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Abstract: In the current paper we assess different machine learning (ML) models and hybrid
geostatistical methods in the prediction of soil pH using digital elevation model derivates
(environmental covariates) and co-located soil parameters (soil covariates). The study was located in
the area of Grevena, Greece, where 266 disturbed soil samples were collected from randomly selected
locations and analyzed in the laboratory of the Soil and Water Resources Institute. The different
models that were assessed were random forests (RF), random forests kriging (RFK), gradient boosting
(GB), gradient boosting kriging (GBK), neural networks (NN), and neural networks kriging (NNK)
and finally, multiple linear regression (MLR), ordinary kriging (OK), and regression kriging (RK)
that although they are not ML models, they were used for comparison reasons. Both the GB and RF
models presented the best results in the study, with NN a close second. The introduction of OK to the
ML models’ residuals did not have a major impact. Classical geostatistical or hybrid geostatistical
methods without ML (OK, MLR, and RK) exhibited worse prediction accuracy compared to the
models that included ML. Furthermore, different implementations (methods and packages) of the
same ML models were also assessed. Regarding RF and GB, the different implementations that were
applied (ranger-ranger, randomForest-rf, xgboost-xgbTree, xgboost-xgbDART) led to similar results,
whereas in NN, the differences between the implementations used (nnet-nnet and nnet-avNNet)
were more distinct. Finally, ML models tuned through a random search optimization method were
compared with the same ML models with their default values. The results showed that the predictions
were improved by the optimization process only where the ML algorithms demanded a large number
of hyperparameters that needed tuning and there was a significant difference between the default
values and the optimized ones, like in the case of GB and NN, but not in RF. In general, the current
study concluded that although RF and GB presented approximately the same prediction accuracy,
RF had more consistent results, regardless of different packages, different hyperparameter selection
methods, or even the inclusion of OK in the ML models’ residuals.
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1. Introduction

Environmental sciences have always been interested in accurately predicting the spatial
distributions of different phenomena regarding soil, water, air, etc. [1–4]. Currently, the increased
numbers of digital data (Internet of Things, high-accuracy digital elevation models (DEM),
satellite images) present a great opportunity for improved prediction results.

Initially, the prediction of spatial phenomena was achieved with the use of spatial prediction
methods which mainly fell into the following two categories: deterministic methods, like inverse
distance weighting or nearest neighbors, and stochastic ones, like regression models and kriging
variations (e.g., ordinary kriging, universal kriging, etc.). Later on, hybrid methods were
introduced [5–7] that were partially deterministic, partially stochastic, like regression kriging (RK) or
kriging with external drift (KED). These methods tried to combine the advantages of both worlds,
deterministic and stochastic, achieving improved results. Currently, more innovative implementations
of the abovementioned hybrid methods are increasingly used; they introduce machine learning
(ML) as the deterministic part, along with kriging of the ML residuals as the stochastic part [8–12].
These methods are widely used in environmental sciences mainly for two reasons: their improved
prediction accuracy and the elimination of most of the restrictions (e.g., statistical assumptions) that
regression, kriging, and their variations (RK, KED, etc.) demand [9,13].

Usually, scientists, in their environmental studies, assess multiple ML models so as to find the
one that maximizes the prediction accuracy for a specific phenomenon [14–17]. They use specific
ML implementations (packages, methods) and try to estimate the best hyperparameters for their
models that produce the most accurate results. However, it is not obvious as to whether the different
ML implementations of the same ML model and the different hyperparameter selection methods
significantly affect the results.

Soil pH is a crucial soil parameter that affects both the soil properties and the plants themselves.
It greatly influences the behavior of chemical elements and, along with organic matter (OM), is the
most important parameter determining trace metal partitioning and aqueous speciation in soils [18].
It is considered of special importance in connection with nutrients [19] and micronutrients [20], and it
is the key variable that affects plant growth [21]. It controls soil fertility, regulates soil biogeochemical
processes, and influences the structure and functioning of terrestrial ecosystems [22]. Regarding its
spatial distribution, soil pH seems to be affected by terrain elevation [23] and exhibits spatial cross
correlation with other elements, like soil Fe [24]. Based on the above characteristics, soil pH was
considered the ideal soil parameter for the current study.

The aim of the present study is manifold. Firstly, we compare the predictive capabilities of the
different ML and non-ML models, with and without kriging of their residuals, in soil pH prediction.
The ML models that are assessed are random forests (RF), random forests kriging (RFK), gradient
boosting (GB), gradient boosting kriging (GBK), neural networks (NN), and neural networks kriging
(NNK),along with the non-ML models of multiple linear regression (MLR), ordinary kriging (OK),
and regression kriging (RK) as traditional/hybrid geostatistical methods. Secondly, the effects of the
different implementations (methods and packages in R) of the same ML models are also evaluated.
For the RF model, the ranger and rf methods are used; for GB, xgbTree and xgbDART; and for
NN, nnet and avNNet. Finally, the last goal is to investigate whether the selection methods of the
hyperparameters (default vs. optimized through random search) affect the results of the different
ML models.

2. Materials and Methods

2.1. Soil Data and Environmental Covariates Collection

The study area (Figure 1) is located in the regional unit of Grevena in northern Greece, and it extends
from latitude 40◦01′50.76′′ N to 40◦14′43.79′′ N and from longitude 21◦17′30.06′′ E to 21◦33′25.43′′ E
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in the World Geodetic System of 1984 (WGS84). The altitude ranges from approximately 500 m above
sea level up to 900 m further north, and the area covers approximately 270 km2.

Figure 1. The 266 survey points and the study area (Grevena, Greece).

A soil survey was conducted for three years (2015, 2017, and 2018), mainly around autumn and
early winter of each year. Specifically, 266 disturbed soil samples were obtained from randomly
selected locations using a simple random sampling design (Soil Survey Division Staff, 2017) with a soil
auger from depth 0–30 cm of the surface soil. At each location, representative samples were taken
(2–3) close to each other and pooled together to make a composite sample. Global Positioning System
(GPS) receivers were utilized to identify the sampling positions. The minimum distances between two
sampling points range around 50 m, and the average distance between points is 300 m.

In this study, soil covariates and environmental covariates were used (Table 1). Regarding soil
covariates, the 266 soil samples that were collected from the Grevena area were analyzed in the
laboratory of the Soil and Water Resources Institute for clay (C), silt (Si), sand (S), electric conductivity
(EC), organic matter (OM), nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), iron (Fe),
zinc (Zn), manganese (Mn), copper (Cu), and boron (B). Moreover, pH analysis for the same locations
was conducted to calibrate the models and to assess the prediction results.

The environmental covariates were derived from the second version of the Aster Global Digital
Elevation Model (GDEM2) using SAGA-GIS software modules. Aster consists of 1◦ × 1◦ tiles (30 m
resolution) in the World Geodetic System 1984 (WGS84), reprojected to the Greek Geodetic Reference
System 1987 (GGRS87) for this study (Figure 2).

Table 1. Covariates used in the study.

Covariate Category Unit Method (for Soil Covariates)

1 Clay (C) soil % Particle size analysis with hydrometer (or Bouyoucos)
2 Silt (Si) soil % Same as for clay
3 Sand (S) soil % Same as for clay
4 Electric conductivity (EC) soil mS/cm In soil saturation extract
5 Organic matter (OM) soil % Wet digestion
6 Nitrogen (N) soil ppm With 2M KCl
7 Phosphorus (P) soil ppm Olsen
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Table 1. Cont.

Covariate Category Unit Method (for Soil Covariates)

8 Potassium (K) soil ppm With ammonium acetate at pH = 7.0
9 Magnesium (Mg) soil ppm With ammonium acetate at pH = 7.0
10 Iron (Fe) soil ppm DTPA
11 Zinc (Zn) soil ppm DTPA
12 Manganese (Mn) soil ppm DTPA
13 Copper (Cu) soil ppm DTPA
14 Boron (B) soil ppm Azomethine-H
15 Elevation (altitude) env/tal m -
16 Slope env/tal radians -
17 Aspect env/tal radians -
18 SAGA wetness index (TWI) env/tal -
19 Negative topographic openness (openn) env/tal radians -
20 Positive topographic openness (openp) env/tal radians -
21 Deviation from mean value (devmean) env/tal -
22 Multiresolution index of valley bottom flatness (vbf) env/tal -

DTPA: Diethylenetriaminepentaacetic acid.

Figure 2. A digital elevation model (DEM) of the study area along with the training data locations in
red circles and testing data locations in black crosses.

2.2. Software

The statistical analysis was implemented using statistical software R (version 3.5.3) and the caret
package [25]. In the current study, different packages and methods were utilized in R through caret:
a) xgboost along with the xgbTree methods from the xgboost package for GB, b) the randomForest
and ranger packages for RF, and c) the avNNet and nnet methods from the nnet package for NN.
The geostatistics in the current paper were implemented using the gstat package. Finally, SAGA-GIS
software (http://www.saga-gis.org/en/index.html) was used to produce the different terrain attributes.

2.3. Regression Kriging

Regression kriging is a hybrid geostatistical method that combines multiple linear regression
between the target soil variable and secondary parameters with geostatistical methods (e.g., ordinary

http://www.saga-gis.org/en/index.html
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kriging or simple kriging) on the residuals of the regression. Its goal is to optimize the prediction of
soil properties in unsampled locations [26] based on the assumption that the deterministic component
of the target soil variable is accounted for by the regression model, while the model residuals represent
the spatially varying but dependent component [7].

Specifically, in the case of multiple linear regression and ordinary kriging, the prediction ẐRK(si)

for si locations is the sum of the prediction of the regression ẐR(si) for the same locations and the
prediction of the kriged residuals of the regression ε̂OK, as seen in the following equation.

ẐRK(si) = ẐR(si) + ε̂OK (1)

In this equation there are two distinct parts. The first one, ẐR(si), is the deterministic component,
and the second one, ε̂OK, is the stochastic. These two distinct parts allow for separate interpretation of
the two components and the application of different regression techniques [6].

2.4. Random Forests Kriging

Random forest [27,28] is a machine learning model based on classification and regression
trees [29] that provides increased prediction accuracy. In RF, a large collection of de-correlated,
noisy, approximately unbiased trees are built and averaged so as to reduce model variance and cope
with instability [30]. This is achieved by growing multiple trees combining twofold randomness:
random selection of examples in the training dataset and random features used from the same dataset.
As in every machine learning model, there are parameters that can be optimized; in the case of the
ranger/randomForest packages, there are mainly two: mtry and ntree (Table 2).

Table 2. Random forests hyperparameters.

Hyperparameter Packages Description

mtry ranger, randomForest The number of random features used in each tree.
ntree ranger, randomForest The number of grown trees.

Even though there might be more hyperparameters depending on the RF packages that are
utilized, these two presented here are the most commonly used. The packages utilized in the current
study were ranger [31] and randomForest [32].

Finally, OK was applied to the RF residuals (ε̂OK) and then added to the RF prediction results
ẐRF(si) at the si locations so as to estimate RFK according to Equation (2):

ẐRFK(si) = ẐRF(si) + ε̂OK. (2)

This resembles Equation (1); however, the deterministic component ẐRF(si) uses random forests
instead of regression.

2.5. Gradient Boosting Kriging

In gradient boosting [33], multiple decision trees are grown sequentially using information
from previously grown existing trees. Even though each tree is small and with few terminal nodes,
they manage to boost the overall performance by addressing problematic observations with large
errors. That way, they improve the model in areas where it does not perform well, resulting in a
more accurate prediction model. Specifically in the case of gradient boosting, each tree is fitted to
the residuals of the previous model using a gradient descent algorithm that minimize a loss function
associated with the whole ensemble.

There are multiple packages that can perform GB (CatBoost, LightGBM, XGBoost, etc.),
with different implementations and different results. In the current study, “eXtreme Gradient
Boosting” from the XGBoost [34] package was utilized through caret by implementing two different
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methods: XgbDART and xgbTree. The eXtreme Gradient Boosting is considered an efficient and
scalable implementation of the gradient boosting framework in which a more regularized model
formalization is used to control overfitting and achieve better performance. Some of its advantages are
the following:

• A regularization technique that helps reducing overfitting;
• Support for user-defined objective functions and evaluation metrics;
• Improved efficient tree pruning mechanism;
• Multiple technical improvements like parallel processing, “built-in cross-validation”, and better

handling of missing values.

There are multiple parameters that need to be tuned in this model (Table 3), and they can be
classified into a) the general parameters that control the booster type, b) the linear booster parameters
that control the performance of the linear booster, and c) the learning task parameters that specify the
learning task and the corresponding learning objective.

Table 3. Gradient boosting hyperparameters.

Hyperparameter Methods Description

nrounds xgbDART, xgbTree Boosting iterations
max_depth xgbDART, xgbTree Max tree depth
eta xgbDART, xgbTree Shrinkage
gamma xgbDART, xgbTree Minimum loss reduction
subsample xgbDART, xgbTree Subsample percentage
colsample_bytree xgbDART, xgbTree Subsample ratio of columns
rate_drop xgbDART Fraction of trees dropped
skip_drop xgbDART Probability of skipping drop-out
min_child_weight xgbDART, xgbTree Minimum sum of instance weight

The introduction of kriging as the stochastic part (GBK) is calculated based on the
following equation:

ẐGBK(si) = ẐGB(si) + ε̂OK. (3)

The OK method is performed on the residuals of the GB (ε̂OK), and the OK results are added to
the GB predictions ẐGB(si).

2.6. Neural Networks Kriging

Neural networks (or artificial neural networks) are powerful tools, modeled loosely after the
human brain, that use a machine learning approach to quantify and model complex behavior and
patterns. They perform tasks by considering examples, generally without being programmed with
task-specific rules. A NN consists of a set of interconnected units called neurons, which estimate the
nonlinear correlations between each variable. The input neurons, which represent predictor variables,
are connected to a single or multiple layer(s) of hidden neurons, which are then linked to the output
neurons that represent the target soil variable [35].

For the NN in the current study, the nnet package was used with two different methods: nnet and
avNNet. The nnet package [36,37] is software for feed-forward neural networks with a single hidden
layer, and for multinomial log-linear models. In a feed-forward NN, the information moves in only
one direction (forward); from the input nodes, through the hidden nodes, and to the output nodes.
The nnet method implements exactly this model to predict the results.

The avNNet method of the nnet package aggregates several feed-forward neural network models
by fitting different random numbers of seeds. In the case of regression, like that used in the current study,
all the resulting models were used for prediction by averaging the results coming from each network.
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The exact hyperparameters of the NN that were tuned in the current study, along with their
descriptions, are presented in Table 4. Most of them were used in both methods, apart from bag,
which was used only in avNNet.

Table 4. Neural networks hyperparameters.

Hyperparameter Methods Description

size avNNet, nnet The number of units in the hidden layer.
decay avNNet, nnet The parameter for weight decay.
bag avNNet A logical value for bagging for each repeat.
linout avNNet, nnet A switch for linear output units.
trace avNNet, nnet A switch for tracing optimization.
maxit avNNet, nnet The maximum number of iterations.

Finally, the neural networks kriging (NNK) is based on the following equation:

ẐNNK(si) = ẐNN(si) + ε̂OK. (4)

The residuals ε̂OK are used for OK, and the prediction results are added to the NN prediction.

2.7. Optimization of the Hyperparameters

Every ML model needs to have its hyperparameters defined before training. This could be
achieved by using the following:

• Default values based on the literature, library authors’ recommendations, previous experience, etc.;
• Optimizations techniques, through a process called tuning.

Tuning can be implemented in multiple ways, like grid search, random search, Sobol sequence,
manual, and others. Grid search and random search are the most commonly applied. In grid search,
every combination from a preset list of values of the hyperparameters is estimated and used to evaluate
the model for each combination. In the current study, however, random search was performed, in which
random combinations of parameters were employed from a range of values. Random search was
preferred here due to the improved results that it provides according to the literature [38]. The model
with the set of parameters which gave the highest accuracy was considered to be the best and was
used for prediction.

Random search was implemented through the caret package. It is important to state here that in
general, the hyperparameters that can be optimized through caret are usually fewer than the actual
parameters that the package can support by itself. However, they are usually the most important ones
that significantly affect the results of each model. Along with random search, the same ML models
were trained with default values, and the results were compared.

2.8. Error Assessment

The 266 samples of the current study were randomly split into two datasets: the training dataset
(80% of the data) that was used for estimating the models, and the testing dataset (20% of the data)
that was used for assessing the different models. The optimization of the models’ parameters was
implemented using 10-fold cross-validation techniques in the training dataset.

Different metrics (Table 5) were employed to estimate model performance based on the difference
between the observations and the predictions on the testing data set. The root-mean-square error
(RMSE) and the mean absolute error (MAE) were estimated based on the measured value Z(si) and its
prediction Ẑ(si) for the locations si of the samples. Lower values of RMSE and MAE are associated
with better predictive results. Also, the coefficient of determination (R2), which represents the amount
of variation explained by the model, was estimated. The terms SSE and SSTO represent the error sum
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of squares and the total sum of squares, respectively. The coefficient of determination ranges from 0 to
1, where for 0 (zero), no variation is explained by the model, and for 1 (one), all variation is explained
by the model.

Table 5. Measurements to assess model performance.

Metric Equation

Mean absolute error (MAE) MAE =
∑n

i=1|ẑ(si)−z(si)|
n

Root-mean-square error (RMSE) RMSE =

√∑n
i=1[ẑ(si)−z(si)]

2

n
Coefficient of determination (R2) R2 = 1− SSE

SSTO

SSE: Error sum of squares. SSTO: total sum of squares.

3. Results

3.1. Exploratory Data Analysis

The soil co-variables that were measured in the laboratory were clay (C), silt (Si), sand (S), electrical
conductivity (EC), organic matter (OM), nitrogen (N), phosphorus (P), potassium (K), magnesium
(Mg), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), and pH from the 266 locations
in the Grevena area (Table 6). Some of them, those that significantly deviated from normality and
strongly affected the residuals of MLR, were log transformed (EC, N, Fe, Mn, Cu, B, and Zn). The rest
remained untransformed because they did not significantly affect the normality assumption of the
MLR residuals.

Table 6. Descriptive statistics of auxiliary variables from the 266 locations in the Grevena area, Greece.

Variables Mean SD Median Min Max Range Skew Kurtosis

�S 28.62 10.14 26 10 68 58 0.93 1.23
C** 37.26 9.29 38 10 62 52 0.03 −0.39
SI 34.12 7.86 32 16 60 44 0.33 −0.22
pH 7.52 0.51 7.66 5.12 8.13 3.01 −2.03 4.38
OM** 1.93 0.56 1.86 0.37 4.68 4.31 0.86 1.94
P** 9.84 6.47 8.09 1.21 34.41 33.2 1.31 1.6
K** 310.03 158.71 284 73 1190 1117 1.89 5.8
MG** 606.95 356.25 523 124 2438 2314 1.65 3.66
Devmean* 0.2 0.61 0.17 −1.29 1.84 3.13 −0.1 −0.43
Slope 0.14 0.07 0.14 0.02 0.4 0.38 0.67 0.47
Altitude 685.15 92.28 670 527 935 408 0.44 −0.54
TWI 10.34 1.54 9.92 8.18 18.19 10.02 2.06 6.02
Vbf 0.17 0.31 0.01 0 1.85 1.85 2.2 5.05
Aspect 2.75 1.59 2.74 0.08 6.28 6.2 0.31 −0.49
Openn 1.51 0.03 1.51 1.4 1.57 0.17 −0.62 0.3
Openp 1.53 0.03 1.53 1.44 1.57 0.13 −0.65 0.22
logEC* −0.83 0.29 −0.87 −1.81 0.38 2.19 0.68 2.42
logN** 1.99 0.76 2.05 −1.17 3.96 5.13 −0.72 2.11
logFe** 2.89 0.54 2.79 1.53 4.64 3.11 0.79 0.77
logMn** 2.13 0.57 2.12 0.87 3.94 3.08 0.32 0.18
logCu 0.37 0.53 0.28 −0.87 2.08 2.95 0.85 0.88
logB −1.18 0.48 −1.17 −2.3 −0.12 2.19 −0.36 −0.35
logZn −0.97 0.61 −1.1 −2.3 0.95 3.25 0.64 −0.06

Notes: There were 266 measurements for each variable. In bold are the variables used for regression after the
stepwise procedure. * Correlation is significant at p < 0.05. ** Correlation is significant at p < 0.001.

Based on the Pearson correlation analysis for pH (Figure 3), there was a statistically significantly
strong correlation with logFe (p ≤ 0.01, r = −0.8) and logMn (p ≤ 0.01, r = −0.7) and moderate
correlation with Mg and Si. In general, the soil covariates exhibited stronger correlation with the pH
than did the environmental ones.
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Figure 3. Pearson correlation analysis of data.
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3.2. Modelling and Parameter Estimation

Regression kriging was conducted on the training data set by combining multiple linear regression
between the target soil variable and the secondary parameters with ordinary kriging on the residuals
of the regression (Eq. 1).

A stepwise procedure was utilized to select the best regression predictors, which in our study
were C, OM, P, K, Mg, Devmean, Altitude, Aspect, logEC, logN, logFe, logMn, and logZn. The final
regression equation was:

YpH = 9.477+ 0.007547C + 0.1284OM− 0.008084P + 0.0004580K
−0.0003164Mg + 0.1321 log EC− 0.1287 log N − 0.2764 log Fe
−0.4176 log Mn− 0.6231 log Zn− 0.06426Devmean
−0.0004279Altitude− 0.01974Aspect.

(5)

The residuals of the regression presented a distribution close to normal, as seen in the
residual frequency distribution diagram (Figure 4A) and normal Q–Q plot (Figure 4B, bottom),
having approximately constant standard deviation errors (homoscedasticity) (Figure 4B, top).
Also, the Shapiro–Wilk statistic (W) for the residuals was computed (W = 0.98588, p-value = 0.05638).
Based on the results, for the significance level of 0.05, we cannot reject the hypothesis that the residuals
come from a population which has a normal distribution.

Figure 4. Multiple linear regression (MLR) frequency distribution diagram and regression residual plots.

For random forests, a 10-fold cross-validation method on the training data set was applied to pick
the optimal hyperparameter values via the random search tuning process (Table 7). The default mtry
value was estimated at close to one-third of the total number of variables used in RF [30], which in this
case was 8.

The number of grown trees (num.trees in ranger and ntree in randomForest) could not be tuned
through caret, so the default value of the packages was used (500) for both of them. Hyphens (empty
cells) in Table 7, Table 8, and Table 9 were used to signify the lack of a hyperparameter for the specific
method. For the estimation of RFK for each package, the residuals of RF were used for OK interpolation,
and the results were added to the RF according to Equation (2).
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Table 7. The specific hyperparameters of random forests.

Hyperparameter Ranger (Default Values) rf (Default Values) Ranger (Optimized Values) rf (Optimized Values)

mtry 8 8 9 9
splitrule variance - variance -
min.node.size 5 - 2 -

Table 8. The specific hyperparameters of gradient boosting models.

Hyperparameter xgbDART (Default Values) xgbTree (Default Values) xgbDART (Optimized Values) xgbTree (Optimized Values)

nrounds 500 500 954 199
max_depth 6 6 1 4
eta 0.3 0.3 0.4247 0.1828
gamma 0 0 0.59 1.002
subsample 0.5 0.5 0.7706 0.508
colsample_bytree 0.5 0.5 0.3876 0.358
rate_drop 0 - 0.3613 -
skip_drop 0 - 0.8432 -
min_child_weight 1 1 0 4

Table 9. The specific hyperparameters of neural networks.

Hyperparameter nnet (Default Values) avNNet (Default Values) nnet (Optimized Values) avNNet (Optimized Values)

size 20 20 2 15
decay 0 0 0.3892 0.0144
bag - TRUE - TRUE
linout TRUE TRUE TRUE TRUE
trace FALSE FALSE FALSE FALSE
maxit 100 100 100 100
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Gradient boosting has a plethora of hyperparameters that need to be defined (Table 8). For the
default values, the libraries’ default parameters were chosen. In the case of optimized values,
the random search tuning process was used with 10-fold cross-validation of the training data. At the
end, the residuals of the GB were used for OK and the results were added (Equation (3)) in order to
estimate the GBK for each method.

Finally, regarding NN, the hyperparameters that were used are presented in Table 9. The default
values were the ones that the library proposed. For the optimized hyperparameters, “size” and “decay”
were tuned through a random search tuning process with 10-fold cross-validation.

Similar to the previous ML models, the residuals of NN were used for OK, and the results were
added (Equation (4)) in order to estimate the NNK.

3.3. Performance Assessment

The models in the current study were assessed based on the difference between the pH observations
and their predictions. According to the prediction results, machine learning algorithms (RF, GB,
NN) exhibited better accuracy in every metric when compared to the MLR, RK, or OK (Table 10).
For example, RK (the best of the non-ML models) presented higher RMSE than almost all the ML
algorithms, apart from NNnnD (NN with its default values). In more detail, RK’s RMSE (0.336) was
14% higher compared to the mean of all the ML RMSE values (0.289), and RK’s R2 (0.626) was 15%
lower than the mean R2 of all ML models (0.723). Comparing the best implementation of each ML
model, RK exhibited a 23% decrease in RMSE and 25% increase in R2 in the case of RFrgO (RMSE of
0.259, R2 of 0.781), a 22% decrease in RMSE and 24% increase in R2 in the case of GBKxgbT (RMSE of
0.262, R2 of 0.778), and finally, a 20% decrease in RMSE and 21% increase in R2 in the case of NNnnO
(RMSE of 0.268, R2 of 0.760). The results were even worse for the OK. This was expected though,
since OK does not incorporate the information of multiple covariates that the other methods do.

Table 10. Prediction results for pH.

Model Package-Method Hyperparameters/rs RMSE R2 MAE

Ordinary kriging (OK) - - 0.482 0.236 0.328
Multiple regression (MLR) - - 0.345 0.608 0.254
Regression kriging (RK) - - 0.336 0.626 0.242
Random forests (RFrgD) ranger-ranger default 0.260 0.783 0.183
Random forests (RFrgO) ranger-ranger optimized 0.259 0.781 0.182
Random forests kriging (RFKrg) ranger-ranger optimized 0.264 0.779 0.178
Random forests (RFrfD) randomForest-rf default 0.260 0.780 0.184
Random forests (RFrfO) randomForest-rf optimized 0.259 0.784 0.180
Random forests kriging (RFKrf) randomForest-rf optimized 0.263 0.781 0.178
Gradient boosting (GBxgbTD) xgboost-xgbTree default 0.293 0.719 0.224
Gradient boosting (GBxgbTO) xgboost-xgbTree optimized 0.279 0.750 0.190
Gradient boosting kriging (GBKxgbT) xgboost-xgbTree optimized 0.262 0.778 0.177
Gradient boosting (GBxgbDD) xgboost-xgbDART default 0.310 0.690 0.232
Gradient boosting (GBxgbDO) xgboost-xgbDART optimized 0.283 0.743 0.203
Gradient boosting kriging (GBKxgbD) xgboost-xgbDART optimized 0.271 0.765 0.187
Neural networks (NNnnD) nnet-nnet default 0.468 0.278 0.312
Neural networks (NNnnO) nnet-nnet optimized 0.268 0.760 0.192
Neural networks kriging (NNKnn) nnet-nnet optimized 0.272 0.766 0.182
Neural networks (NNavD) nnet-avNNet default 0.353 0.618 0.261
Neural networks (NNavO) nnet-avNNet optimized 0.299 0.704 0.218
Neural networks kriging (NNKav) nnet-avNNet optimized 0.274 0.757 0.188

Among the ML models, RF exhibited high prediction accuracy, with the RFrfO model being
the best one with small RMSE (0.259), high R2 (0.784), and low MAE (0.180). GB was very close,
with GBKxgbT (RMSE:0.262, R2: 0.778, MAE:0.177) presenting the best results among the GB models.
NN performed slightly worse, with NNnnO being the best NN model, scoring 0.268 in RMSE and
0.760 in R2; this was not too far from the other ML models, as can also be seen in Figure 5.
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Figure 5. Results of the optimized machine learning (ML) models.

Optimization of the hyperparameters improved the prediction accuracy in the GB and NN models.
Especially in the case of NN, the default values led to very poor quality models, as seen from NNnnD,
which had the worst prediction results (RMSE of 0.468, R2 of 0.278, MAE of 0.312), and NNavD
(RMSE of 0.353, R2 of 0.618, MAE of 0.261), the second worst among all ML models. In the case of
RF, there were only a few hyperparameters involved in the optimization, and the default values were
close to the optimized ones; therefore, the results were not really affected. The default values were
based on suggestions from the literature and the libraries’ default values, which in our case were
mtry = 8 and ntree = 500, almost the same as the optimization values (mtry = 9 and ntree = 500).
Consequently, there were only minor differences in the models’ results between the default and
optimized hyperparameters.

Kriging interpolation of the residuals did not significantly affect the results. It slightly improved
NN and RK, whereas for RF, the results were slightly worsened. In more detail, in the case of GB,
kriging of the residuals, as seen in GBKxgbT, improved the RMSE by approximately 6% and R2 by 3.8%
compared to GBxgbTO, while GBKxgbD’s RMSE was improved by 4% and R2 by 2.4% compared to
GBxgbDO. Regarding RF, the kriging of the residuals led to a minor increase in RFrgO’s RMSE by 1.7%
and decrease in R2 by 0.2% as seen in RFKrg. Similarly there was a slight increase in RFrfO’s RMSE
by 1.7% and decrease in R2 by 0.4% (RFKrf). For NN, the introduction of OK to the residuals led to a
decrease in NNavO’s RMSE by 8% and an increase in R2 by 7.5% compared to NNKav, while the use
of the nnet package (NNnnO) in NN led to similar results with a small increase in RMSE (1.3%) and
decrease in R2 (0.7%), as seen in NNKnn. For RK, there was also an improvement with the introduction
of OK to the residuals by 2.5% in RMSE and 3% in R2.

The use of different implementations (packages/methods) of the same ML models did not lead to
major differences in the prediction results for RF and GB. In the case of RF, the results of RFrgO and
RFrfO were similar, while in the case of GB (GBxgbTO and GBxgbDO), there were minor differences,
with GBxgbTO being marginally better (RMSE of 0.279, R2 of 0.750, MAE of 0.190). In NN, the differences
between the two methods (NNnnO and NNavO) were slightly larger.

It is worth mentioning that there were differences in the variability of the results between
the different ML models. Specifically, RF results had the smallest variability (RMSE SD = 0.002,
R2 SD = 0.002) compared to GB (RMSE SD = 0.32, R2 SD = 0.017) and NN (RMSE SD = 0.189,
R2 SD = 0.078), regardless of the different packages that were utilized, the selection method of the
hyperparameters, or the inclusion (or not) of OK of the residuals.
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Regarding R2 in general, the values were high (Figure 5), over 0.6, especially for the ML models,
apart from NNnnD. Therefore, the models explained most of the total variation of the pH, and the
covariates used seem to strongly affect the soil pH. The MAE consistently had very low values in RF
models, ranging from 0.178 up to 0.184. The GB results were close, but with higher variability (0.177
up to 0.232), and NN scored worse, with higher values ranging from 0.182 up to 0.312.

The covariate importance assessments (Figure 6) revealed that iron (Fe), manganese (Mn),
and magnesium (Mg) were the most influential variables for both RF and GB. For iron (Fe) specifically,
high influence on soil pH was expected according to the relevant literature [18,24]. Among the
environmental variables, altitude was the one with the higher score for both ML models.

Figure 6. Relative importance of covariates (random forests on the left and gradient boosting on
the right).

4. Discussion and Conclusions

From the results of the current study, it is obvious that ML models outperformed the other
methods in predicting soil pH, like MLR or models that use kriging (RK or OK). Additionally, the ML
models were easy to use, without the statistical assumptions and requisites that linear regression and
kriging interpolation require. However, ML models demand significant computing power, along with
knowledge and attention to the tuning process of the models. Overall, based on the results, the authors
of the current study tend to agree with the claim that “. . . kriging as a spatial prediction technique
might be redundant, but solid knowledge of geostatistics and statistics in general is important more
than ever” [13].

The assessment of the prediction results of the different ML models shows that GB and RF have
the best performance, with NN being slightly less accurate. The NN’s lesser results could be due to
the fact that NN demands a big number of data in order to produce good predictions, e.g., 10 to 100
times the number of features or 10 times the number of inputs [39,40]. The 266 different locations
and the 23 variables might not be enough for NN to show its predictive capabilities. Also, different
implementations of the same ML model did not lead to major differences for RF and GB, whereas in
NN, the differences were slightly bigger. Different implementations of the same ML models mainly
introduce minor variations of the same ML models that might produce better results but only in
some cases.

Optimization of the hyperparameters improved the prediction results in the GB and NN models
due to the increased number of parameters and the significant difference between the default values
and the optimized ones. It is obvious that their careful and thorough fine tuning is a crucial step for
achieving the best results. In the case of RF, the hyperparameters were few and the default values were
close to the optimized ones, leading to a minor difference in the prediction results.
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The introduction of kriging interpolation of the ML models’ residuals did not really improve the
results. This is in accordance with the findings by Henglet al. [41], stating that “. . . as a rule of thumb
where once a machine learning model explains over 60% of variation in data, chances are that kriging
is not worth the computational effort”.

The differences in the variability of the ML prediction results were expected based on the
above-mentioned findings. In general, RF exhibited more consistent results with smaller variability,
regardless of different packages or methods, different hyperparameter selection methods, or even the
inclusion of kriging to the ML model residuals. This could be considered as an advantage in some cases
where consistency is a requirement. The increased variability of the prediction results of the other ML
models, however, suggests that they have the potential to further improve their prediction accuracy,
for example, through a different tuning process or the use of different packages and implementations.
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