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Abstract: Decision tree (DT) algorithms are important non-parametric tools used for land cover
classification. While different DTs have been applied to Landsat land cover classification, their
individual classification accuracies and performance have not been compared, especially on their
effectiveness to produce accurate thresholds for developing rulesets for object-based land cover
classification. Here, the focus was on comparing the performance of five DT algorithms: Tree,
C5.0, Rpart, Ipred, and Party. These DT algorithms were used to classify ten land cover classes
using Landsat 8 images on the Copperbelt Province of Zambia. Classification was done using
object-based image analysis (OBIA) through the development of rulesets with thresholds defined by
the DTs. The performance of the DT algorithms was assessed based on: (1) DT accuracy through
cross-validation; (2) land cover classification accuracy of thematic maps; and (3) other structure
properties such as the sizes of the tree diagrams and variable selection abilities. The results indicate
that only the rulesets developed from DT algorithms with simple structures and a minimum number
of variables produced high land cover classification accuracies (overall accuracy > 88%). Thus,
algorithms such as Tree and Rpart produced higher classification results as compared to C5.0 and
Party DT algorithms, which involve many variables in classification. This high accuracy has been
attributed to the ability to minimize overfitting and the capacity to handle noise in the data during
training by the Tree and Rpart DTs. The study produced new insights on the formal selection of DT
algorithms for OBIA ruleset development. Therefore, the Tree and Rpart algorithms could be used for
developing rulesets because they produce high land cover classification accuracies and have simple
structures. As an avenue of future studies, the performance of DT algorithms can be compared with
contemporary machine-learning classifiers (e.g., Random Forest and Support Vector Machine).

Keywords: land use; remote sensing; spectral mixture analysis; change detection; optical
images; Africa

1. Introduction

Object based image analysis (OBIA) has become an effective method of land cover classification
of remotely sensed data [1,2]. Unlike traditional pixel-based analysis, OBIA offers an opportunity
to develop discrete objects which relate to real world objects through image segmentation [3,4].
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The segmentation process reduces within class spectral variations and offers an opportunity to increase
classification accuracy, especially when conducted at an appropriate scale [5,6].

The ability to incorporate texture, compaction, and other object related information with spectral
information has differentiated OBIA from other methods of classification such as pixel and sub-pixel
approaches. Compared to pixel-based image analysis, OBIA is effective in reducing salt-and-pepper
effects on thematic maps [7,8]. There are currently a number of segmentation algorithms available in
eCognition Developer; however, multiresolution segmentation is the most common method used in
land cover classification [1,4,9].

Apart from segmentation, another important component of OBIA is the actual classification
of segmented objects [1,2]. Myint et al. [10] explained that there are two ways of assigning classes
to segmented objects: (1) employing expert knowledge through rulesets; and (2) using automated
classifiers. Under expert knowledge, classification is done by developing rulesets which are based on
the thresholds of different object related information. Under the automated classification approach,
objects are classified based on contemporary machine-learning classifiers such as Nearest Neighbor
(NN), Random Forest (RF), Support Vector Machine (SVM), and classification and regression tree
(CART), which have been incorporated into eCognition Developer 9.1 [2,11]. However, the practice of
developing rulesets using thresholds of different object-related information remains a common practice
in OBIA land cover classification [1,12].

There are many ways of establishing thresholds during ruleset development such as using expert
knowledge, trial-and-error, and using binary recursive decision trees (DTs) [10]. Although not a common
practice, the implementation of DTs seems more formal in establishing thresholds and the eventual
development of effective rulesets [2,3,13]. Here, it is important to note that the statistical packages that
have been used for developing rulesets are referred to as DT algorithms [14]. These algorithms are
generally referred to as “black box” or “white box” depending on how easily an interpreter can follow
the process. Black box algorithms, such as RF, have been used extensively in land cover classification,
especially with the advancements in machine learning techniques [15]. On the other hand, simple
machine learning DT algorithms such as Rpart, C5.0, and Tree have also been used for land cover
classification and establishment of thresholds when developing rulesets [13].

Simple DTs are useful tools for establishing thresholds for developing decision rules for land cover
classification of remote sensing data because they are non-parametric and are easy to interpret [10,16].
During classification, many variables are generated based on spectral and textural object-related
information which can be used to develop effective rulesets if appropriate techniques such as DTs are
applied. Belgiu et al. [17] suggested that DTs can be helpful for selecting the most influential variable
and identifying the thresholds for different land cover classes because they are non-parametric and
hence ideal for most landscapes.

While decision tree algorithms have been used in different areas associated with land cover
classification, these algorithms have not been individually assessed on their effectiveness in establishing
thresholds for developing rulesets for OBIA land cover classification. The main aim of this study was
to conduct a multiple criteria evaluation of five different machine learning DT algorithms based on
their performance when classifying Landsat 8 images. The performance comparison focused on the
effectiveness of these five algorithms on handling different sizes of data and how simple each algorithm
is to interpret.

2. Material and Methods

2.1. Study Site

The study was conducted on the Copperbelt Province of Zambia (Figure 1) which is located in the
northern part of the country (latitude: 12.82◦ S, longitude: 28.21◦ E). The area receives between 1000
and 1200 mm of rainfall per annum and experiences temperature ranging 7–35 ◦C [18,19]. Mining and
agriculture are the major economic activities in this area. This area is highly urbanized and has a
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population density (62.5 persons per square kilometer) [18,20]. As a result of the non-productivity
of the mines, most people practice small-scale shifting cultivation causing rapid land cover change,
especially the conversion of forest areas to agriculture and settlements. The Copperbelt Province also
has the largest proportion of forest plantations in Zambia that are owned by a parastatal company
called Zambia Forest and Forestry Company (ZAFFICO) [18].
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Figure 1. Administrative boundaries of Copperbelt Province of Zambia including rivers and the
major towns.

2.2. Datasets

Landsat 8 images, also called Landsat observation land images (OLI) [21], acquired from the
United States Geological Survey (USGS) website (http://glovis.usgs.gov) were used in this study.
The images were taken in 2016 and the September images were selected because, during this period,
the study area experiences a dry season (i.e., no rains) and hence has less cloud cover. Landsat 8
has a spatial resolution of 30 m, spectral resolution of 11 bands, temporal resolution of 16 days, and
radiometric resolution of 12 bits. In addition, Landsat 8 images have a panchromatic band with a
spatial resolution of 15 m [22,23]. In this study, six bands that range from visible to infrared were
used. Apart from the Landsat images, the Shuttle Radar Topography Mission (SRTM) Digital Elevation
Models (DEM), with a spatial resolution of 30 m, were used for pre-processing and as auxiliary data
for classification.

In total, 2600 random points were randomly overlaid on the Landsat images using ArcGIS 10.4
software package [24]. Visual and prior expert knowledge of different land cover classes was used to
assign classes to each of the 2600 points. The 2600 random points were assigned one of the 10 land
cover types identified on the ground (Table 1 and Table S1). This data was separated into DT training
(1000 sample points), land cover classification (1000 sample points), and accuracy assessment sample

http://glovis.usgs.gov
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for both the DT algorithms and the land cover map (600 sample points). The dataset was distributed to
each land cover class following the percentage area covered by each class (see Table 1).

Table 1. Description of the 10 land cover classes used in this study.

No. Land Cover
Class Description Area of LC

(%) Training Land Cover
Classification Validation

1 Bare land
Areas without any
vegetation such as

rocks and sandy areas
5.00 50 50 30

2 Dry
Agriculture

Harvested areas with
little green vegetation 6.16 62 62 37

3 Grassland
Areas which are

dominated by grass
and small shrubs

15.90 159 159 95

4 Irrigated
Crops

Areas under irrigated
systems such as pivot

centers
6.02 60 60 36

5 Plantation
Forests Exotic forests areas 6.03 60 60 36

6 Primary
Forests

Undisturbed or intact
natural forests 23.46 235 235 141

7 Secondary
Forests

Natural forests which
are/were disturbed 20.24 202 202 121

8 Settlement Built-up areas 5.54 55 55 33

9 Waterbodies Lakes, rivers, and
dams 5.00 50 50 30

10 Wetlands Vegetation around
water bodies 5.98 60 60 36

100 1000 1000 600

Note that there were 1000 independent training samples for the DT and 1000 for land cover classification, while
there were 6000 validation sample points for both DTs algorithm and land cover maps. The total number of samples
was 2600.

2.3. Methods

2.3.1. Pre-processing

Pre-processing included the correction of images from atmospheric effects and topographic
variation. This process converts digital numbers (DN) into ground reflectance values, which are more
useful for image analysis. To ensure consistency during analysis, all images were projected to the
Universal Transverse Mercator (UTM) projection system Zone 35S and World Geodetic System 84
(WGS 84) datum. Automated ATCOR 3, available in PCI Geomatics (PCI Geomatics, Ontario, Canada),
was used for haze removal, atmospheric correction, and topographic correction by incorporating a 30
m digital elevation model.

2.3.2. Image Segmentation

Segmentation creates spectrally homogenous objects which can be related to real objects on the
ground [25,26]. Past research recognized the challenges in establishing the optimal segmentation
parameters [2,5]. Thus, the segmentation parameters which are scale (Sc), shape (Sh) and compaction
(Cm) are commonly established by using trial-and-error methods [4,25,27]. Drǎguţ et al. [5] proposed
a formal method of establishing optimal levels of scale factors using an Estimation of Scale Parameter
(ESP) tool. For this study, the ESP tool indicated 12 for Sc, 0.2 for Sh, and 0.8 for Cm. With these
scale parameters, multiresolution algorithm in eCognition Developer 9.1 (Trimble Navigation Ltd.,
Sunnyvale, California) was used to segment the images into spectrally homogeneous objects.
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2.3.3. Sample Selection and Feature Extraction

After segmentation, the next step was to select sample objects using the 1000 random training
points and extract object-related information. Several object-related feature values were developed
based on spectral indices (Table 2), DEM values, spectral values of each band, and grey level co-matrix
(GLCM). This process was done in eCognition Developer 9.1 by using the “assign class by thematic layer”
and “classified image object to sample” tools. The samples and extracted object-related information
were then exported to a spreadsheet. To assess the performance of the DT algorithms in land cover
classification, the DTs’ accuracies and the classification accuracy of the final thematic maps were
considered. It is important to note that we refer to the accuracy derived from cross-validation of the
DTs after training as DT accuracy while the final accuracy of thematic maps, which was derived from
accuracy assessment, is referred to as land cover classification accuracy or thematic map accuracy.

Table 2. Selected spectral indices used for developing DT rulesets.

Spectral Indices Formula Common Application(s) References

Normalized Difference
Vegetation Index (NDVI) ND NIR−Red

NIR+Red
Measure density, greenness,

and health of vegetation Liao et al. [28]; Zhu et al. [29]

Enhanced Vegetation index
(EVI)

EVI 2.5 *
(NIR−Red)

(NIR+6∗Red−7.5∗Blue+1)

Corrects soil background
signals and reduce
atmospheric effects

Huete et al. [30]

Green Normalized
Difference Vegetation

Index (GNDVI)
VI = NIR−Green

NIR+Green
Similar to NDVI, but more

sensitive to chlorophyll Gitelson [31]

Green Ratio Vegetation
Index (GRVI) GR NIR

Green

Discriminating vegetation
canopy based on level of

photosynthesis
Sripada et al. [32]

Leaf Area Index (LAI) LAI = (3.618*EVI-0.118) Estimation of foliage cover
and productivity Atzberger et al. [33]

Simple Ratio (SR) S R = NIR
Red Used just as NDVI Birth et al. [34]

Non-Linear Index (NLI) NLI = NIR2
−Red

NIR2+Red

Assumes non-linear
relationship of vegetation

parameters
Goel et al. [35]

Optimized Soil Adjusted
Vegetation Index (OSAVI) OSAV =

1.5∗(NIR−Red)
NIR+Red+0.16

Used for soil variation from
low vegetation cover Rondeaux et al. [36]

Soil Adjusted Vegetation
Index (SAVI)

SAVI (NIR−Red)
(NIR+Red) (1+L); L

= 0.5
Analyze soil and vegetation

relationship Huete [37]

Renormalized Difference
Vegetation Index (RDVI) RDVI =

(NIR−Red)
√

NIR−Red

Used to indicate vegetation
health and productivity Roujean et al. [38]

Normalized Burn Ratio
(NBR) NBR =

(NIR−SWIR)
(NIR−SWIR)

Monitoring burnt areas in
large areas Key et al. [39]; Garcia et al. [40]

Ferrous Minerals Ratio FMR = SWIR
NIR

Indicates iron bearing
surfaces Segal [41]

Iron Oxide Ratio (IOR) IOR = Red
Blue

Indicates rocks that have
been subjected to oxidation Segal [41]

Normalized Difference
Built-Up Index (NDBI) NDBI = SWIR−NIR

SWIR+NIR Detections of urban areas Zha et al. [42]

Normalized Difference
Snow Index (NDSI) NDSI = Green−SWIR1

Green+SWIR1 Snow cover detection Salomonson et al. [43]

Ratio vegetation Index
(RVI) R VI = Red

NIR
An inverse of the simple

ratio Silleos et al. [44]

Specific leaf area
vegetation index (SLAVI) SLAVI NIR

Red+NIR
Estimations of foliage cover

and productivity Silleos et al. [44]

Normalized difference
Water index (NDWI) NDWI Green−NIR

Green+NIR Water detection Gao [45]

2.3.4. Decision Tree Algorithms

DTs have been used in image-based classification because they are non-parametric and can be
interpreted easily [13,14,46]. In OBIA, establishing decision rulesets is an important step towards land
cover classification. However, this stage requires thresholds related to classes, which can be established
by using knowledge-based methods or simple DTs. The knowledge-based approach can be complex,



ISPRS Int. J. Geo-Inf. 2020, 9, 329 6 of 16

especially when many land covers and decision variables are involved. Here, the focus was on binary
recursive DTs, which use response variables to split trees until there is no possibility of further splitting.
The performance of five DT algorithms (Table 3), Rpart, Tree, Party, C5.0, and Ipred, was assessed in
this study using a multiple criteria approach [47]. The assessment included three components: (1)
assessing the accuracy of DTs accuracy on clustering of training data; (2) assessing the accuracy of land
cover classification; and (3) examining the simplicity (e.g., Tree diagram and number of variables) of
the structure of the DTs.

Table 3. Description of DT algorithms used in the study.

No. Name Description

1 Rpart Recursive partitioning for classification and regression (CART)
2 Party Condition classification and regression
3 Tree Classification and regression (CART) tree report misclassification
4 C5.0 Boosting and bagging decision tree and rule based for pattern recognition
5 Ipred Involves bagging and resampling in classification

2.3.5. Assessing DT Accuracy

The DT algorithms were trained using the information sample extracted from the samples.
After training the DT algorithms, an independent dataset (600 points) was used to cross-validate the
DTs which were produced during training. The comparison was made by using the predicted results
from the DTs and the independent data, which was used as reference data. Accuracies in terms of
percentage were derived from the comparison for all the five DT algorithms. A comparison was
made on the accuracies of the DTs when different sample sizes were used to train the DT algorithms.
The samples (i.e., 1000 sample points) were divided into ten samples in multiples of 100. Thus,
the smallest sample size was 100, and the largest sample size was 1000 (Table 4). These samples
were established by randomization and selecting the specific number of samples. The independent
samples were then used to assess the accuracy of DTs over increased sample sizes. A Kruskal–Wallis
non-parametric test was then used to assess the significant difference among the DT accuracies of
the five algorithms because of the limited classification attempts and non-normality of the data as
suggested by Li et al. [2].

Table 4. Samples used in assessing the DT accuracy based on an increasing sample size.

Sample No. Sample Size

1 100
2 200
3 300
4 400
5 500
6 600
7 700
8 800
9 900

10 1000

After making the 10 classifications based on the sample size for each DT, the best result for each DT
algorithm was used in developing rulesets for land cover classification. Rulesets were developed from
output summaries and DT diagrams. The rulesets were then implemented in eCognition Developer
9.1 process tree for land cover classification to produce thematic maps for the five DTs.
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2.3.6. Assessing Thematic Map Accuracy

The land cover classification is complete only after the accurate assessment is done on thematic
maps [1,48,49]. The independent sample of 600 random validation points was used to build confusion
matrices by comparing the classified and reference land cover points. The confusion matrices were
used to calculate the users’, producers’, and overall accuracies (Figure 2). The suitability of the five
land cover classification outputs was compared using user’s and producer’s accuracies. The general
accuracy of the thematic maps was done using the overall accuracy.
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3. Results

3.1. DT Accuracy

The DT algorithms were tested by using predicted results against an independent sample through
cross-validation. The DT accuracies from this assessment showed that C5.0 had the highest (83%) mean
DT accuracy, while Party had the least accuracy (77%) (Figure 3). However, these differences were not
statistically significant when tested using a Kruskal–Wallis non-parametric test (p-value > 0.05) [50].
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3.2. Thematic Map Accuracy

3.2.1. Number of Variables and Classification Accuracy

The efficiency of DT algorithms was also assessed by comparing the variables used and the final
thematic map accuracies. In this study, 197 initial variables were considered for training the DTs.
Rpart had the fewest variables (8), while C5.0 used 35 variables for building a single DT (Figure 5).
Tree and Ipred also had fewer variables (less than 15) and retained high land cover classification
accuracies of over 85% The ability of the DT algorithms to select a minimum number of variables and
retain high classification accuracies was important for DT algorithms selection because this simplifies
the structure of the DT.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 14 of 22 

 

 
Figure 5. Thematic map classification accuracies (%) and the number of variables used during 
classification. 

3.2.2. Thematic Map Classification Accuracy 

The overall accuracy and Kappa coefficient, calculated from the confusion matrices, were used 
to compare OBIA classification accuracy resulting from the five DT algorithms. The producer’s (PA) 
and user’s accuracies (UA) were considered to establish the classification accuracy of each land cover 
class. The thematic maps showed a variation in the results which were produced. The C5.0 and Part 
algorithms had small land cover components, especially on bare land, while thematic maps for Rpart, 
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Figure 5. Thematic map classification accuracies (%) and the number of variables used during classification.

3.2.2. Thematic Map Classification Accuracy

The overall accuracy and Kappa coefficient, calculated from the confusion matrices, were used
to compare OBIA classification accuracy resulting from the five DT algorithms. The producer’s (PA)
and user’s accuracies (UA) were considered to establish the classification accuracy of each land cover
class. The thematic maps showed a variation in the results which were produced. The C5.0 and Part
algorithms had small land cover components, especially on bare land, while thematic maps for Rpart,
Tree, and Ipred showed continuous sections for bare land (Figure 6).

The results show that the thematic map produced using the Tree algorithm had the highest overall
accuracy of 89%, while the Party algorithm thematic map had the lowest overall accuracy of 73%
(Table 5 and Figure 6). Rpart, Ipred, and C5.0 had overall accuracies of 88%, 85%, and 74%, respectively.
The classification by DT algorithms with relatively low overall accuracies, C5.0 and Party, had very
lower PAs and UAs (59–43%) for classes such as bare land and wetlands. Bare land had the lowest PA
and UA, 74% and 62%, respectively, for the Rpart algorithm and primary forests had the lowest PA of
66% while the UA accuracy was 96%. Primary and secondary forests had some of the lowest user’s
and producer’s accuracies (39% and 37%, respectively), indicating the challenges in separating the two
land covers.
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Table 5. Summary of accuracies for land cover classification using Tree, Rpart, Ipred, C5.0, and Party.

Tree Rpart Ipred C5.0 Party
Land Cover PA UA PA UA PA UA PA UA PA UA

Bare land 93 83 74 62 74 81 43 47 59 58
Dry Agriculture 97 99 97 97 94 95 93 70 91 72

Grassland 92 86 98 98 93 93 78 82 65 95
Irrigated Crops 100 81 100 100 97 100 100 95 100 100

Plantation Forest 100 93 69 94 91 100 82 90 81 54
Primary Forests 66 96 89 89 88 82 80 39 90 80

Secondary Forests 85 82 85 87 87 82 64 84 82 37
Settlements 100 98 98 98 84 88 100 87 92 83
Waterbodies 100 98 91 87 100 98 100 98 100 98

Wetlands 100 88 100 100 68 94 88 88 44 88
Overall accuracy (%) 89 88 85 74 73
Kappa coefficient (%) 86 84 82 70 70

3.2.3. Other DT Characteristics

The structure of each algorithm was also considered in terms of graphic output, useful summaries,
and the ability to produce ruleset as part of the output. Rpart, Tree, C5.0, and Party have tree diagrams
as part of their output. Unlike Rpart and Tree algorithms, C5.0 and Party produced large tree diagrams
which are difficult to interpret. This is because of their ability to include many variables when building
DTs. On the other hand, Ipred aims at improving the classification results by developing many DT
and improving their accuracies. It is difficult to produce a single tree diagram because the Ipred
algorithm focuses on many DTs at once [51]. All DT algorithms produce summaries which are useful for
developing rulesets; however, C5.0 and Rpart produce comprehensive rulesets for each terminal node.

4. Discussion

4.1. DT Accuracy

The comparison of the five DT algorithms showed that the DT accuracy was not significantly
different among these algorithms. However, C5.0 showed high mean DT accuracy across different
sample sizes. These findings are in line with the findings of Powers et al. [13], who achieved over 88%
DT accuracy using the C5.0 algorithm. This can be attributed to C5.0′s ability to integrate more decision
variables in developing a DT through boosting and bagging [52,53]. Boosting improves classification
by continuously formulating independent trees which are used to correct errors on the final models,
while, in bagging, several trees are formulated and the final tree is established by voting for the most
accurate variables and splits [46,47,53]. Apart from C5.0, DT algorithms such as Ipred and random
forest also use bagging to improve classification accuracy [51,54,55].

In evaluating the performance of DT algorithms, it is important to employ a multiple criteria
approach. DeFries et al. [47] used a multiple criteria approach in evaluating DT performances by
considering their accuracy, ability to handle noise in the data, computation time and structure of the
algorithms. While algorithms the DT accuracy of the five algorithms were not significantly different,
the C5.0 had a relatively higher mean DT accuracy than the other four DTs. However, the C5.0
algorithm is very sensitive to noise in the data and they have a larger structure [55]. In the present
study, 35 variables were used and 105 nodes were developed for a single C5.0 DT as compared to other
algorithms such as Rpart which had 10 variables and 12 nodes.

The DTs algorithm, such as Rpart and Tree, which have simple structures, are effective in selecting
and reducing the number of predictor variables [46]. Rodriguez-Galiano et al. [50] reported that the
accuracy among different DT algorithms did not differ on land cover mapping in the Mediterranean
region; however, the performance of these DTs was sensitive to noise on the data and the size of the
sample. Therefore, the performance of the algorithm should not be selected based on the statistical
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accuracy alone but rather on multiple criteria which include several considerations and the eventual
classification accuracy of the thematic maps.

4.2. Thematic Map Classification Accuracy

This study has shown that DT algorithms are effective tools in developing decision rulesets for
land cover thematic maps. The DTs have been used in land cover classification because they are
non-parametric in nature and can be used with a number of auxiliary data such as digital elevation
models (DEM), spectral indices, and spatial data [56,57]. For example, Im et al. [58] used Light Detection
and Ranging (LiDAR) data and OBIA in land cover classification using the C5.0 DT algorithm.

High thematic map classification accuracy can be achieved by using these DTs; however, the
accuracy differs from algorithm to algorithm. Due to spectral similarities between some classes such
as primary and secondary forests, their accuracies were not as high as the other land cover classes
(e.g., water and plantation forests). Phiri [19] reported similar challenges when conducting land cover
classification in Zambia. Sharma et al. [56] reported that land cover classification accuracy using
CART algorithms was better (>88%) than traditional classification approaches such as Maximum
Likelihood and ISODATA, which attained overall accuracies of less than 72%. However, most studies
have reported that other machine-learning algorithms such as support vector machines, random
forests and neural network produced higher classification accuracies than the DTs used in this
study [52,56,57]. Apart from C5.0 algorithm, CART based algorithms, such as Rpart and Tree, are the
most commonly used algorithms because of their simplicity and ability to select and reduce variables
for classification [16,57].

The high DT accuracy from cross-validation may not result in high land cover classification
accuracy because of: (1) the overfitting and saturation of the algorithm; (2) the ability to handle noise
on the data; and (3) the size and structure of the algorithm [47]. For example, C5.0 had a high mean
DT accuracy similar to other algorithms; however, it had a relatively low land cover classification
accuracy (Table 2). This is large because the C5.0 algorithm is susceptible to noise in the data as this
algorithm does not have a strong ability to handle outliers and is more prone to overfitting [47,55].
Large DTs need to be pruned in order to reduce the effects of overfitting; however, pruning may affect
classification accuracy [13].

In this study, land cover classification accuracy was high for DT algorithms such as Rpart and
Tree; these DTs also had simple structures, an ability to deal with noise in the data and high statistical
prediction accuracy. Simple algorithms which use a minimum number of decision variables have simple
structures, are less saturated, and hence can be easily interpreted [56,57]. Among these DT algorithms,
Rpart and C5.0 are commonly used in land cover classification and usually produce high classification
accuracies. Powers et al. [13] reported 88% overall accuracy when C5.0 was used for mapping fine
scale-industrial disturbance. Another DT algorithm which is simple and has high classification
accuracy is the Tree algorithm; however, Rpart is preferable to Tree because it is more flexible and has
a lot of supportive packages currently available in R statistical software [55]. When working with
DT algorithms for land cover classification, it is important to establish the effects of different tuning
parameters such as the number of variables, number of splits, size of a tree and allowable error because
they can influence the classification results [6,50]. Future studies could focus more on the influence of
different tuning parameters on the classification accuracy of different landscapes and different remote
sensing data.

4.3. Selecting the Best DT for Ruleset Development

Choosing the ideal DT algorithm to use for land cover classification should be the most important
objective when using these DT algorithms to establish decision rulesets in OBIA land cover classification.
It is important to consider all the properties of the DT algorithms such as model accuracy, simplicity,
ability to handle different numbers of variables, and sizes of datasets (Table 6). This can be achieved
by using a multiple criteria evaluation approach as suggested by DeFries et al. [47]. The focus in
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this evaluation should be on the DT algorithms which have high classification accuracies and simple
structures and are not susceptible to noise in the data and are easy to interpret.

Table 6. Summary of classification accuracies and other properties of DT algorithms.

DT
Algorithm

DT
Accuracy

(%)

Land
Cover

Classification
Accuracy

(%)

Number
of

Rulesets
Simplicity Graphic

Output
Ruleset
Output

Variable
Selection

Rpart 79 88 10
√ √ √ √

Party 77 74 30
√

Tree 80 89 12
√ √ √

C5.0 83 77 36
√ √

Ipred 81 86 12
√

In this study, Tree and Rpart algorithms are recommended for developing decision rulesets,
especially when larger numbers of variables are involved as these algorithms have the ability to select
a small number of influential variables for classification and hence achieving simplicity and high
classification accuracy [47,56]. Ipred algorithm does not differ from Rpart and Tree in most of its
functionalities; however, this algorithm was built on the principle of bagging which is difficult to
achieve simplicity and extract decision rulesets as it produces several decision trees. To successfully
use Ipred, a function (nbagg = 1) which specifies the production of one DT could be employed [51].
The C5.0 and Party should be used when the objective is to include more predictor variables and to
produce a high DT accuracy during cross-validation.

Although the overall accuracies achieved in this study were high, user’s and producer’s accuracies
for spectrally similar classes such as primary and secondary forest were low. Therefore, there is
a need to define the classes so that they are spectrally similar. In addition, other methods such
as non-parametric machine learning classifiers, e.g., Random Forest [15,19,59] and Support Vector
Machine [60,61], which have proved to be more effective, can be used during classification in order to
achieve higher accuracy.

The current study has only one location and this has the potential to affect the transferability
and the generalization of the results. This can be a challenge for future studies and the results from
this study can be generalization with some levels of uncertainties. It is important to note that the
generalization, transferability, and reproducibility of the results are largely influenced by the type of
DT used, the sample size, and the type of input features.

5. Conclusions

In this paper, a systematic comparison of the performance of five DT algorithms on land cover
classification using Landsat 8 is presented. The main focus was selecting DT algorithms which have
high classification accuracies, simple structures, and are easy to interpret, by using the multiple criteria
approach suggested by DeFries et al. [47]. While all algorithms had high mean DT accuracies, it was
established that the Tree and the Rpart algorithms were simple, easy to interpret, and not affected by
noise from datasets. The results from the Tree and Rpart DT algorithms produce high overall accuracies
of over 86%. The C5.0 and Party algorithms were equally good with respect to the overall accuracy;
however, they incorporate a large number of decision variables in the output which can be difficult to
implement and exhibit the effects of overfitting and saturation. Further analysis showed that Rpart
and Tree can select the minimum number of variables and hence retain simple but accurate rulesets.
Based on the DT and the land cover accuracy and other important aspects such as number of variable
and the simplicity of the DT structure, it can be recommended to use Rpart or Tree in developing
rulesets for OBIA land cover classification of Landsat 8 imagery. Going forward, future studies can
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compare the performance of these simple DTs with the contemporary machine learning classifiers such
as RF and SVM in different geographic locations at multiple time periods.
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60. Kranjčić, N.; Medak, D.; Župan, R.; Rezo, M.J.R.S. Support Vector Machine Accuracy Assessment for
Extracting Green Urban Areas in Towns. Remote Sens. 2019, 11, 655. [CrossRef]

61. Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover
classification. Int. J. Remote Sens. 2002, 23, 725–749. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01431160304987
http://dx.doi.org/10.1016/j.rse.2003.10.016
http://dx.doi.org/10.1080/10106040608542399
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1016/j.eswa.2010.10.078
http://dx.doi.org/10.1016/S0034-4257(00)00142-5
http://dx.doi.org/10.1016/j.rse.2014.02.015
http://dx.doi.org/10.1080/17538947.2012.748848
https://CRAN.R-project.org/package=ipred
https://CRAN.R-project.org/package=C50
http://dx.doi.org/10.1016/j.rse.2011.11.020
http://dx.doi.org/10.1007/s12040-013-0339-2
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.2747/1548-1603.45.2.209
http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002
http://dx.doi.org/10.3390/rs11060655
http://dx.doi.org/10.1080/01431160110040323
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Study Site 
	Datasets 
	Methods 
	Pre-processing 
	Image Segmentation 
	Sample Selection and Feature Extraction 
	Decision Tree Algorithms 
	Assessing DT Accuracy 
	Assessing Thematic Map Accuracy 


	Results 
	DT Accuracy 
	Thematic Map Accuracy 
	Number of Variables and Classification Accuracy 
	Thematic Map Classification Accuracy 
	Other DT Characteristics 


	Discussion 
	DT Accuracy 
	Thematic Map Classification Accuracy 
	Selecting the Best DT for Ruleset Development 

	Conclusions 
	References

