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Abstract: Inland excess water is temporary water inundation that occurs in flat-lands due to both
precipitation and groundwater emerging on the surface as substantial sources. Inland excess water is
an interrelated natural and human induced land degradation phenomenon, which causes several
problems in the flat-land regions of Hungary covering nearly half of the country. Identification of
areas with high risk requires spatial modelling, that is mapping of the specific natural hazard. Various
external environmental factors determine the behavior of the occurrence, frequency of inland excess
water. Spatial auxiliary information representing inland excess water forming environmental factors
were taken into account to support the spatial inference of the locally experienced inland excess water
frequency observations. Two hybrid spatial prediction approaches were tested to construct reliable
maps, namely Regression Kriging (RK) and Random Forest with Ordinary Kriging (RFK) using
spatially exhaustive auxiliary data on soil, geology, topography, land use, and climate. Comparing
the results of the two approaches, we did not find significant differences in their accuracy. Although
both methods are appropriate for predicting inland excess water hazard, we suggest the usage of
RFK, since (i) it is more suitable for revealing non-linear and more complex relations than RK, (ii) it
requires less presupposition on and preprocessing of the applied data, (iii) and keeps the range of
the reference data, while RK tends more heavily to smooth the estimations, while (iv) it provides a
variable rank, providing explicit information on the importance of the used predictors.

Keywords: geostatistics; hybrid spatial prediction model; inundation; land degradation; machine
learning; risk mapping

1. Introduction

Inland excess water (IEW) is temporary water inundation, a form of surplus surface water, which
occurs in flatlands due to both precipitation and groundwater emerging on the surface as substantial
sources. It occurs most frequently in local depressions of large flat areas, irrespective of river floods. A
complex interaction of natural (e.g., meteorological, hydrogeological, pedological, topographical), and
anthropogenic (e.g., land use, agricultural engineering) factors contribute to the occurrence of IEW [1,2].
It causes several social, economic, and environmental problems in the flat-land regions of Hungary,
covering nearly half of the country [3]. Although IEW has received the most extended scientific
attention in Hungary, the phenomenon is not confined to this geographic region [4]. It is observed all
over the world, where soils are characterized by low water permeability/infiltration, and surface runoff
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is limited. Literature frequently uses the phrase ‘waterlogging’ as IEW, and they mostly examine crop
responses for waterlogging. Occurrences were reported from, other European countries (France [5],
Romania [6,7], Serbia [8,9]), but also in Africa (Egypt [10], Ethiopia [11,12], Nigeria [13], South
Africa [14]), Australia [11,15–18], Asia (Bangladesh [19], China [20,21], India [16,22,23], Russia [24,25],
Uzbekistan [25]), and South and North America (Argentina, Chile, and the USA [26–29]). Climate
change is having significant impact on the hydrologic cycle, affecting water resource systems [30]. In
relation with this impact, the frequency of IEW inundations is likely to be concerned.

IEW inundation data can be achieved from two different sources. Traditionally, in field observations
(in Hungary systematically collected since 1935; [31]) coordinated by water management authorities are
summarized on (paper) maps. The Hungarian regional Water Management Directorates created IEW
maps systematically based on in-situ observations collected in the course of continuous field survey [32]
and 1:10,000 and 1:25,000 topographic base maps [33]. These maps are varying in geographical extent,
scale, and spatial accuracy. Data collections of the IEW inundations were carried out mainly on county
level, which lead to differences in the temporal resolution of the datasets. The majority of the maps are
hand-drawn, displaying single inundation events. From the large-scale observations, 1:50,000 and
1:100,000 synergy maps were derived, which are sometimes the only actually available data sources.

With the appearance of publicly available remote sensing data, like aerial and space-borne imagery
and the development of image processing techniques, the in situ observations were complemented and
IEW could be identified and classified in a more efficient and effective way [34]. There are two drawbacks
of space- and/or air-borne data acquisitions. (i) They can provide only a snapshot of the inundation
areas, thus most extended phases are not necessarily represented. (ii) Furthermore, the differentiation
between natural waters and wetlands or IEW inundation is problematic for image interpretation
and processing [35]. Last but not least, datasets compiled by the interpretation of aerial or satellite
images originate only from the last two decades. Nevertheless, numerous works were dedicated to the
identification and mapping of IEW based on remotely sensed information. Csekő [36] used radar data,
Csornai et al. [37] combined radar identification with optical sensors, Rakonczai et al. [38] compared
Landsat-based classification of IEW with in situ measurements, Licskó [39] and Szatmári et al. [40,41]
used aerial data to identify IEW inundations, Mucsi and Henits [42] used sub-pixel based classification
on a Landsat time series, Csendes and Mucsi [43] used hyperspectral imaging combined with the
potentials of airborne scanning to monitor environmental processes, Van Leeuwen [44] used a new
approach using a combination of an artificial neural network (ANN) and a geographic information
system (GIS), Van Leeuwen et al. [45] presented the first results of a system that can monitor IEW
over a large area with sufficient detail at a high interval and in a timely matter. The methodology is
based on freely available satellite imagery, and a map with known water bodies to train the method to
identify inundations.

Due to data quality and reliability of both types of data collections, there have been initiatives
on the identification of IEW forming factors together with hazard mapping based on the static and
dynamic influential factors. Mezősi et al. [46] investigated potential impacts of climate change on
the Great Hungarian Plain based on regional climate models. They found a slight decrease of IEW
hazard. However, future prediction had high uncertainty, because IEW is an exceedingly complex
phenomenon, and they involved only climatic parameters into the hazard analysis. Barta [47] measured
hydro-meteorological and pedological factors that influence the formation of IEW. At his study area,
he was able to differentiate the two most frequent types of IEW: (1) the upwelling or vertical type,
where groundwater table is increasing, and (2) the accumulative or horizontal type, where the water
accumulates under gravity in the lowest areas due to limited infiltration and/or runoff, independent
from the groundwater table or communicating by capillary system. Based on his results, in case of
the accumulative type, the rate and temporal progress of infiltration, its extreme values in relation to
soil saturation were also estimated. The measurements and his evaluation were based on monitoring
points, and the results were not spatially assessed. Van Leeuwen et al. developed an approach using
a combination of an artificial neural network (ANN) and a geographic information system (GIS) in
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order to identify IEW, and investigate its forming factors in a study area in southern Hungary [44].
Nađ et al. [8] carried out spatial assessment of IEW risk in a study area in Serbia. The hazard map was
derived from analysis of satellite images from a period of four dates, the vulnerability map is based
on a land cover reclassification, the risk map was generated by the combination of the hazard and
impact maps.

Spatial modelling and mapping of environmental phenomena and variables are a complex task
since many of them are results of complex biological, chemical, and physical interactions between
the atmosphere, biosphere, lithosphere, pedosphere, hydrosphere, and anthroposphere that may
operate on different scales. As Hengl [48] pointed out, for spatial modelling of environmental variables
it is better to use hybrid techniques, which combine geostatistics with classical or more advanced
statistical techniques. Hatvani et al. [49] examined ice core-derived water stable isotope records
in an Antarctic macro region by using multiple linear regression analysis and ordinary kriging.
Fehér and Rakonczai [50] used spatio-temporal sequential Gaussian cosimulation for modelling
and analyzing shallow groundwater fluctuation and its effect on Hungarian landscapes. Recently,
geostatistics applied together with machine learning has gained much more attention in the spatial
modelling of environmental variables. For example, Koch et al. [51,52] used random forest regression
kriging and random forest combined with residual Gaussian simulation for modelling the shallow
groundwater and the depth of redox interface, respectively. Szabó et al. [53] compared the performance
of random-forest-based pedotransfer functions and random forest combined with kriging in deriving 3D
soil hydraulic properties. Pásztor et al. [54] mapped risk of IEW of a Hungarian county, Bozán et al. [55]
mapped relative frequency of IEW inundation on the Great Hungarian Plain. Both mapping processes
were carried out by Regression Kriging method, based on the relationship between the occurrence
of IEW inundations and its driving factors. The result map originated from the sum of the Multiple
Linear Regression model and the interpolated (Ordinary Kriging) residuals.

The present paper aimed at spatial modelling of IEW hazard in a Hungarian study area by two
hybrid spatial prediction approaches, which combine multivariate statistics and machine learning
with geostatistics. We applied Regression Kriging (RK) and Random Forest combined with Ordinary
Kriging (RFK) based on locally experienced IEW frequency observations, involving spatially exhaustive
auxiliary data representing IEW forming environmental factors. We also investigated the effect
of the applied predictors on the results. We ran the predictive models with two combinations of
auxiliary variables to test the effect of the introduction of new predictors (linked to at least one of the
determining factors).

2. Materials and Methods

2.1. Study Area

The investigated area (788.7 km2; Figure 1) which is situated in Jász-Nagykun-Szolnok County
in the lowland featured Great Hungarian Plain, is entitled “10.07. Kisújszállás Excess Water Protection
Section” (EWPS). It is supervised by the Middle Tisza District Water Directorate. Motivations for
selection of the studied area were as follows:

• majority of the area is hazarded due to excess water inundations;
• poor vertical drainage of its soils due to heavy texture (high amount of expanding clay minerals,

low permeability, limited infiltration);
• a significant part of the investigated area is traditionally agricultural land used for productive

farming, where arable crop production has dominated since the regulation of the rivers of the
Great Hungarian Plain;

• there are meteorological data series available in the necessary length and quality;
• the area represented a pilot for the improvement of integrated management practices for public

authorities to mitigate heavy rain risks and excess water hazard in the frame of the RAINMAN
project (INTERREG CE968: “RAINMAN”).
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middle part of the Great Hungarian Plain. Climate of the “10.07. Kisújszállás EWPS” is moderately 
warm-dry, the annual precipitation is 500–550 mm. The area is mainly suitable for growing drought-
tolerant, long growing, and high heat demanding varieties, where the importance of water retention 
and irrigation is increasing. In addition to the frequent droughts, the excess waters can cause 
considerable damage due to the lowland featured area.  

A significant part (~70–80 %) of the area is covered by Vertisols and Chernozems Reference Soil 
Groups according to World Reference Base for Soil Resources (WRB, [56]). Solonetz soils also occur 
in smaller patches. Due to its lowland character, the canal density is well above the national average. 
These canals generally serve drainage; however, a considerable length of the canals have dual 
purposes to serve irrigation water. Depth of groundwater varies, generally 0.5–2.5 m with seasonal 
fluctuation. 

Preliminary examination of the 10.07 Kisújszállás EWPS found that a significant part of this area 
was endangered by excess waters for some natural reasons. Especially in the eastern border areas, 
where 26 of the examined 39 years were inundated in a different level by excess water. It was typical 
for the water coverage to stay in the area for 10 to 15 days. A significant proportion of cultivated 
crops could be fully destroyed by such inundation. Land use is characterized by a high proportion of 
agricultural land (91%), and within it a very high proportion of arable land (close to 79%), well above 
the national average. Grassland (11.08%) and forest (7.77%) are also heavily represented. 

2.2. Reference Data 

The responsible Water Management Directorates provided seasonal maps of areas affected by 
IEW from the period between 1962 and 2014. This legacy information was digitized, vectorized, and 
then aggregated (Figure 2.). 

Figure 1. Overview map with relief of Hungary and the Study Area (‘10.07. Kisújszállás Excess Water
Protection Section’).

The area bordered by the Tisza River has a very diverse geomorphology, which covers the middle
part of the Great Hungarian Plain. Climate of the “10.07. Kisújszállás EWPS” is moderately warm-dry,
the annual precipitation is 500–550 mm. The area is mainly suitable for growing drought-tolerant, long
growing, and high heat demanding varieties, where the importance of water retention and irrigation is
increasing. In addition to the frequent droughts, the excess waters can cause considerable damage due
to the lowland featured area.

A significant part (~70–80%) of the area is covered by Vertisols and Chernozems Reference Soil
Groups according to World Reference Base for Soil Resources (WRB, [56]). Solonetz soils also occur in
smaller patches. Due to its lowland character, the canal density is well above the national average.
These canals generally serve drainage; however, a considerable length of the canals have dual purposes
to serve irrigation water. Depth of groundwater varies, generally 0.5–2.5 m with seasonal fluctuation.

Preliminary examination of the 10.07 Kisújszállás EWPS found that a significant part of this area
was endangered by excess waters for some natural reasons. Especially in the eastern border areas,
where 26 of the examined 39 years were inundated in a different level by excess water. It was typical
for the water coverage to stay in the area for 10 to 15 days. A significant proportion of cultivated
crops could be fully destroyed by such inundation. Land use is characterized by a high proportion of
agricultural land (91%), and within it a very high proportion of arable land (close to 79%), well above
the national average. Grassland (11.08%) and forest (7.77%) are also heavily represented.

2.2. Reference Data

The responsible Water Management Directorates provided seasonal maps of areas affected by
IEW from the period between 1962 and 2014. This legacy information was digitized, vectorized, and
then aggregated (Figure 2).

Map of temporally aggregated legacy information on IEW inundation frequency provided
reference data as follows. Multiple conditioned random samplings were carried out on the vectorized
legacy data. The first condition was to sample each patch of the map by points equal to the square
root of the area (in hectares) of the inundation frequency polygons. With the second condition, we
made an exception with small, but frequently inundated patches. If the polygon was smaller than
1 ha, but inundation frequency was greater than 5, the polygon got 1 sampling point. The third
condition referred to the minimum allowed distance between random points, which was set to 50 m
(the pixel size used in the spatial model). With the fourth condition, points lying over settlements
and water bodies were omitted. As any map, the used inundation frequency map just models the
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reality, thus it cannot be used as absolute reference and consequently its point sampling introduces
certain inaccuracies into the applied reference data set. To reduce this effect and in order to have a
more balanced sampling, ten random point datasets were constructed. The generated sample sets
contain ~13,000 virtual observation sites. The reference data sets were compiled as relative inundation
frequency, the values were extracted for each of the 10 random point data sets. In accordance with this,
mapping models were run 10 times.
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Figure 2. Map of temporally aggregated legacy information on inland excess water (IEW) inundation
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inundation events occurred within the period from where observations are available).

2.3. Environmental Co-Variables

The predictive models were run with two combinations of auxiliary variables (also called
environmental co-variables). Basic set (BS) consists of variables formerly used by Bozán et al. (2018).
To test the effect of the introduction of new predictors (linked to at least one of the determining factors),
an extended set (ES) was also compiled and used.

The effect of soil on the occurrence of IEW was modelled and spatially represented by the
soil physical property layer and the ‘landscape management soil type’ of the Digital Kreybig Soil
Information System (DKSIS; Pásztor et al., 2012). DKSIS is one of the most important nationwide
spatial soil databases of Hungary, it is the reambulated and GIS-developed version of the legacy data
of the soil survey lead by Kreybig [57,58]. In the legacy data, soil physical categories were elaborated
according to water retention capability, permeability, and infiltration rate. Landscape management soil
types were defined from the viewpoint of crop production, aggregated from pH, CaCO3 content, and
soil texture [59].

For a more sophisticated characterization of soils, the extended set was completed with
hydrophysical soil properties represented by continuous variables. The 3D Soil Hydraulic Database of
Europe (EU-SoilHydroGrids ver1.0, [60]) provides information on the most frequently required soil
hydraulic properties at 250 m resolution at 7 soil depths up to 2 m with full European coverage. The
following layers were used and clipped from EU-SoilHydroGrids as co-variables: saturated water
content (pF = 0), water content at field capacity (pF = 2.5), wilting point (pF = 4.2), and saturated
hydraulic conductivity. We converted the available information of the 7 available soil depths (0 cm, 5 cm,
15 cm, 30 cm, 60 cm, 100 cm, 200 cm) for 0–30 cm, 30–60 cm, 60–100 cm, 100–200 cm depth intervals.

Climate was represented by four spatial layers provided by the Hungarian Meteorological
Service. Average annual precipitation, average annual temperature, average annual evaporation, and
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average annual evapotranspiration were compiled using the MISH method elaborated for the spatial
interpolation of surface meteorological elements based on 30 year observation with 0.5′ resolution [61].
The layers are available at 100 m resolution.

In addition, humidity index (HUMI) layer was also applied in the prediction. HUMI is used
for the characterization of water stress periods. It was calculated by a 10% possibility of occurrence
of root square of sum of monthly weighted precipitation and sum of monthly weighted potential
evapotranspiration ratio [62]. The Hungarian Meteorological Service and the responsible Water
Management Directorates provided precipitation and evapotranspiration data of 68 meteorological
observation stations, covering the period of 1961–2014.

The effect of land use was characterized and spatially represented by a numeric coefficient
based on the National CORINE Land Cover 1:50,000 database (CLC50) [63]. The categories were
parameterized with expert-based land use indices characterizing their role in the formation of IEW [1].
According to our method, the lower the values of land use factor (i.e., artificial areas 0.6–1.0; arable
lands 0.3–1.0; permanent crops 2.5; pastures 0.6; forest and natural vegetation 1.0–5.0; wetlands 0.1;
etc.), the more significant their role in IEW development is.

Topography was taken into account based on the data of the countrywide Hungarian HydroDEM
Digital Elevation Model. The database, compiled by the General Directorate of Water Management, is
aimed at supporting flood risk mapping and risk management planning processes. The data were
available at 50 m per pixel raster resolution. Besides elevation, we applied the following morphometric
derivatives in the mapping process: Channel Network Base Level, Channel Network Distance (ES),
Closed Depressions, LS-Factor, Mass Balance Index, Multiresolution Index of Ridge Top Flatness
(MRRTF), Multiresolution Index of Valley Bottom Flatness (MRVBF), Plan Curvature, Profile Curvature,
Relative Slope Position (ES), SAGA Wetness Index, Topographic Position Index, Topographic Wetness
Index, Valley Depth (ES), Vertical Distance to Channel Network.

Hydrogeology was spatially represented and was taken into consideration by the depth and the
thickness of the uppermost aquitard, for which data was provided by the Geological and Geophysical
Institute of Hungary (predecessor of Mining and Geological Survey of Hungary), and the standard
depth of groundwater calculated on the average 10 highest values within the last 50 years. The
reference groundwater data of well observations were provided by the General Directorate of Water
Management. In order to get spatially exhaustive groundwater data, spatial interpolation (co-kriging)
had to be carried out, using elevation provided by HydroDEM as a proper spatial co-variable [64].

The movement of groundwater cannot be studied by itself, since the flow systems of the sub-surface
waters have a very significant influence on it. In order to clarify the role of sub-surface waters in the
formation of excess water inundations, a distinction should be made between recharge and discharge
zones. Groundwater flow, i.e., the difference between the amount of water infiltrated into and out of
the groundwater for 2 × 2-km cells was calculated. The map prepared and provided by the Hungarian
Mining and Geological Service, shows the recharge and discharge areas in the non-productive state,
where the recharge cells can be characterized with positive values and the discharge areas with negative
values (mm/year). It was used in the extended predictor variable set.

ES also contained a layer displaying distance from surface water bodies. It was calculated using
Euclidean distance metrics in ESRI ArcGIS 10.6 software.

2.4. Preprocessing of Environmental Co-Variables

The auxiliary data set was preprocessed for spatial analysis. Raster layers were transformed to a
common grid system, masked to the study area, and resampled to 50-m spatial resolution. Data of
Hungarian Meteorological Service and EU-SoilHydroGrids data were converted by cubic convolution
method. Since in the case of saturated hydraulic conductivity, cubic convolution produced artifacts,
we applied nearest neighbor method. Categorical maps were also converted into the 50-m grid system
by maximum area method.
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To reduce the number of predictor variables in RK, and to avoid their multicollinearity, principal
component analysis (PCA) was carried out on the continuous variables. Before PCA, all of the auxiliary
variables were normalized to a 0–255 scale. In further analysis, the first principal components were
used, which together explained 99% of the variance. Categorical variables were considered as indicator
variables. Every category got a new layer: in case of occurrence, the grid value was set to 255, while
out-of-category areas were coded with 0. In Random Forest combined with Ordinary Kriging (RFK)
models, categorical co-variables were handled as factors, therefore there was no need to distinguish
them in preprocessing.

2.5. The Applied Hybrid Prediction Methods

In this study, two hybrid prediction methods were used for spatial prediction of IEW risk, namely
Regression Kriging and Random Forest combined with Ordinary Kriging. Both techniques rest on the
same assumption, i.e., the target variable being mapped can be described and modelled in terms of a
deterministic component and a stochastic component, which is

Z(u) = m(u) + ε(u),

where m(u) is the deterministic component describing structural variation, ε(u) is the stochastic
component consisting of random variation that could be spatially correlated, and u is the vector of the
geographical coordinates.

From a practical point of view, the main difference between RK and RFK is that how they describe
and model the deterministic part of variation. In case of RK, the assumption made on the linear
relationship between the target variable and the environmental co-variables may be too rigorous
because this relationship could be more complex and this assumption can be valid just for the first
approximation (Malone et al., 2018). That was the reason why digital environmental mapping has been
interested in machine learning algorithms, which are able to describe and model the deterministic
component via predictive models by applying different principles. Among the machine learning
algorithms used in digital environmental mapping, random forest plays an accentuated role.

2.5.1. Regression Kriging (RK)

Regression Kriging (RK), also termed as Universal Kriging or Kriging with an External Drift [65],
combines regression of the target variable on environmental co-variables with kriging of the regression
residuals [65,66]. In this study, a Multiple Linear Regression (MLR) analysis was carried out to
describe and model the relationship between the reference data set (with extracted information of
IEW inundation frequency, see ‘2.2. Reference Data’ section) and the environmental co-variables listed
in ‘2.3. Environmental Co-Variables’ section. In the course of MLR analysis, 0.05 significance level
was applied, furthermore, the stepwise method was used for selecting the relevant environmental
co-variables. The model obtained by MLR analysis described the deterministic component of IEW
risk. The stochastic component was described by geostatistical modelling, namely Ordinary Kriging,
using the regression residuals, which represented the variation that could not be explained by the MLR
model [67]. The RK prediction can be obtained by summing the prediction of the MLR model and the
prediction of Ordinary Kriging.

Finally, ten realizations were generated with both basic and extended variable sets using the
ten random point datasets. Mean of the ten realizations provided the final result map of the IEW
indundation probability by RK. Standard deviation and median map were also compiled from the ten
realizations to test the robustness and indicate the reliability of the aggregated models.

2.5.2. Random Forest Combined with Ordinary Kriging (RFK)

Random Forest combined with Ordinary Kriging (RFK) is a relatively new hybrid method used in
digital environmental mapping [53,68,69], which combines predictive model of Random Forest with
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kriging of the Random Forest residuals [70]. In RFK, the deterministic component is described by
Random Forest (RF) as opposed to RK, where the deterministic component was described by MLR. The
RF algorithm generates (depending on its settings and on the type of the dependent variable) a number
of regression or classification trees. The model relies on averaging the result of the trees, which are
grown independently from each other [71]. In the course of RF modelling, the number of trees was set
at 100. As two environmental co-variable packages were applied for the RFK method: for BS mtry was
set at 7, for ES mtry was set at 14. The RF part of the RFK models provides a variable rank, reflecting
which co-variables play a more important role in the prediction model. The stochastic component was
described by geostatistical modelling, namely Ordinary Kriging, using the RF residuals. The RFK
prediction can be obtained by summing the prediction of RF and the prediction of Ordinary Kriging.

As in the case of RK, ten realizations were generated with both basic and extended variable sets
using the ten random point datasets. Mean of the ten realizations provided the final result map of the
IEW indundation probability by RFK. Standard deviation and median map were also compiled from
the ten realizations, to test the robustness and indicate the reliability of the aggregated models.

2.6. Validation

In the present research, airborne originated data on inundation frequency were used only in the
validation of mapping results. The data originated from relative IEW inundancy layer of Lechner
Knowledge Centre Nonprofit Ltd. [72], for the period 1998–2016. The dataset (made available by
courtesy) consists of 1451 points (Figure 3), inundation frequency is characterized in percentage
categorized by ten (0%–10%, 10%–20%, 20%–30%, etc.).
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For validation, the estimated inundation risk value of the four result maps (RKBS, RKES, RFKBS,
RFKES) were extracted at the locations of the 1451 validation points. As comparison, it was revealed if
the value of the result map intersected the percentage interval of the validation dataset, or else, how
many categories are the difference between the validation and the predicted values. The differences
are depicted in a bar chart.

Another kind of, only partly independent, validation was also carried out. The vectorized legacy
layer of inundation, which was also the basis of the randomly sampled reference data points, was
converted to raster format. Values of the four result maps (RKBS, RKES, RFKBS, RFKES) were rounded
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to integer. Then a pixel by pixel comparison was carried out between the legacy data and the four
result layers. The differences are depicted in a bar chart.

2.7. Software Background

Morphometric derivatives were calculated by SAGA GIS tools (Conrad et al., 2015). RK modelling
were run in SAGA GIS environment, while RFK modelling were carried out in R statistical software [73].
Calculation of mean, standard deviation, and median maps, as well as editing the layouts of result
maps were compiled in ArcGIS 10.6. Validation queries were run in ArcGIS 10.6, evaluation and
depiction of validation results were carried out in MS Excel.

3. Results

3.1. Result Maps

The four final result IEW indundation probability maps (mean of the ten realizations of RKBS,
RKES, RFKBS, RFKES) are presented in Figure 4. There are a few white pixels in the maps created with ES,
which means ‘NoData’ pixels. They are actually fishponds, and originate from the EU-SoilHydroGrids
co-variate layers, since water bodies are masked out in these originally 250-m resolution layers.ISPRS Int. J. Geo-Inf. 2020, 9, 268 10 of 18 

 

 
Figure 4. IEW indundation probability result maps of the two methods (RK – Regression Kriging, 
RFK – Regression Forest combined with Ordinary Kriging) by application of two co-variable packages 
(basic set (BS), extended set (ES)). 

As for visible comparison to the inundation map (Figure 4.), patterns of the more frequently 
inundated areas are similarly noticeable in all of the four result maps. Minimum values are ~0, mean 
values are 1.5, and standard deviations are 0.7 in all of the four result maps; however, maximum 
values are significantly higher in RFK predictions (9.4) than in RK predictions (8.2). The latter means 
that RK is capable of narrowing down the range of the reference data in the prediction, while RFK 
provides more reliable results. 

In map RFKES, structure of the ‘distance from surface water bodies’ layer become remarkably 
discernible. This appears in the variable importance rank of RF part in the RFK models (Table 1). RF 
indicated that the ‘distance from surface water bodies’ co-variable has the most predictive power in 
the prediction ten times out of ten cases. 

The second most important variables according to the RFKES models (Table 1) are ‘groundwater 
recharge and discharge areas’ (eight times) and ‘average annual precipitation’ (two times). The third 
place shows not so consistent image: ‘groundwater recharge and discharge areas’, ‘average annual 
temperature’, and ‘saturated water content in 0–30 cm soil depth’ occurs in two times, ‘Closed 
Depressions’, ‘Vertical Distance to Channel Network’, ‘average annual precipitation’, and ‘average 
annual evapotranspiration’ in one-one times. The fourth place in the ranking are ‘average annual 

Figure 4. IEW indundation probability result maps of the two methods (RK – Regression Kriging, RFK
– Regression Forest combined with Ordinary Kriging) by application of two co-variable packages (basic
set (BS), extended set (ES)).



ISPRS Int. J. Geo-Inf. 2020, 9, 268 10 of 17

As for visible comparison to the inundation map (Figure 4), patterns of the more frequently
inundated areas are similarly noticeable in all of the four result maps. Minimum values are ~0, mean
values are 1.5, and standard deviations are 0.7 in all of the four result maps; however, maximum values
are significantly higher in RFK predictions (9.4) than in RK predictions (8.2). The latter means that RK
is capable of narrowing down the range of the reference data in the prediction, while RFK provides
more reliable results.

In map RFKES, structure of the ‘distance from surface water bodies’ layer become remarkably
discernible. This appears in the variable importance rank of RF part in the RFK models (Table 1). RF
indicated that the ‘distance from surface water bodies’ co-variable has the most predictive power in
the prediction ten times out of ten cases.

Table 1. Occurrences of environmental co-variables in variable importance rank (position 1–5) of
Random Forest (RF) in the Random Forest combined with Ordinary Kriging (RFK) models (BS: basic
set, ES: extended set of co-variables).

Set Environmental Co-Variable
RFK BS RFK ES

1. 2. 3. 4. 5. 1. 2. 3. 4. 5.

ES

distance from surface water bodies 10
groundwater recharge and

discharge areas 8 2

saturated water content in 0–30 cm
soil depth 2 2

BS&ES

average annual precipitation 3 2 1 1 2 1 4
average annual temperature 1 2 1

average annual evapotranspiration 1 1 1 1 3
average annual evaporation 1 1 3 3 1 3

humidity index (HUMI) 1
Channel Network Base Level 1

Closed Depressions 1 2 1 1 2 1 1
Elevation 1

SAGA Wetness Index 5 1 1
Vertical Distance to Channel

Network 5 3 1 1 2 2

groundwater level 1 1 3 1

The second most important variables according to the RFKES models (Table 1) are ‘groundwater
recharge and discharge areas’ (eight times) and ‘average annual precipitation’ (two times). The
third place shows not so consistent image: ‘groundwater recharge and discharge areas’, ‘average
annual temperature’, and ‘saturated water content in 0–30 cm soil depth’ occurs in two times, ‘Closed
Depressions’, ‘Vertical Distance to Channel Network’, ‘average annual precipitation’, and ‘average
annual evapotranspiration’ in one-one times. The fourth place in the ranking are ‘average annual
precipitation’ (four times), ‘saturated water content in 0–30 cm soil depth’, and ‘Vertical Distance to
Channel Network’ (two times), ‘Closed Depressions’, and ‘average annual evaporation’ (one time).

The ranking in variable importance in RFKBS (Table 1) is formed as follows. ‘Vertical Distance
to Channel Network’ (five times), ‘average annual precipitation’ (three times), ‘Closed Depressions’,
and ‘average annual evapotranspiration’ (one time) have the most predictive power. Second place
have ‘Vertical Distance to Channel Network’ (three times), ‘Closed Depressions’, and ‘average annual
precipitation’ (two times), ‘average annual evapotranspiration’, ‘average annual evaporation’, and
‘groundwater level’ (one time). Third important variable is ‘SAGA Wetness Index’ (five times), ‘Vertical
Distance to Channel Network’, ‘Closed Depressions’, ‘average annual precipitation’, ‘average annual
evaporation’, and ‘groundwater level’ (one time). Fourth place have ‘groundwater level’, and ‘average
annual evaporation’ (three times), ‘Closed Depressions’, ‘SAGA Wetness Index’, ‘average annual
evapotranspiration’, and ‘average annual precipitation’ (one time).
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3.2. Validation

Results of validation by independent data are summarized in Table 2 and Figure 5. In all four
cases (RKBS, RKES, RFKBS, RFKES), difference is not more than one category (−1, 0 or 1) in 72%–73%
of the samples. Prediction is greater than observation in 37%–38% of the cases, observed values are
greater than predicted values in 34%–36% of the points.

Results of the pixel by pixel comparison between the legacy data and the four result layers are
summarized in Table 3 and Figure 6. According to the results, predicted values are significantly greater
than observed values. In all four cases, 1 category is the difference in more than half of the pixels.
However, in 85%–88% of the pixels, the difference is not more than one (−1, 0 or 1).

Table 2. Category-difference between the independent validation dataset, and the categorized predicted
values expressed in percentage.

Prediction −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

RKBS 0.07 0.14 0.83 1.65 1.59 5.86 8.41 2.96 14.40 26.74 32.12 3.79 0.96 0.41 0.07
RKES 0.07 0.14 0.90 1.59 1.65 6.34 7.86 3.03 13.71 27.71 31.63 4.00 0.90 0.41 0.07

RFKBS 0.07 0.14 0.76 1.79 1.38 6.27 7.99 3.38 12.68 27.84 31.84 4.14 1.38 0.34
RFKES 0.07 0.21 0.90 1.52 1.31 6.20 8.20 3.72 13.30 27.02 32.18 3.79 1.24 0.34
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Difference RKBS RKES RFKBS RFKES

6 0.0 0.0
5 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
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4. Discussion

Our results showed that there is no significant difference between the accuracy of the two methods
used in this study suggesting that both RK and RFK could be appropriate for predicting and mapping
IEW hazard. Although both methods performed equally well, we suggest the usage of RFK instead
of RK. First of all, numerous studies have demonstrated that random forest commonly outperforms
classical statistical techniques (e.g., [69,70,74]). This is because random forest is able to explore,
describe, and model complex, non-linear relationships between the response and predictor variables,
and in addition, it has been elaborated on a different philosophy aiming at giving the most accurate
prediction [71]. Besides, not only does less assumption have to be made on RFK than on RK, but also
less preprocessing is needed in RFK [69]. One of the main disadvantages of RK is that it can extrapolate
in the feature space, whereas random forest keeps the range of the reference data. Last but not least,
RFK can list the rank of the applied environmental co-variables providing explicit information on the
importance of them in making prediction.

More co-variables were involved for thematic improvement; however, we did not find that
involving them into the modelling would significantly increase the accuracy. On the other hand,
according to the importance ranks, the variables added to the ES proved to be the most determining
predictors. A possible explanation of similar accuracy of modelling with the two co-variate sets can be
the relatively poor spatial resolution of the EU-SoilHydroGrids and layer on recharge and discharge
areas, which thematically extended the set of the predictor environmental co-variables.

Our results on prediction importance are in accordance with those of Van Leeuwen et al. [44].
They found that relief had a very important influence in the investigations. We also found, that
morphometric derivatives show significant importance in variable importance ranking. The influence
of the soil was small in [44], which was assigned to the limited variation of soils on their small study
area. In our pilot soil properties, neither seemed essentially important co-variables, as only one soil
layer occur in the third and fourth place in the rank. Their results improved by including distance to
anthropogenic objects in the training and simulation. Similarly to our findings, distance from surface
water bodies proved to be the most important co-variable above all and the distance to channels proved
to be the most influential anthropogenic factor.

Our results can be the basis of further investigations, it can support authorities and decision makers
in water management projects and issues, improving integrated management practices. Prediction
accuracy can be increased by more frequently collected reference data. Van Leeuwen et al. [45]
presented a promising method that is capable of continuously identifying IEW over large areas for
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operative purposes. However, they concluded that more scientific research is needed to improve the
determination of the threshold for the active data processing workflow and to reduce the number of
false positives.

We could provide a more specific support, if we could distinguish which type of IEW appeared
at the area [47]. Furthermore, it would be useful to involve land use information and agricultural
practices into the investigations: not only as co-variable, but as part of an improved risk analysis model.
Since inundation of different land use categories implies different economical risks [8]. More precise
analyses could be achieved if annual information of land use changes (e.g., crop rotation, agricultural
engineering) were involved.

Finally, our results can contribute to climate scenario analyses. Mezősi et al. [46] involved
only climatic factors into their investigations, they used neither IEW inundation data, nor other
environmental factors. We assume, that involving more data and environmental factors can decrease
the uncertainty of future predictions.

According to our former experiences [54,55], the applied hybrid spatial prediction approaches
can be suggested to be used not only in relatively small, but in larger study areas as well.

5. Conclusions

To summarize in brief, our aim was spatial modelling of IEW hazard in a Hungarian study area
with two hybrid spatial prediction approaches, which combine multivariate statistics and machine
learning respectively with geostatistics. We applied Regression Kriging (RK) and Random Forest
combined with Ordinary Kriging (RFK) based on locally experienced IEW frequency observations,
involving spatially exhaustive auxiliary data representing IEW forming environmental factors. We
also investigated the effect of the applied predictors on the results. We ran the predictive models
with two combinations of auxiliary variables to test the effect of the introduction of new predictors.
According to the results of the two approaches, we did not find significant differences in their accuracy.
Although both methods are appropriate for predicting inland excess water hazard, we suggest the
usage of RFK, since (i) it is more suitable for revealing non-linear and more complex relations than
RK, (ii) it requires less presupposition on and preprocessing of the applied data (iii) keeps the range
of the reference data, while RK tends more heavily to smooth the estimations and (iv) it provides a
variable rank, providing explicit information on the importance of the used predictors. Involving more
co-variables into the mapping process for thematic extension did not prove to be effective according to
the accuracy assessment, presumably due to the poor spatial resolution of soil hydrophysical data and
the layer on recharge and discharge areas. We attribute this failure to the inference of the expected
improvement in thematic extension with the relatively poor spatial representation of the potential key
(inundation forming) factors.

Based on our results, we conclude that area-based conditioned random sampling on vectorized
legacy data is appropriate as reference data for IEW indundation probability mapping, if modelling is
based on multiple datasets. It would be interesting to make further investigations on the accuracy of
the results running the models not only with 10, but 20 or even more randomly sampled reference
datasets. In the recently occurring nationwide IEW inundation hazard mapping we have increased
this number to 20.

Although we did not find significant difference in accuracy provided by the two co-variable
packages, we consider the co-variables in the ES package more than useful. We are planning to make
further investigations on IEW hazard mapping with the application of more detailed spatial soil
hydrophysical data, when it is available for the territory of Hungary.

Significant improvement in prediction accuracy could be expected from more frequently collected
reference data. If IEW inundation events were monitored continuously, at unified spatial and temporal
resolution, both inundation probability and hazard could be predicted more accurately. The recently
developed National Earth Observation Information System [75] and its services could provide and are
also expected to make a significant step forward in this field.
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lehetőségei [Opportunities for inland excess water mapping]. In Proceedings of the A Magyar Földrajzi
Konferencia Tudományos Közleményei, Szeged, Hungary, 25–27 Ocotber 2001; p. 14.

39. Licskó, B. A belvizek légi felmérésének tapasztalatai [Experiences of airborne scanning of excess water
inundations]. In Proceedings of the MHT XXVII. Országos Vándorgyűlés; Magyar Hidrológiai Társaság,
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