, “educational”, “medical”, etc.), to each polygon, supported by
Copernicus EMS data, as well as other web sources like Google Maps.

4. To each polygon, the building’s base elevation value (B) was assigned: it was derived from the
DTMpost in correspondence of a visible point (e.g., portion of the surrounding streets free of
rubbles), identified close to the considered building block/rubble. In case of a significant slope of
the streets contiguous to the building block, the minimum altitude value among different possible
points nearby the area of interest was selected, to not underestimate the actual elevation of rubble
heaps (Figure A1).

5. The basis of the previously described steps, the volume of a single rubble heap can be estimated
as the solid (3-D space) included between the flat horizontal polygon, i.e., the bottom surface (B)
represented by the building’s foundation developing at a constant altitude (selected DTMpost

value), and the upper uneven surface represented by the DSMpost values over the polygonal area
itself. So, the volume is assessed through the difference between the DSMpost and the selected
DTMpost value (constant altitude B) over the area identified by the heap’s perimeter, as expressed
by the Formula (1):

VM1 = B·
n∑

k=0

(
n
k

)
hDSMpost

[
m3

]
(A1)

where B is the elevation value of the rubble heap’s base and h is the elevation value (in m) extracted
from the DSMpost for each pixel, n = number of pixels. Volume values are expressed in m3.

This calculation was carried out in GIS environment by means of the ERDAS Imagine “zonal
attribute” function (Zonal Statistics to Polygon Attributes: this ERDAS Imagine (by Hexagon Geospatial)
operator extracts the zonal statistics of the background image of a vector feature layer and save them
as vector attributes), which allows to assign the calculated volume value as an attribute of the
corresponding GIS polygon representing the rubble heap (in shapefile format).
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Figure A1. Example of building’s base height retrieving. The elevation is estimated from the lower
(visible) point adjacent the rubble heap. For instance, in case 2 the lower elevation (right side) is selected.

Method 2

Method 2 follows the same steps 1 and 2 of M1 but different step 3, since the assignment of the
elevation values of rubble’s base is not manually performed. Rather, the base values are automatically
extracted by the pre-event DTMpre, which can be assumed as the bottom surface.

Therefore, in M2 processing chain, the volume calculation is directly obtained by the difference in
elevation between post-event DSMpost and pre-event (DTMpre over the rubbles’ perimeter (step 3),
as described in Equation (2):
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VM2 =
n∑

k=0

(
n
k

)
hDSMpost

−

n∑
k=0

(
n
k

)
hDTMpre

[
m3

]
(A2)

The above methodology must be cited as [1].

References

1. Cappucci, S.; De Cecco, L.; Gemerei, F.; Giordano, L.; Moretti, L.; Peloso, A.; Pollino, M. Earthquake’s
rubble heaps volume evaluation: Expeditious approach through earth observation and geomatics techniques.
Lect. Notes Comput. Sci. 2017, 2, 261–277. [CrossRef]

2. Rathje, E.M.; Adams, B.J. The Role of Remote Sensing in Earthquake Science and Engineering: Opportunities
and Challenges. Earthq. Spectra 2008, 24, 471–492. [CrossRef]

3. Ricci, P.; Verderame, G.M.; Manfredi, G.; Pollino, M.; Borfecchia, F.; De Cecco, L.; Martini, S.; Pascale, C.;
Ristoratore, E.; James, V. Seismic Vulnerability Assessment Using Field Survey and Remote Sensing Techniques.
In Proceedings of the Computational Science and Its Applications—ICCSA 2011 International Conference,
Santander, Spain, 20–23 June 2011; Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O., Eds.;
Springer: Berlin/Heidelberg, Germany, 2011; Volume 2, pp. 376–391. [CrossRef]

4. Pollino, M.; Fattoruso, G.; La Porta, L.; Della Rocca, A.B.; James, V. Collaborative Open Source Geospatial
Tools and Maps Supporting the Response Planning to Disastrous Earthquake Events. Future Internet 2012, 4,
451–468. [CrossRef]

5. Kerle, N. Remote Sensing of Natural Hazards and Disasters. In Encyclopedia of Natural Hazards; Encyclopedia
of Earth Sciences Series; Bobrowsky, P.T., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 838–847.
ISBN 978-90-481-8699-0. [CrossRef]

6. Borfecchia, F.; De Canio, G.; De Cecco, L.; Giocoli, A.; Grauso, S.; La Porta, L.; Martini, S.; Pollino, M.;
Roselli, I.; Zini, A. Mapping the earthquake-induced landslide hazard around the main oil pipeline network
of the Agri Valley (Basilicata, southern Italy) by means of two GIS-based modelling approaches. Nat. Hazards
2016, 81, 759. [CrossRef]

7. Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A review of the status of satellite remote
sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr.
2009, 33, 183–207. [CrossRef]

8. Ricci, P.; Gaudio, C.D.; Verderame, G.; Manfredi, G.; Pollino, M.; Borfecchia, F. Seismic vulnerability
assessment at urban scale based on different building stock data sources. In Proceedings of the 2nd
International Conference on Vulnerability and Risk Analysis and Management (ICVRAM), Liverpool, UK,
13–16 July 2014; p. 12.

9. Kader, A.; Jahan, I. A review of the application of remote sensing technologies in earthquake disaster
management: Potentialities and challenges. In Proceedings of the International Conference on Disaster Risk
Management, Dhaka, Bangladesh, 12–14 January 2019; p. 6.

10. Ji, M.; Liu, L.; Du, R.; Buchroithner, M.F. Neural Network Features for Detecting Collapsed Buildings after
Earthquakes Using Pre- and Post-Event Satellite Imagery. Remote Sens. 2019, 11, 1202. [CrossRef]

11. Wang, X.; Li, P. Extraction of earthquake-induced collapsed buildings using very high-resolution imagery
and airborne LiDAR data. Int. J. Remote Sens. 2015, 36, 2163–2183. [CrossRef]

12. Hussain, E.; Ural, S.; Kim, K.; Fu, C.-S.; Shan, J. Building Extraction and Rubble Mapping for City
Port-au-Prince Post-2010 Earthquake with GeoEye-1 Imagery and LiDAR Data. Photogramm. Eng. Remote
Sens. 2011, 77, 1011–1023. [CrossRef]

13. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 16 January 2020).
14. Available online: https://emergency.copernicus.eu/mapping (accessed on 16 January 2020).
15. Ouzounis, G.K.; Soille, P.; Pesaresi, M. Rubble Detection from VHR Aerial Imagery Data Using Differential

Morphological Profiles. In Proceedings of the 34th International Symposium Remote Sensing of the
Environment, Sydney, Australia, 10–15 April 2011; p. 4.

16. Modica, G.; Pollino, M.; Lanucara, S.; La Porta, L.; Pellicone, G.; Di Fazio, S.; Fichera, C.R. Land Suitability
Evaluation for Agro-forestry: Definition of a Web-Based Multi-Criteria Spatial Decision Support System
(MC-SDSS): Preliminary Results. In ICCSA 2016: Lecture Notes in Computer Science; Gervasi, O., Murgante, B.,
Misra, S., Rocha, A.M., Torre, C.M., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S., Eds.; Springer: Cham,
Switzerland, 2016; Volume 9788, pp. 399–413. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-62395-5_19
http://dx.doi.org/10.1193/1.2923922
http://dx.doi.org/10.1007/978-3-642-21887-3_9
http://dx.doi.org/10.3390/fi4020451
http://dx.doi.org/10.1007/978-1-4020-4399-4
http://dx.doi.org/10.1007/s11069-015-2104-0
http://dx.doi.org/10.1177/0309133309339563
http://dx.doi.org/10.3390/rs11101202
http://dx.doi.org/10.1080/01431161.2015.1034890
http://dx.doi.org/10.14358/PERS.77.10.1011
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://emergency.copernicus.eu/mapping
http://dx.doi.org/10.1007/978-3-319-42111-7_31


ISPRS Int. J. Geo-Inf. 2020, 9, 262 25 of 26

17. Di Pietro, A.; Lavalle, L.; La Porta, L.; Pollino, M.; Tofani, A.; Rosato, V. Design of DSS for Supporting
Preparedness to and Management of Anomalous Situations in Complex Scenarios. In Managing the Complexity
of Critical Infrastructures; Studies in Systems, Decision and Control; Setola, R., Rosato, V., Kyriakides, E.,
Rome, E., Eds.; Springer: Cham, Switzerland, 2016; Volume 90.

18. EPA (United States Environmental Protection Agency). Household Hazardous Waste Management: A Manual for
One-Day Community Collection Programs; EPA530-R-92-026; EPA (United States Environmental Protection
Agency): Washington, DC, USA, 1993; p. 78.

19. Xie, H.; Luo, X.; Xu, X.; Pan, H.; Tong, X. Automated Subpixel Surface Water Mapping from Heterogeneous
Urban Environments Using Landsat 8 OLI Imagery. Remote Sens. 2016, 8, 584. [CrossRef]

20. He, M.; Zhu, Q.; Du, Z.; Hu, H.; Ding, Y.; Chen, M. A 3D Shape Descriptor Based on Contour Clusters for
Damaged Roof Detection Using Airborne LiDAR Point Clouds. Remote Sens. 2016, 8, 189. [CrossRef]

21. Baiocchi, V.; Dominici, D.; Mormile, M. UAV application in post-seismic environment. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2013, 1, W2. [CrossRef]

22. De Canio, G.; Roselli, I.; Giocoli, A.; Mongelli, M.; Tatì, A.; Pollino, M.; Martini, S.; De Cecco, L.; La Porta, L.;
Borfecchia, F. Seismic monitoring of the cathedral of Orvieto: Combining satellite InSAR with in-situ
techniques. In Proceedings of the 7th International Conference on Structural Health Monitoring of Intelligent
Infrastructure, Torino, Italy, 1–3 July 2015; De Stefano, A., Ed.; Volume 1, pp. 415–425, ISBN 978-1-5108-2107-1.

23. Ma, Y.; Chen, F.; Liu, J.; He, Y.; Duan, J.; Li, X. An Automatic Procedure for Early Disaster Change Mapping
Based on Optical Remote Sensing. Remote Sens. 2016, 8, 272. [CrossRef]

24. Costanzo, A.; Montuori, A.; Silva, J.P.; Silvestri, M.; Musacchio, M.; Doumaz, F.; Stramondo, S.; Buongiorno, M.F.
The Combined Use of Airborne Remote Sensing Techniques within a GIS Environment for the Seismic
Vulnerability Assessment of Urban Areas: An Operational Application. Remote Sens. 2016, 8, 146. [CrossRef]

25. Kawakubo, F.; Morato, R.; Martins, M.; Mataveli, G.; Nepomuceno, P.; Martines, M. Quantification and
Analysis of Impervious Surface Area in the Metropolitan Region of São Paulo, Brazil. Remote Sens. 2019,
11, 944. [CrossRef]

26. Borfecchia, F.; Rosato, V.; Caiaffa, E.; Pollino, M.; De Cecco, L.; La Porta, L.; Ombuen, S.; Barbieri, L.; Benelli, F.;
Camerata, F.; et al. Remote Sensing and Data Mining Techniques for Assessing the Urban Fabric Vulnerability
to Heat Waves and UHI. Preprints 2016, 2016080202. [CrossRef]

27. Xie, S.; Duan, J.; Liu, S.; Dai, Q.; Liu, W.; Ma, Y.; Guo, R.; Ma, C. Crowdsourcing Rapid Assessment of
Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of
Yushu Earthquake. Remote Sens. 2016, 8, 759. [CrossRef]

28. Torres, Y.; Arranz, J.J.; Gaspar-Escribano, J.M.; Haghi, A.; Martinez-Cuevas, S.; Benito, B.; Ojeda, J.C.
Integration of LiDAR and multispectral images for exposure and earthquake vulnerability estimation.
Application in Lorca, Spain. arXiv 2018, arXiv:1806.11019. [CrossRef]

29. Borfecchia, F.; De Cecco, L.; Pollino, M.; Lugari, A.; Martini, S.; La Porta, L.; Ristoratore, E.; Pascale, C. Active
and passive remote sensing for supporting the evaluation of the urban seismic vulnerability. Ital. J. Remote
Sens. 2010, 42, 129–141. [CrossRef]
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