
 International Journal of

Geo-Information

Article

Modelling Offset Regions around Static and Mobile
Locations on a Discrete Global Grid System: An IoT
Case Study

David Bowater * and Monica Wachowicz
People in Motion Lab, Department of Geodesy and Geomatics Engineering, University of New Brunswick,
Fredericton, NB E3B 5A3, Canada; monicaw@unb.ca
* Correspondence: david.bowater@unb.ca

Received: 23 March 2020; Accepted: 15 May 2020; Published: 20 May 2020
����������
�������

Abstract: With the huge volume of location-based point data being generated by Internet of Things
(IoT) devices and subsequent rising interest from the Digital Earth community, a need has emerged
for spatial operations that are compatible with Digital Earth frameworks, the foundation of which are
Discrete Global Grid Systems (DGGSs). Offsetting is a fundamental spatial operation that allows
us to determine the region within a given distance of an IoT device location, which is important
for visualizing or querying nearby location-based data. Thus, in this paper, we present methods of
modelling an offset region around the point location of an IoT device (both static and mobile) that
is quantized into a cell of a DGGS. Notably, these methods illustrate how the underlying indexing
structure of a DGGS can be utilized to determine the cells in an offset region at different spatial
resolutions. For a static IoT device location, we describe a single resolution approach as well as a
multiresolution approach that allows us to efficiently determine the cells in an offset region at finer
(or coarser) resolutions. For mobile IoT device locations, we describe methods to efficiently determine
the cells in successive offset regions at fine and coarse resolutions. Lastly, we present a variety of
results that demonstrate the effectiveness of the proposed methods.

Keywords: point offsetting; Discrete Global Grid Systems; Internet of Things; Digital Earth

1. Introduction

The Internet of Things (IoT) consists of millions of devices that are generating a massive amount
of location-based point data on a global scale. The rapid development of location-enabled IoT devices
(such as sensors, smartphones, and vehicles) has led to their adoption in a wide variety of application
domains such as smart cities, transportation, energy, and agriculture, in order to better understand
spatial patterns and to derive insights from a spatial perspective. As [1] points out, all IoT devices are
located somewhere in space and spatial relationships exist between them, which makes location an
essential component of IoT data. This has prompted researchers to design an IoT-GIS platform [2],
investigate the potential of using IoT data for geospatial analysis [3], study location privacy for IoT
services and applications [4], and propose the Internet of Spatial Things [5].

Owing to the volume, variety, and global scope of location-based point data being generated by
IoT devices, interest from the Digital Earth community is growing. In [6] the authors summarize the
evolving relationship between Digital Earth and the IoT by exploring the frictions and synergies in
creating a combined IoT-Digital Earth infrastructure. Digital Earths use a three-dimensional model of
the Earth’s surface to reference geospatial data (be it raster or vector data) because it provides a more
realistic representation that avoids many issues associated with a two-dimensional map projection
(e.g., polar singularities and map distortions). Notably, the foundation of modern Digital Earth
frameworks are Discrete Global Grid Systems (DGGSs) [7,8].

ISPRS Int. J. Geo-Inf. 2020, 9, 335; doi:10.3390/ijgi9050335 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-4659-0101
http://www.mdpi.com/2220-9964/9/5/335?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi9050335
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2020, 9, 335 2 of 17

DGGSs represent a class of spatial data structures that consist of a hierarchy of global grids
at multiple resolutions, whereby each grid is a discretization of the Earth’s surface into a uniform
arrangement of cells [9]. A DGGS is typically created by partitioning the faces of a platonic solid into
equal area cells (triangles, quadrilaterals, or hexagons), and then inversely projecting those cells onto
the surface of the sphere or ellipsoid using an equal area projection [10]. This approach was adopted by
the Open Geospatial Consortium (OGC) in 2017 as the basis for the DGGS Abstract Specification [11]
which aims to standardize the DGGS model. Importantly, DGGSs adopt an indexing method to ensure
each cell has a unique index or identifier (ID) which is subsequently used to reference geospatial
data [12]. Moreover, a cell ID can encode both position and spatial resolution which allows a cell
to be used to represent a vector point, raster pixel, or data bucket. As a result, DGGSs enable big
geospatial data to be stored, integrated, and managed at different spatial resolutions in a common,
global, scalable, hierarchical framework [13–16].

From an IoT perspective, it is especially beneficial to use a cell as a data bucket to efficiently
index and aggregate huge volumes of point data stemming from IoT devices because it facilitates
summarization, analysis, and visualisation at varying spatial resolutions, which researchers have
already started to explore with respect to crowdsensing data [17] and ride-sharing data [18]. We can
also use a cell to represent the point location of a single IoT device. In fact, according to [19], the optimal
solution for representing point location in a Digital Earth framework is actually based on DGGS
cells and their corresponding IDs, not tuples of real numbers (i.e., latitude-longitude coordinates).
Consequently, to exploit IoT data that is embedded in a Digital Earth, a need has emerged for spatial
operations that are compatible with the underlying DGGS framework.

Offsetting, also known as buffering, is a fundamental spatial operation from geographic information
science that is commonly used in IoT applications [3]. From an IoT context, we are mostly concerned
with point offsetting because it allows us to determine and visualize the region within a given distance
of the location of an IoT device (such as a smart phone or vehicle). Offsetting can also be combined with
inside/outside tests (which determine if a point lies in the offset region) to obtain additional geospatial
information. For example, in the IoT-GIS platform designed by [2], the authors utilize point offsetting
and inside/outside tests extensively (e.g., to find bus stops and street intersections within a given radius
of a bus) to perform the crucial task of contextualising IoT data generated by transit vehicles in order to
better understand transit behaviour. From a DGGS perspective, determining the cells that represent an
offset region around an IoT device location would allow us to visualize aggregate values in those cells,
query location-based data in those cells (e.g., inside/outside tests), represent a mobility neighbourhood to
contextualise IoT data, and even represent the coverage and uncertainty of IoT data (as alluded to in [20]).

Owing to the significance of offsetting as a spatial operation and the emergence of Digital Earth as
an approach to manage big geospatial data, methods were recently presented in [21] to offset vector
curves that had been quantized into cells of a DGGS. To the best of our knowledge, this is the only
work that explores offsetting on a DGGS and although their work does not focus on offset regions for
point data explicitly, the methods are applicable as points comprise vector curves. In their work, the
authors compute the length of the longest diagonal in any cell at a given resolution i, denoted d[i]g , and
use this value in combination with the distance between cell centroids as a basis for determining if
a cell falls inside an offset region. However, if we consider the typical approach of DGGS creation
that uses an equal area projection to inversely project cells from the face of a platonic solid to the
surface of the sphere/ellipsoid, then determining d[i]g presents a potential limitation as cell shapes

are not preserved. The authors also note that while d[i]g is unchanged for child cells in a congruent
hierarchy (i.e., child cells are enclosed by the parent cell, as is the case for triangular and quadrilateral
cells), this is not true for hexagonal cells because they have incongruent hierarchies. Lastly, the authors
demonstrate examples on a hierarchical latitude-longitude grid system but as mentioned earlier, this is
not the typical approach to create a DGGS.

Hence, in this paper, we present methods that are more closely aligned with the underlying
structure of typical DGGSs to model an offset region around the point location of an IoT device

ISPRS Int. J. Geo-Inf. 2020, 9, 335 3 of 17

that is quantized into a cell of a DGGS. The focus of our methodology is guided by the fact that the
fundamental building blocks of a DGGS are its cells, each of which has a unique ID that can encode
both position and spatial resolution. With that in mind, our main contribution lies in proposing
methods that utilize the underlying indexing structure of a DGGS to determine the cells in an offset
region at different spatial resolutions. In particular, the proposed methods make use of cell congruency,
alignment of cell nuclei, cell ID manipulation, and set operations on cell IDs to efficiently determine cell
adjacency and topological relationships in support of modelling an offset region around the location of
a static IoT device, as well as successive locations of a mobile IoT device (such as a smart phone or
vehicle) which is yet to be explored in the literature. For the purposes of this study, we focus on the
rHEALPix DGGS (described in Section 2) which represents an OGC conformant DGGS created via
the typical approach. That being said, we do discuss how the proposed methods may be adapted or
applied to other DGGSs.

It is important to mention that while the offset methods presented in this paper are suitable for
any point location that is quantized into a cell of a DGGS, we are motivated by and focus specifically
on the point location of an IoT device because of (i) the proliferation of IoT devices and the huge
volume of location-based point data that is subsequently being generated and (ii) the growing interest
between Digital Earth and the IoT and the subsequent use of DGGSs to meet the important needs
of efficient indexing, aggregation, summarization, analysis, and visualisation of IoT data at varying
spatial resolutions. Therefore, the methods proposed in this paper facilitate new ways of exploiting
IoT data that is embedded in the underlying DGGS framework of a Digital Earth.

The rest of this paper is organized as follows: Section 2 reviews relevant background information
on the rHEALPix DGGS. In Section 3, we describe methods to determine the set of cells that represent a
static offset region using both a single resolution approach and a multiresolution approach. In Section 4,
we consider the locations of a mobile IoT device and describe methods to model a mobile offset region
by manipulating cell IDs. In Section 5, we present a variety of results produced by applying the
proposed methods to model static and mobile offset regions. In Section 6, we conclude the paper and
provide directions for future work.

2. The rHEALPix DGGS

The rHEALPix DGGS [22] is an OGC conformant quadrilateral-based DGGS that has a hierarchical
and congruent cell structure, equal area cells that completely cover the Earth’s surface at every
resolution, and a planar projection consisting of horizontal-vertical aligned square grids (as shown
in Figure 1). It is created by projecting an ellipsoid of revolution (e.g., WGS84) onto the faces on a
cube, partitioning each face into a multiresolution square grid, and then inversely projecting the result
back onto the surface of the ellipsoid using the equal area rHEALPix projection. In this study we
use the rHEALPix DGGS with Nside = 3 (i.e., each planar square is subdivided into 3× 3 sub-squares
at successive resolutions, see Figure 1) because (i) it is the smallest integer that produces aligned
hierarchies (i.e., the nucleus of a parent cell is also the nucleus of a child cell), and (ii) it has been
the focus of existing work, in particular with respect to methods of determining cell adjacency and
topological relationships by manipulating cell IDs [23].

Each cell of the rHEALPix DGGS has a unique ID which is defined as being a string beginning with one
of the letters N, S, O, P, Q, R followed by a sequence of zero or more of the integers 0, 1, 2, . . . , N2

side − 1 [22].
In order to assign a unique ID to each cell, the planar cells at resolution i = 0 are assigned the IDs
N, O, P, Q, R, S from top to bottom and left to right (Figure 1a). Then, for each resolution i cell with ID t,
its resolution i + 1 sub-cells are assigned the IDs t0, t1, t2, . . . , t

(
N2

side − 1
)

using a Z space filling curve
from top to bottom and left to right (Figure 1b). Two benefits of this approach include (i) using the
cell ID to determine the resolution of a cell by |ID| − 1, and (ii) determining parent-child relationships
using simple truncation and concatenation operations on cell IDs. Note that planar cells share IDs
with their corresponding ellipsoidal cells. Moreover, each planar cell has a nucleus which is defined as

ISPRS Int. J. Geo-Inf. 2020, 9, 335 4 of 17

its centroid. The ellipsoidal cell nucleus is simply the inverse projection of its corresponding planar
cell nucleus.

Finally, the rHEALPix DGGS has a cell indexing structure that allows us to efficiently determine
cell adjacency directly from cell IDs [23]. By considering each numeric digit in the cell ID as a base3

tuple whose two digits are the row and column numbers within the parent, we can determine the IDs
of adjacent cells using base3 math on the row and column numbers of the digit at the desired resolution.
For example, if we wish to know the cells adjacent to cell N64, we first convert N64 into row, column
notation (as described in Section 4 of [23]) which gives (03.2313, 04.0313). Then, we add or subtract 0313

to the row and/or column number accordingly to determine the eight neighbouring cells in row, column
notation (Figure 2). Lastly, we simply convert row, column notation back to cell ID.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 4 of 17

tuple whose two digits are the row and column numbers within the parent, we can determine the IDs
of adjacent cells using 𝑏𝑎𝑠𝑒 math on the row and column numbers of the digit at the desired
resolution. For example, if we wish to know the cells adjacent to cell 𝑁64, we first convert 𝑁64 into 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation (as described in Section 4 of [23]) which gives (0 . 2 1 , 0 . 0 1). Then, we add
or subtract . 0 1 to the row and/or column number accordingly to determine the eight neighbouring
cells in 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation (Figure 2). Lastly, we simply convert 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation back to cell
ID.

Figure 1. Planar and ellipsoidal grids (based on the (0, 0)-rHEALPix projection) of the rHEALPix
DGGS with 𝑁 = 3 at (a) resolution 𝑖 = 0 and (b) resolution 𝑖 = 1. (Source: [23])

Figure 2. Adjacent cells of cell N64 expressed using 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation and cell IDs.

(a)

(b)

Figure 1. Planar and ellipsoidal grids (based on the (0, 0)-rHEALPix projection) of the rHEALPix DGGS
with Nside = 3 at (a) resolution i = 0 and (b) resolution i = 1. (Source: [23])

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 4 of 17

tuple whose two digits are the row and column numbers within the parent, we can determine the IDs
of adjacent cells using 𝑏𝑎𝑠𝑒 math on the row and column numbers of the digit at the desired
resolution. For example, if we wish to know the cells adjacent to cell 𝑁64, we first convert 𝑁64 into 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation (as described in Section 4 of [23]) which gives (0 . 2 1 , 0 . 0 1). Then, we add
or subtract . 0 1 to the row and/or column number accordingly to determine the eight neighbouring
cells in 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation (Figure 2). Lastly, we simply convert 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation back to cell
ID.

Figure 1. Planar and ellipsoidal grids (based on the (0, 0)-rHEALPix projection) of the rHEALPix
DGGS with 𝑁 = 3 at (a) resolution 𝑖 = 0 and (b) resolution 𝑖 = 1. (Source: [23])

Figure 2. Adjacent cells of cell N64 expressed using 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation and cell IDs.

(a)

(b)

Figure 2. Adjacent cells of cell N64 expressed using row, column notation and cell IDs.

ISPRS Int. J. Geo-Inf. 2020, 9, 335 5 of 17

3. Static Offset Regions

Consider a static IoT device (such as a smart water meter or smart parking meter) represented
by a point location on the surface of the Earth and an offset region at a desired radius around this
point defined using latitude-longitude coordinates in an ellipsoidal reference frame (such as WGS84).
In order to model this point and offset region on the rHEALPix DGGS (or any DGGS), we need to
quantize the point into a cell at a desired resolution and then efficiently determine which surrounding
cells represent the offset region. Quantizing a point into a cell on the rHEALPix DGGS is a simple
process using the inbuilt method (described in [22]) that calculates the unique ID of the desired
resolution cell that contains the point. Efficiently determining the cells to represent the offset region
is less trivial primarily because: (i) we need to limit the search space of cells so that every cell in
the ellipsoidal grid at a desired resolution is not checked for inclusion and (ii) we must consider the
curved surface of the ellipsoid and ensure that the set of ellipsoidal cells accurately represent the offset
region [21].

Here we present methods that manipulate cell IDs and utilize the underlying indexing structure
to: (i) limit the search space of cells that must be checked for inclusion in the offset region, (ii) determine
cell containment in the offset region, (iii) perform efficient set operations on cell IDs, and (iv) limit
costly geodetic computations. First, we consider the task of determining the set of cells that represent a
static offset region using a single resolution approach (Section 3.1) and then we consider approaches
that utilize the multiresolution hierarchy of the rHEALPix DGGS (Section 3.2).

3.1. Single Resolution

Consider a point p that has been quantized into a cell c at resolution i and the circular offset
region A that we wish to model using a set of cells C at resolution i (Figure 3a). To limit the search
space of cells, we could first determine the smallest bounding cell bc that contains A (Figure 3b) by
comparing the cell IDs of the latitude-longitude bounding box coordinates of A from resolution 0 to∞
until they disagree (as described in Section 9 of [22]). Then, due to the congruent cell structure of the
rHEALPix DGGS, we could simply use parent-child concatenation operations on cell IDs to determine
the IDs of each cell at resolution i within bc that must be checked for inclusion in C. Although this
process is straightforward, problems arise when bc is significantly larger than A (Figure 3c) because it
means checking a prohibitively large number of cells for inclusion. This is caused by A spanning cells
that have different parents at coarser resolutions (due to the fixed indexing structure that defines the
hierarchical parent-child relationships) and is thus unavoidable.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 5 of 17

3. Static Offset Regions

Consider a static IoT device (such as a smart water meter or smart parking meter) represented
by a point location on the surface of the Earth and an offset region at a desired radius around this
point defined using latitude-longitude coordinates in an ellipsoidal reference frame (such as WGS84).
In order to model this point and offset region on the rHEALPix DGGS (or any DGGS), we need to
quantize the point into a cell at a desired resolution and then efficiently determine which surrounding
cells represent the offset region. Quantizing a point into a cell on the rHEALPix DGGS is a simple
process using the inbuilt method (described in [22]) that calculates the unique ID of the desired
resolution cell that contains the point. Efficiently determining the cells to represent the offset region
is less trivial primarily because: (i) we need to limit the search space of cells so that every cell in the
ellipsoidal grid at a desired resolution is not checked for inclusion and (ii) we must consider the
curved surface of the ellipsoid and ensure that the set of ellipsoidal cells accurately represent the
offset region [21].

Here we present methods that manipulate cell IDs and utilize the underlying indexing structure
to: (i) limit the search space of cells that must be checked for inclusion in the offset region, (ii)
determine cell containment in the offset region, (iii) perform efficient set operations on cell IDs, and
(iv) limit costly geodetic computations. First, we consider the task of determining the set of cells that
represent a static offset region using a single resolution approach (Section 3.1) and then we consider
approaches that utilize the multiresolution hierarchy of the rHEALPix DGGS (Section 3.2).

3.1. Single Resolution

Consider a point 𝑝 that has been quantized into a cell 𝑐 at resolution 𝑖 and the circular offset
region 𝐴 that we wish to model using a set of cells 𝐶 at resolution 𝑖 (Figure 3a). To limit the search
space of cells, we could first determine the smallest bounding cell 𝑏 that contains 𝐴 (Figure 3b) by
comparing the cell IDs of the latitude-longitude bounding box coordinates of 𝐴 from resolution 0
to ∞ until they disagree (as described in Section 9 of [22]). Then, due to the congruent cell structure
of the rHEALPix DGGS, we could simply use parent-child concatenation operations on cell IDs to
determine the IDs of each cell at resolution 𝑖 within 𝑏 that must be checked for inclusion in 𝐶.
Although this process is straightforward, problems arise when 𝑏 is significantly larger than 𝐴
(Figure 3c) because it means checking a prohibitively large number of cells for inclusion. This is
caused by 𝐴 spanning cells that have different parents at coarser resolutions (due to the fixed
indexing structure that defines the hierarchical parent-child relationships) and is thus unavoidable.

(a) (b) (c)

Figure 3. (a) A point, its quantized cell at resolution 𝑖 (shown in light blue), and an offset region. (b)
The bounding cell of the offset region from (a) at resolution 𝑖 − 2 (shown in green). (c) The bounding
cell of an offset region at a different location at resolution 𝑖 − 3 (shown in red).

To reduce the search space to a more manageable and predictable size that is not affected by the
cells spanned by 𝐴, we propose using the latitude-longitude bounding box coordinates of 𝐴 to
determine a rectangular bounding grid of cells 𝐵 at resolution 𝑖 that contain 𝐴 (Figure 4a). To do

Figure 3. (a) A point, its quantized cell at resolution i (shown in light blue), and an offset region. (b) The
bounding cell of the offset region from (a) at resolution i− 2 (shown in green). (c) The bounding cell of
an offset region at a different location at resolution i− 3 (shown in red).

ISPRS Int. J. Geo-Inf. 2020, 9, 335 6 of 17

To reduce the search space to a more manageable and predictable size that is not affected by
the cells spanned by A, we propose using the latitude-longitude bounding box coordinates of A to
determine a rectangular bounding grid of cells B at resolution i that contain A (Figure 4a). To do this,
we take the four latitude-longitude coordinate pairs that represent the bounding box of A, and convert
them into their respective cell IDs at resolution i. We then convert the cell IDs into row, column notation
and determine the minimum and maximum row and column values. Using these range of values, we
can easily determine all cells that comprise B in row, column notation, which we lastly convert back to
cell ID.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 6 of 17

this, we take the four latitude-longitude coordinate pairs that represent the bounding box of 𝐴, and
convert them into their respective cell IDs at resolution 𝑖 . We then convert the cell IDs into 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation and determine the minimum and maximum row and column values. Using
these range of values, we can easily determine all cells that comprise 𝐵 in 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation,
which we lastly convert back to cell ID.

Although this approach limits the search space of cells that must be checked for inclusion in 𝐶,
we may still encounter the issue of checking a large number of cells, particularly if the cell size at
resolution 𝑖 is small relative to the size of 𝐴 . To alleviate this issue, we wish to determine a
rectangular inner grid of cells 𝐼 at resolution 𝑖 that are completely contained within 𝐴 (Figure 4c),
so that we can automatically include these cells in 𝐶 without performing any further checks. To do
this, we calculate the latitude-longitude coordinate pairs of four points on the boundary of 𝐴 using
the coordinates of 𝑝, the radius of 𝐴, and the azimuths 45°, 135°, 225°, 315° . These four azimuths
are chosen in this study based on the fact that the largest planar rectangle circumscribed by a circle
is a square (that said, these azimuths could be optimised to take into account the radius of 𝐴 and the
curved surface of the Earth if desired). We then convert the four latitude-longitude coordinate pairs
into their respective cell IDs at resolution 𝑖 . Importantly, because a point lies somewhere in its
quantized cell, we observe that each of the four cells has a vertex neighbour closer to cell 𝑐 that must
be fully contained in 𝐴 (Figure 4b). Knowing this, we can (i) convert each cell ID into 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛
notation and (ii) use 𝑏𝑎𝑠𝑒 math on the row and/or column value accordingly to determine the 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation of the cell diagonally closer to 𝑐 . Then, we can determine minimum and
maximum row and column values, and use these ranges to obtain all cells that comprise 𝐼 in 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛 notation, which we lastly convert back to cell ID.

(a) (b) (c) (d)

Figure 4. (a) A point, its quantized cell (shown in light blue), and a rectangular grid of cells that bound
the offset region. (b) Each of the four grey cells has a vertex neighbor (shown in green) closer to the
light blue cell that is fully contained in the offset region. (c) A rectangular grid of cells that are fully
contained in the offset region (shown in green). (d) The cells that represent the offset region (shown
in orange).

Now that we know the cells comprising 𝐵 and 𝐼 , the only cells that must be checked for
inclusion in 𝐶, are those in the set 𝐵 − 𝐼. The last step is to decide on a criterion for determining
whether a cell should be included in 𝐶 or not. For example, we could select all cells in the set 𝐵 − 𝐼
that intersect the offset region 𝐴, that are fully contained in 𝐴, or whose nuclei are contained in 𝐴.
Although all three approaches converge to 𝐴 as resolution 𝑖 increases, we opt for the latter because
a single geodetic distance computation (from 𝑝 to the cell nucleus) can classify a cell as being in 𝐶
or not, which helps to limit costly geodetic computations (Figure 4d shows the final set of cells 𝐶 that
represent 𝐴). Note that we indicate using the geodetic coordinates of 𝑝 in the distance computation
rather than the reference point of its quantized cell (i.e. the nucleus of 𝑐) because (i) retrieving the
original vector data for a single point is feasible, unlike massive vector curves or polygons (as
highlighted in [21]), and (ii) it accurately determines the cells in 𝐶 and avoids the discrepancies that
would result from using the nucleus of 𝑐, particularly at coarse resolutions. However, if we wish to
avoid retrieving the geodetic coordinates of 𝑝, then we can either (i) use the nucleus of 𝑐 if the
quantization error at resolution 𝑖 is acceptable (e.g., at fine resolutions), or (ii) quantize 𝑝 into a cell 𝑐 at a finer resolution 𝑚 where 𝑚 > 𝑖 and the quantization error at resolution 𝑚 is acceptable,

Figure 4. (a) A point, its quantized cell (shown in light blue), and a rectangular grid of cells that bound
the offset region. (b) Each of the four grey cells has a vertex neighbor (shown in green) closer to the
light blue cell that is fully contained in the offset region. (c) A rectangular grid of cells that are fully
contained in the offset region (shown in green). (d) The cells that represent the offset region (shown
in orange).

Although this approach limits the search space of cells that must be checked for inclusion in C,
we may still encounter the issue of checking a large number of cells, particularly if the cell size at
resolution i is small relative to the size of A. To alleviate this issue, we wish to determine a rectangular
inner grid of cells I at resolution i that are completely contained within A (Figure 4c), so that we can
automatically include these cells in C without performing any further checks. To do this, we calculate
the latitude-longitude coordinate pairs of four points on the boundary of A using the coordinates of p,
the radius of A, and the azimuths {45, 135, 225, 315}. These four azimuths are chosen in this study
based on the fact that the largest planar rectangle circumscribed by a circle is a square (that said, these
azimuths could be optimised to take into account the radius of A and the curved surface of the Earth if
desired). We then convert the four latitude-longitude coordinate pairs into their respective cell IDs at
resolution i. Importantly, because a point lies somewhere in its quantized cell, we observe that each
of the four cells has a vertex neighbour closer to cell c that must be fully contained in A (Figure 4b).
Knowing this, we can (i) convert each cell ID into row, column notation and (ii) use base3 math on the
row and/or column value accordingly to determine the row, column notation of the cell diagonally
closer to c. Then, we can determine minimum and maximum row and column values, and use these
ranges to obtain all cells that comprise I in row, column notation, which we lastly convert back to cell ID.

Now that we know the cells comprising B and I, the only cells that must be checked for inclusion
in C, are those in the set B− I. The last step is to decide on a criterion for determining whether a cell
should be included in C or not. For example, we could select all cells in the set B − I that intersect
the offset region A, that are fully contained in A, or whose nuclei are contained in A. Although all
three approaches converge to A as resolution i increases, we opt for the latter because a single geodetic
distance computation (from p to the cell nucleus) can classify a cell as being in C or not, which helps to
limit costly geodetic computations (Figure 4d shows the final set of cells C that represent A). Note that
we indicate using the geodetic coordinates of p in the distance computation rather than the reference
point of its quantized cell (i.e., the nucleus of c) because (i) retrieving the original vector data for a single
point is feasible, unlike massive vector curves or polygons (as highlighted in [21]), and (ii) it accurately
determines the cells in C and avoids the discrepancies that would result from using the nucleus of c,

ISPRS Int. J. Geo-Inf. 2020, 9, 335 7 of 17

particularly at coarse resolutions. However, if we wish to avoid retrieving the geodetic coordinates
of p, then we can either (i) use the nucleus of c if the quantization error at resolution i is acceptable
(e.g., at fine resolutions), or (ii) quantize p into a cell cm at a finer resolution m where m > i and the
quantization error at resolution m is acceptable, and then use the nucleus of cm. The pseudocode to
perform the single resolution method is provided in Algorithm 1.

Algorithm 1. Pseudocode to perform the single resolution method

Input: point p, offset radius r, resolution i
Result: set of cells C that represent the offset region

1. Initialise C = Empty
2. Determine the rectangular bounding grid of cells B at resolution i that contain the offset region
3. Determine the rectangular inner grid of cells I at resolution i that are fully inside the offset region
4. Append all cells in I to C
5. foreach cell ⊆ (B− I) do
6. d = geodetic distance from nucleus of cell to p (or nucleus of p’s quantized cell)
7. if d ≤ r then
8. Append cell to C
9. end
10. end
11. return C

Although the proposed approach is demonstrated using the quadrilateral-based rHEALPix DGGS,
it is not difficult to imagine how it could be adapted for triangular- and hexagonal-based DGGSs.
For example, if we consider a hexagonal DGGS, rather than determine a rectangular bounding grid
of cells B, we could instead utilize the ring structure of neighbouring hexagons to determine the
minimum bounding ring such that the resulting grid of cells contain A. Similarly, rather than determine
a rectangular inner grid of cells I, we could determine the maximum inner ring such that all cells
are fully contained within A. An interesting benefit of this approach for hexagonal DGGSs, is that
rings of neighbouring hexagons approximate a circle more closely than a rectangular grid of squares,
therefore the set B− I would have greater impact at limiting the number of cells that must be checked
for inclusion in C.

3.2. Multiresolution

Here we consider how the multiresolution hierarchy of the rHEALPix DGGS can be used to
efficiently determine the set of cells C at finer (or coarser) resolutions thereby removing the need
to determine C from scratch. First, we describe a method that utilizes the congruent cell structure
(i.e., child cells are enclosed by the parent cell) and efficient cell adjacency operations on cell IDs to
determine the cells in C as resolution increases from a coarse resolution i to a fine resolution j, where
j > i. Second, we highlight a method that uses the alignment of cell nuclei to determine the cells in C
as resolution decreases from a fine resolution j to a coarse resolution i.

Consider an offset region A, the rectangular bounding grid of cells Bi that contain A, and the set of
cells Ci that represent A at a coarse resolution i (Figure 5a). Note that Bi refers to the initial search space
of cells at resolution i. However, in the following method the search space at resolution i + 1 is not
equal to Bi+1, so we will denote the search space of cells Si to avoid confusion. To determine the set
of cells Ci+1 that represent A, we first determine all cells in Ci that are definitely fully contained in A
(Figure 5d) which allows us to automatically include their child cells in Ci+1. To do this, we determine
the four vertex neighbours of a given cell in Ci (Figure 5b) using row, column notation and base3 math
(as described in Section 2), and check that they are also in Ci (using efficient set operations on cell
IDs). We check the vertex neighbours because (i) if their nuclei are in A then so are the cell vertices
(since they constrain the vertices), (ii) it is more efficient than checking all eight neighbours (whose

ISPRS Int. J. Geo-Inf. 2020, 9, 335 8 of 17

nuclei also constrain the vertices), and (iii) nuclei of edge neighbours may not necessarily constrain the
vertices (particularly close to the boundary of A). Thus, if all vertex neighbours are in Ci, we conclude
that the given cell must be fully contained in A.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 8 of 17

(a) (b) (c) (d)

Figure 5. (a) The set of cells 𝐶 that represent the offset region at resolution 𝑖 (shown in orange). (b)
A cell in 𝐶 is marked as fully inside the offset region (shown in green) if its vertex neighbours (shown
in grey) are also in 𝐶 . (c) A cell not in 𝐶 is marked as fully outside the offset region (shown in red)
if its vertex neighbours (shown in grey) are also not in 𝐶 . (d) Cells at resolution 𝑖 marked as fully
outside and fully inside the offset region (shown in red and green respectively). White cells represent
the fringe cells at resolution 𝑖.
Next, we determine all cells in 𝑆 − 𝐶 that are definitely fully outside 𝐴 (Figure 5d) using a

similar approach, except we check that the vertex neighbours are not in 𝐶 (Figure 5c). These cells,
and all of their child cells, are marked as being outside of 𝐴. The remaining cells are called “fringe
cells” at resolution 𝑖 (Figure 5d), denoted 𝐹 , because they are located close to the boundary of 𝐴
and their corresponding child cells may or may not be in 𝐶 . The next step is to subdivide all cells
in 𝐹 using simple parent-child concatenation operations on cell IDs, to determine the new search
space of cells 𝑆 (Figure 6a). Lastly, we perform the single geodetic distance computation for all
cells in 𝑆 to determine the cells that comprise 𝐶 (Figure 6b). If we wish to determine the set of
cells 𝐶 , 𝐶 , … , 𝐶 that represent 𝐴 , we can iteratively repeat the process. For example, to
determine the set of cells 𝐶 , we find all cells in 𝐶 that are definitely fully contained in 𝐴 and
all cells in 𝑆 − 𝐶 that are definitely fully outside 𝐴 (taking into account cells that were
previously marked as fully inside or outside 𝐴). From here, we can determine the fringe cells 𝐹
(Figure 6c). We can then subdivide cells in 𝐹 to form 𝑆 , and subsequently test these cells for
inclusion in 𝐶 . The pseudocode to perform the multiresolution method is provided in Algorithm
2.

 (a) (b) (c)

Figure 6. (a) White cells represent the search space at resolution 𝑖 + 1. (b) Orange cells represent the
offset region at resolution 𝑖 + 1. (c) Red cells at resolution 𝑖 and 𝑖 + 1 are fully outside the offset
region while green cells are fully inside (based on vertex neighbour check). White cells represent the
fringe cells at resolution 𝑖 + 1.

Figure 5. (a) The set of cells Ci that represent the offset region at resolution i (shown in orange).
(b) A cell in Ci is marked as fully inside the offset region (shown in green) if its vertex neighbours
(shown in grey) are also in Ci. (c) A cell not in Ci is marked as fully outside the offset region (shown in
red) if its vertex neighbours (shown in grey) are also not in Ci. (d) Cells at resolution i marked as fully
outside and fully inside the offset region (shown in red and green respectively). White cells represent
the fringe cells at resolution i.

Next, we determine all cells in Si −Ci that are definitely fully outside A (Figure 5d) using a similar
approach, except we check that the vertex neighbours are not in Ci (Figure 5c). These cells, and all
of their child cells, are marked as being outside of A. The remaining cells are called “fringe cells” at
resolution i (Figure 5d), denoted Fi, because they are located close to the boundary of A and their
corresponding child cells may or may not be in Ci+1. The next step is to subdivide all cells in Fi using
simple parent-child concatenation operations on cell IDs, to determine the new search space of cells Si+1

(Figure 6a). Lastly, we perform the single geodetic distance computation for all cells in Si+1 to determine
the cells that comprise Ci+1 (Figure 6b). If we wish to determine the set of cells Ci+2 , Ci+3, . . . , C j
that represent A, we can iteratively repeat the process. For example, to determine the set of cells
Ci+2 , we find all cells in Ci+1 that are definitely fully contained in A and all cells in Si+1 −Ci+1 that
are definitely fully outside A (taking into account cells that were previously marked as fully inside
or outside A). From here, we can determine the fringe cells Fi+1 (Figure 6c). We can then subdivide
cells in Fi+1 to form Si+2, and subsequently test these cells for inclusion in Ci+2. The pseudocode to
perform the multiresolution method is provided in Algorithm 2.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 8 of 17

(a) (b) (c) (d)

Figure 5. (a) The set of cells 𝐶 that represent the offset region at resolution 𝑖 (shown in orange). (b)
A cell in 𝐶 is marked as fully inside the offset region (shown in green) if its vertex neighbours (shown
in grey) are also in 𝐶 . (c) A cell not in 𝐶 is marked as fully outside the offset region (shown in red)
if its vertex neighbours (shown in grey) are also not in 𝐶 . (d) Cells at resolution 𝑖 marked as fully
outside and fully inside the offset region (shown in red and green respectively). White cells represent
the fringe cells at resolution 𝑖.
Next, we determine all cells in 𝑆 − 𝐶 that are definitely fully outside 𝐴 (Figure 5d) using a

similar approach, except we check that the vertex neighbours are not in 𝐶 (Figure 5c). These cells,
and all of their child cells, are marked as being outside of 𝐴. The remaining cells are called “fringe
cells” at resolution 𝑖 (Figure 5d), denoted 𝐹 , because they are located close to the boundary of 𝐴
and their corresponding child cells may or may not be in 𝐶 . The next step is to subdivide all cells
in 𝐹 using simple parent-child concatenation operations on cell IDs, to determine the new search
space of cells 𝑆 (Figure 6a). Lastly, we perform the single geodetic distance computation for all
cells in 𝑆 to determine the cells that comprise 𝐶 (Figure 6b). If we wish to determine the set of
cells 𝐶 , 𝐶 , … , 𝐶 that represent 𝐴 , we can iteratively repeat the process. For example, to
determine the set of cells 𝐶 , we find all cells in 𝐶 that are definitely fully contained in 𝐴 and
all cells in 𝑆 − 𝐶 that are definitely fully outside 𝐴 (taking into account cells that were
previously marked as fully inside or outside 𝐴). From here, we can determine the fringe cells 𝐹
(Figure 6c). We can then subdivide cells in 𝐹 to form 𝑆 , and subsequently test these cells for
inclusion in 𝐶 . The pseudocode to perform the multiresolution method is provided in Algorithm
2.

 (a) (b) (c)

Figure 6. (a) White cells represent the search space at resolution 𝑖 + 1. (b) Orange cells represent the
offset region at resolution 𝑖 + 1. (c) Red cells at resolution 𝑖 and 𝑖 + 1 are fully outside the offset
region while green cells are fully inside (based on vertex neighbour check). White cells represent the
fringe cells at resolution 𝑖 + 1.

Figure 6. (a) White cells represent the search space at resolution i + 1. (b) Orange cells represent the
offset region at resolution i + 1. (c) Red cells at resolution i and i + 1 are fully outside the offset region
while green cells are fully inside (based on vertex neighbour check). White cells represent the fringe
cells at resolution i + 1.

ISPRS Int. J. Geo-Inf. 2020, 9, 335 9 of 17

Algorithm 2. Pseudocode to perform the multiresolution method

Input: point p, offset radius r, coarse resolution i, fine resolution j, initial set of cells Si that represent the search
space, initial set of cells Ci that represent the offset region
Result: set of cells C j that represent the offset region

1. Function MultiresMethod(Ci, Si, i)
2. Using cell adjacency, determine the cells in Ci ⊆ Si that are fully inside the offset region
3. Using cell adjacency, determine the cells in Si −Ci that are fully outside the offset region
4. Fi = Remaining cells in Si

5. Si+1 = child cells of Fi

6. Initialize Ci+1 = Empty
7. foreach cell ⊆ Si+1 do
8. d = geodetic distance from nucleus of cell to p (or nucleus of p’s quantized cell)
9. if d ≤ r then
10. Append cell to Ci+1

11. end
12. end
13. Append child cells of all cells previously marked as fully inside the offset region to Ci+1

14. if i + 1 = j then
15. C j = Ci+1

16. return C j

17. else
18. MultiresMethod(Ci+1, Si+1, i + 1)

Overall, by limiting the search space to child cells of the fringe cells, we can limit the number
of costly geodetic distance computations and efficiently determine the cells in C at finer resolutions.
Furthermore, by using cell adjacency as the basis to determine cell containment in A, we can utilize cell
ID manipulation and perform efficient set operations on cell IDs. Lastly, by utilizing cell congruency
and the underlying indexing structure, we can automatically include (or exclude) child cells in C at
finer resolutions using efficient parent-child concatenation operations on cell IDs. Note that with
regards to the latter, if we only include the parent cell in C at finer resolutions and not the respective
child cells, we can model an offset region using a multiresolution set of cells M. Importantly, M will be
geometrically equivalent to C in terms of modelling A, but M will comprise fewer cells than C (especially
at increasingly fine resolutions) which would be beneficial (such as for memory storage or performance
of inside/outside tests) if the number of cells in C at a fine resolution becomes prohibitively large.

In terms of compatibility with other DGGSs, the proposed approach could be applied to triangular
DGGSs because they also exhibit cell congruency. Hexagonal DGGSs (of which aperture 3, 4, and 7
are the most popular) have incongruent hierarchies however, which makes it more difficult to apply
multiresolution approaches based on cell congruency. Interestingly though, the proposed approach of
combining cell adjacency as the basis for cell containment in A with cell nuclei as the basis for inclusion
in C, appears to be compatible with the aperture 7 hexagonal DGGS. In this type of hexagonal DGGS,
the hexagonal shape of a parent cell is closely approximated by its seven child cells, despite not being
fully contained. Notably, for a given cell t at resolution i, the seven respective child cells at resolution
i + 1 have centre points that are contained within t. Thus, we observe that the centre points of the six
adjacent cells of t at resolution i would not only constrain the vertices of t, but also the vertices of all
child cells of t at any resolution greater than i, as is the case for congruent cell shapes.

To end this section, we describe a method to efficiently determine the cells in C as resolution
decreases from a fine resolution j to a coarse resolution i using the aligned property of the rHEALPix
DGGS. First, recall from Section 3.1 that a cell is included in C if its nucleus is included in A.
Now consider the set of cells C j that represent A at a fine resolution j. In order to determine the cells
in C j−1, we can utilize the fact that the nucleus of a parent cell at resolution j− 1 is aligned with the

ISPRS Int. J. Geo-Inf. 2020, 9, 335 10 of 17

nucleus of a child cell at resolution j. On the rHEALPix DGGS with Nside = 3, the ID of an aligned
child cell is always the same string as its parent cell ID except with the integer 4 concatenated to the
end (which can be seen in Figure 1). Consequently, to determine the cells in C j−1, we simply need
to select all cell IDs in C j that end in 4, and then truncate each cell ID to remove the 4. This process
can be iteratively repeated to determine the set of cells C j−2 , C j−3, . . . , Ci that represent A. Note that
by keeping track of the cell IDs that do not end in 4 at each resolution, we can move up and down
the resolution levels by simply concatenating and appending or truncating and removing IDs from
C. Alternatively, in general, we note that if C j is the set of cells at a fine resolution j, then we can
determine the set of cells in Ci at any resolution i where i < j by (i) selecting all cells in C j whose ID
string ends in (j− i) 4’s and (ii) removing the 4’s from each ID by truncating the string. Because this
method is based on the alignment of cell nuclei, it could also be applied to triangular and hexagonal
DGGSs that are aligned at cell centre points by manipulating cell IDs accordingly.

4. Mobile Offset Regions

In this section, we present methods to model an offset region around a mobile point (corresponding
to the location of a mobile IoT device) that is quantized into a cell of a DGGS. This could be important
for querying nearby cells (e.g., inside/outside tests), visualizing aggregate values in nearby cells,
or representing a mobility neighbourhood to contextualise IoT data. For example, consider a mobile
IoT device such as a smart phone or vehicle that generates a continuous stream of location-based
point data (e.g., every 5 s). In this scenario, continually determining from scratch the set of cells C
at resolution i that model the offset region around each incoming point may be impractical (e.g., if
the incoming data rate is high or if i represents a fine resolution). Therefore, we present methods that
manipulate cell IDs directly to determine the cells in C around each new point.

Consider the trajectory of a mobile IoT device represented by a time series of points
{
p1, . . . , pn

}
and the corresponding series of offset regions {A1, . . . , An} at a desired radius around each pk defined
using latitude-longitude coordinates in an ellipsoidal reference frame (e.g., WGS84). To model this
scenario on the rHEALPix DGGS, we quantize each point pk into a cell ck at a desired resolution i to
determine the corresponding time series of cells {c1, . . . , cn}, where |{c1, . . . , cn}| is equal to

∣∣∣{p1, . . . , pn
}∣∣∣

(Figure 7a). The next step is to determine the series of sets of cells {C1, . . . , Cn} at resolution i that model
the offset regions {A1, . . . , An}. Rather than determine each Ck from scratch, we can determine the cells
in C1 and then manipulate cell IDs directly to efficiently determine successive sets of cells.

First, let us consider modelling Ak with cells at a fine resolution such that the quantization error is
deemed acceptable for the IoT application (i.e., it is acceptable for Ck to be centred on ck). In this case,
we determine the cells in C1 using a static method from Section 3 whereby the nucleus (i.e., reference
point) of c1 is used in the geodetic distance computation, which ensures C1 is centred on c1. Then,
to determine the cells in C2, we first convert cells c1 and c2 to row, column notation whereby the row
and column values of c1 and c2 are denoted row1, col1 and row2, col2 respectively. Subsequently, we can
compute the translation values from c1 to c2 using ∆row = row2 − row1 and ∆col = col2 − col1. We can
then apply ∆row, ∆col to the row and column values of each cell in C1. Lastly, we can convert each cell
in row, column notation back to cell ID to determine the cells in C2. Note that because C1 is centred on
c1, C2 will also be centred on c2 (and so forth for all Ck (Figure 7b). Furthermore, every cell at resolution
i has equal area so the total areal coverage of each Ck remains constant. To determine the cells in C3,
we can compute the translation values from c2 to c3 using ∆row = row3 − row2 and ∆col = col3 − col2,
which we can then apply to all cells in C2. Repeating this process for each consecutive pair of cells in
{c1, . . . , cn} allows us to efficiently model a mobile offset region at fine resolutions.

Now let us consider modelling Ak with cells at a coarse resolution such that the quantization error
at resolution i is unacceptable (i.e., we want Ck to be centred on pk). In this case, we cannot simply
determine cells in Ck+1 based on the change between ck+1 and ck, because ignoring the actual change
between pk+1 and pk will result in discrepancies (Figure 7c). Consequently, we propose quantizing
each pk into a cell cm

k at resolution m where m > i and the quantization error at resolution m is deemed

ISPRS Int. J. Geo-Inf. 2020, 9, 335 11 of 17

acceptable for the IoT application. We can then determine Cm
1 which is centred on cm

1 . Subsequently,
we can determine the translation values between cm

k+1 and cm
k which can then be applied to all cells in

Cm
k to get Cm

k+1. Lastly, we can use the alignment method described in Section 3.2 to determine the cells
in Ck+1 at resolution i. This approach ensures each Ck is more accurately centred on pk, albeit with an
accuracy relative to the quantization error at resolution m (Figure 7d).

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 17

at resolution 𝑚 is deemed acceptable for the IoT application. We can then determine 𝐶 which is
centred on 𝑐 . Subsequently, we can determine the translation values between 𝑐 and 𝑐 which
can then be applied to all cells in 𝐶 to get 𝐶 . Lastly, we can use the alignment method described
in Section 3.2 to determine the cells in 𝐶 at resolution 𝑖. This approach ensures each 𝐶 is more
accurately centred on 𝑝 , albeit with an accuracy relative to the quantization error at resolution 𝑚
(Figure 7d).

 (a) (b)

 (c) (d)

Figure 7. (a) A series of points (quantized cells are shown in light blue) representing locations of a
mobile IoT device and corresponding offset regions. (b) Offset cells centred on 𝑐 and subsequently
determined offset cells centred on 𝑐 and 𝑐 . (c) Offset cells centred on 𝑐 and 𝑐 may have
discrepancies. (d) Offset cells centred on each point.

5. Results

In this section, we present a variety of results produced by applying the proposed methods to
model static offset regions (Section 5.1) and mobile offset regions (Section 5.2).

5.1. Static Offset Regions

Figure 8 shows an offset region with 30 m radius around an arbitrary point in New Brunswick,
Canada modelled at three successive resolutions (visualized in Google Earth). Figure 8a shows the
offset region modelled at resolution 13 (~ 6 m ellipsoidal cell width) which represents a coarse
resolution. Figure 8b,c show the offset region modelled at resolutions 14 (~ 2 m ellipsoidal cell width)
and 15 (~ 0.5 m ellipsoidal cell width) respectively, which represent successively finer resolutions.

Recall that a key benefit of the multiresolution method is limiting the search space to child cells
of the fringe cells at successive resolutions. To illustrate this, Figure 9 shows the fringe cells for the
offset region from Figure 8 at resolutions 13, 14, and 15, along with the cells that are marked as fully
inside or fully outside the offset region at successive resolutions (visualized in Google Earth).

𝑝

𝑝 𝑝 𝑐
𝑐 𝑐

Figure 7. (a) A series of points (quantized cells are shown in light blue) representing locations of a
mobile IoT device and corresponding offset regions. (b) Offset cells centred on c1 and subsequently
determined offset cells centred on c2 and c3. (c) Offset cells centred on c2 and c3 may have discrepancies.
(d) Offset cells centred on each point.

5. Results

In this section, we present a variety of results produced by applying the proposed methods to
model static offset regions (Section 5.1) and mobile offset regions (Section 5.2).

5.1. Static Offset Regions

Figure 8 shows an offset region with 30 m radius around an arbitrary point in New Brunswick,
Canada modelled at three successive resolutions (visualized in Google Earth). Figure 8a shows the
offset region modelled at resolution 13 (∼6 m ellipsoidal cell width) which represents a coarse resolution.
Figure 8b,c show the offset region modelled at resolutions 14 (∼2 m ellipsoidal cell width) and 15
(∼0.5 m ellipsoidal cell width) respectively, which represent successively finer resolutions.

Recall that a key benefit of the multiresolution method is limiting the search space to child cells of
the fringe cells at successive resolutions. To illustrate this, Figure 9 shows the fringe cells for the offset
region from Figure 8 at resolutions 13, 14, and 15, along with the cells that are marked as fully inside or
fully outside the offset region at successive resolutions (visualized in Google Earth).

ISPRS Int. J. Geo-Inf. 2020, 9, 335 12 of 17
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 17

(a) (b) (c)

Figure 8. An offset region with 30 m radius modelled at resolution (a) 13, (b) 14, and (c) 15 (©2020
Google Earth).

 (a) (b)

 (c)

Figure 9. An offset region with 30 m radius and fringe cells of the multiresolution method at resolution
(a) 13, (b) 14, and (c) 15 (shown in light grey). Cells marked as fully outside the offset region are shown
in red and cells marked as fully inside the offset region are shown in green (©2020 Google Earth).

To gain a better understanding of the improved efficiency that could be achieved by using the
multiresolution method instead of the single resolution method, we compared the computation
speeds of the two methods for determining the cells in the offset region from Figure 8 at resolutions
14, 15, and 16. For the multiresolution method, we used the resolution 13 set of cells as the initial
coarse resolution. Tests were performed using the Python programming language on a 64-bit
Windows 10 machine with an Intel Core i5-3570S CPU and 8 GB of RAM. Note that the open source
GeoPy Python package (https://pypi.org/project/geopy/) was used to calculate the geodetic distance
from point location to cell nucleus. Table 1 shows the average computation speeds for both methods.

Figure 8. An offset region with 30 m radius modelled at resolution (a) 13, (b) 14, and (c) 15 (©2020
Google Earth).

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 17

(a) (b) (c)

Figure 8. An offset region with 30 m radius modelled at resolution (a) 13, (b) 14, and (c) 15 (©2020
Google Earth).

 (a) (b)

 (c)

Figure 9. An offset region with 30 m radius and fringe cells of the multiresolution method at resolution
(a) 13, (b) 14, and (c) 15 (shown in light grey). Cells marked as fully outside the offset region are shown
in red and cells marked as fully inside the offset region are shown in green (©2020 Google Earth).

To gain a better understanding of the improved efficiency that could be achieved by using the
multiresolution method instead of the single resolution method, we compared the computation
speeds of the two methods for determining the cells in the offset region from Figure 8 at resolutions
14, 15, and 16. For the multiresolution method, we used the resolution 13 set of cells as the initial
coarse resolution. Tests were performed using the Python programming language on a 64-bit
Windows 10 machine with an Intel Core i5-3570S CPU and 8 GB of RAM. Note that the open source
GeoPy Python package (https://pypi.org/project/geopy/) was used to calculate the geodetic distance
from point location to cell nucleus. Table 1 shows the average computation speeds for both methods.

Figure 9. An offset region with 30 m radius and fringe cells of the multiresolution method at resolution
(a) 13, (b) 14, and (c) 15 (shown in light grey). Cells marked as fully outside the offset region are shown
in red and cells marked as fully inside the offset region are shown in green (©2020 Google Earth).

To gain a better understanding of the improved efficiency that could be achieved by using the
multiresolution method instead of the single resolution method, we compared the computation speeds
of the two methods for determining the cells in the offset region from Figure 8 at resolutions 14, 15,
and 16. For the multiresolution method, we used the resolution 13 set of cells as the initial coarse
resolution. Tests were performed using the Python programming language on a 64-bit Windows
10 machine with an Intel Core i5-3570S CPU and 8 GB of RAM. Note that the open source GeoPy
Python package (https://pypi.org/project/geopy/) was used to calculate the geodetic distance from
point location to cell nucleus. Table 1 shows the average computation speeds for both methods.

https://pypi.org/project/geopy/

ISPRS Int. J. Geo-Inf. 2020, 9, 335 13 of 17

Table 1. Computation speeds for determining cells in the 30 m offset region from Figure 8 at
different resolutions.

Cell
Resolution

Cells in
Offset

Single Resolution Method Multiresolution Method
Time Reduction

(%)Cells in Search
Space Time (s) Cells in Search

Space Time (s)

13 83 132 0.05 - - -
14 762 976 0.38 675 0.25 34
15 6837 8574 3.3 2268 1.1 67
16 61,633 74,886 29 7020 4.2 86

Evidently, the multiresolution method significantly reduces computation speed as resolution
increases. At resolution 14, there are approximately 31% less cells in the search space and as a
result, fewer cells must undergo the costly geodetic distance check which leads to a reduction in
computation speed of approximately 34%. At resolutions 15 and 16, the benefit of the multiresolution
method becomes even clearer, as demonstrated by the significant reduction in computation speed
(approximately 67% and 86% respectively). This is because the search space of cells is derived from
the fringe cells which converges to the boundary of the offset region at finer resolutions (as shown in
Figure 9), and is thus significantly smaller than the search space of cells in the single resolution method
(e.g., 7020 cells versus 74886 cells at resolution 16). Moreover, the number of cells in the search space
at successive resolutions increases by approximately a factor of three, compared to approximately a
factor of nine for the single resolution method. Consequently, the cumulative number of cells that
must be distance checked in the multiresolution method is far less than the single resolution method
(e.g., 9963 cells versus 74886 cells at resolution 16).

5.2. Mobile Offset Regions

Recall that modelling a mobile offset region at a coarse resolution will result in discrepancies
if cells in Ck+1 are determined based on the change between ck+1 and ck. In order to gain a better
understanding of these discrepancies and the improved accuracy that could be achieved using the
proposed method of utilizing cells in Cm

k+1 with the alignment method to determine cells in Ck+1,
we computed the cells in a 30 m offset region around a series of 304 points using both methods at
resolutions 12 (∼17 m ellipsoidal cell width) and 13 (∼6 m ellipsoidal cell width) and compared the
results with the true set of cells T determined using a static offset method from Section 3. Each point
represents the location of a bus (considered as an IoT device) in a single trip of approximately 30 min.
This data was extracted from real world Automatic Vehicle Location (AVL) feeds pulled every 5 s
from buses of the Codiac transit network in Greater Moncton, New Brunswick, Canada. At each
point pk, the error between the set of cells Ck and true set of cells Tk was calculated using Equation (1)
which determines the number of cells that differ between the two sets. These values were averaged
over the number of points to determine the mean cell error and standard deviation. Table 2 shows
the error statistics when cells in Ck are centred on ck and Table 3 shows the error statistics using the
proposed method.

cell error =

 0, set C = set T

|set T − set C|+ |set C− set T|, else
(1)

Table 2. Error statistics for modelling a mobile 30 m offset region at coarse resolutions when cells in Ck

are centred on ck.

Cell Resolution Cells in Offset
Cell Error

Offsets Incorrect (%)
Mean Std. Dev.

12 11 3 1 100
13 85 8 3 99.7

ISPRS Int. J. Geo-Inf. 2020, 9, 335 14 of 17

Table 3. Error statistics for modelling a mobile 30 m offset region at coarse resolutions using the
proposed method.

Cell
Resolution i

Resolution m=i+1 Resolution m=i+2

Cell Error Offsets
Incorrect (%)

Cells in
Offset at

res. m

Cell Error Offsets
Incorrect (%)

Cells in
Offset at

res. mMean Std. Dev. Mean Std. Dev.

12 0.7 0.8 49.7 85 0.2 0.5 17.4 759
13 3 2 94.4 759 0.6 0.9 39.1 6855

As shown in Table 2, there are clear discrepancies if cells in Ck are centred on ck at coarse resolutions.
For example, no Ck at resolution 12 exactly matched the true set of cells Tk (i.e., 100% of offsets were
incorrect) and the average cell error for any Ck was three cells. A similar pattern occurred at resolution
13, where 99.7% of offsets were incorrect and the average cell error was eight cells. However, these
discrepancies can be reduced using the proposed method as shown in Table 3. At resolution 12,
only 49.7% and 17.4% of offsets were incorrect and the average cell error for any Ck was reduced
to 0.7 cells and 0.2 cells when the value of m was equal to 13 and 14 respectively. At resolution 13,
94.4% and 39.1% of offsets were incorrect and the average cell error for any Ck was reduced to 3 cells
and 0.6 cells when the value of m was equal to 14 and 15 respectively.

Overall, it is evident that the average cell error for any Ck decreases as m increases. Moreover,
at both resolution 12 and 13, average cell error is already less than 10% of the corresponding value
in Table 2 when m = i + 2. This is because each cell is subdivided into nine child cells at successive
resolutions which significantly reduces quantization error as m increases (for apertures less than nine,
we would expect average cell error to decrease more gradually). In addition, the number of occasions
where Ck exactly matched Tk (i.e., cell error was equal to zero) increased as m increased, as shown by
the decrease in percentage of offsets that were incorrect. However, we note that the percentages are
higher at resolution 13 most likely because there are more cells in Ck (approximately 85 at resolution
13 versus 11 at resolution 12) which makes achieving an exact match with the cells in Tk more difficult.
On a further note, it is important to mention that increasing the value of m significantly increases
the number of cells in Cm

k that must be manipulated in order to determine the cells in Ck at a coarser
resolution i (as shown by the number of cells in the offset at resolution m). Therefore, to alleviate
the associated computational cost of increasing m, a valuable direction for future work would be to
represent Cm

k as a multiresolution set of cells Mk (which contains significantly fewer cells) and explore
methods of determining the cells in Mk+1 based on the translation values between cm

k+1 and cm
k .

Lastly, Figure 10 illustrates how we can apply the proposed method to model mobile offset
regions at coarse resolutions. Figure 10a,b show three successive point locations of a mobile IoT
device (e.g., vehicle or smart phone) surrounded by a 30 m offset region and cells at resolution 12
(∼17 m ellipsoidal cell width) and 13 (∼6 m ellipsoidal cell width) respectively, that are coloured to
simulate values derived from aggregating huge volumes of point data (e.g., noise level, air pollution,
or ride-sharing data). By applying the proposed method with m = i + 2, we can determine and
visualize the cells that surround each point as shown in Figure 10c,d (visualized in Google Earth).

ISPRS Int. J. Geo-Inf. 2020, 9, 335 15 of 17
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 15 of 17

 (a) (b)

 (c) (d)

Figure 10. (a,b) A series of points representing locations of a mobile IoT device surrounded by a 30 m
offset region and cells colored to simulate aggregate values at resolution 12 and 13 respectively. (c),
(d) Visualizing offset region cells from (a) and (b) respectively around each point (©2020 Google
Earth).

6. Conclusions

With the huge volume of location-based point data being generated by IoT devices and
subsequent rising interest from the Digital Earth community, a need has emerged for spatial
operations that are compatible with Digital Earth and the underlying DGGS framework. To this end,
we have presented methods of modelling an offset region around the point location of an IoT device
(both static and mobile) that is quantized into a cell of a DGGS. Notably, these methods illustrate how
the underlying indexing structure of a DGGS can be utilized to determine the cells in an offset region
at different spatial resolutions. In particular, the proposed methods make use of cell congruency,
alignment of cell nuclei, cell ID manipulation, and set operations on cell IDs to determine cell
adjacency and topological relationships in support of modelling static and mobile offset regions. The
proposed methods have been implemented to provide illustrative results, to show the computational
speed gains of a multiresolution approach for modelling static offset regions at fine resolutions, and
applied to show how cells of a mobile offset region can be determined and visualized at coarse
resolutions.

With regards to modelling static offset regions, more research work is needed to develop
efficient multiresolution approaches for hexagonal DGGSs that overcome the issue of an incongruent
hierarchy. Along with pure-aperture hexagonal DGGSs, future work should also consider mixed-
aperture hexagonal DGGSs [24] because they are a promising approach not constrained to have the
same aperture at every resolution which provides greater control over cell area at each resolution and
hence, greater flexibility in modelling offset regions.

In terms of modelling offset regions around mobile IoT device locations, our next step is to
explore multiresolution approaches whereby a mobile offset region is represented as a
multiresolution set of cells rather than a single resolution set of cells. In addition, we intend to explore
the potential of using offset region cells to represent a mobility neighborhood around locations of a
mobile IoT device in order to facilitate the important task of contextualizing IoT data. Because DGGS
cells are ideally suited for integrating big geospatial data at different spatial resolutions, we anticipate
that such an approach could prove to be beneficial.

Figure 10. (a,b) A series of points representing locations of a mobile IoT device surrounded by a
30 m offset region and cells colored to simulate aggregate values at resolution 12 and 13 respectively.
(c,d) Visualizing offset region cells from (a,b) respectively around each point (©2020 Google Earth).

6. Conclusions

With the huge volume of location-based point data being generated by IoT devices and subsequent
rising interest from the Digital Earth community, a need has emerged for spatial operations that are
compatible with Digital Earth and the underlying DGGS framework. To this end, we have presented
methods of modelling an offset region around the point location of an IoT device (both static and
mobile) that is quantized into a cell of a DGGS. Notably, these methods illustrate how the underlying
indexing structure of a DGGS can be utilized to determine the cells in an offset region at different
spatial resolutions. In particular, the proposed methods make use of cell congruency, alignment of cell
nuclei, cell ID manipulation, and set operations on cell IDs to determine cell adjacency and topological
relationships in support of modelling static and mobile offset regions. The proposed methods have been
implemented to provide illustrative results, to show the computational speed gains of a multiresolution
approach for modelling static offset regions at fine resolutions, and applied to show how cells of a
mobile offset region can be determined and visualized at coarse resolutions.

With regards to modelling static offset regions, more research work is needed to develop efficient
multiresolution approaches for hexagonal DGGSs that overcome the issue of an incongruent hierarchy.
Along with pure-aperture hexagonal DGGSs, future work should also consider mixed-aperture
hexagonal DGGSs [24] because they are a promising approach not constrained to have the same
aperture at every resolution which provides greater control over cell area at each resolution and hence,
greater flexibility in modelling offset regions.

In terms of modelling offset regions around mobile IoT device locations, our next step is to explore
multiresolution approaches whereby a mobile offset region is represented as a multiresolution set of
cells rather than a single resolution set of cells. In addition, we intend to explore the potential of using
offset region cells to represent a mobility neighborhood around locations of a mobile IoT device in
order to facilitate the important task of contextualizing IoT data. Because DGGS cells are ideally suited
for integrating big geospatial data at different spatial resolutions, we anticipate that such an approach
could prove to be beneficial.

ISPRS Int. J. Geo-Inf. 2020, 9, 335 16 of 17

Author Contributions: Conceptualization, David Bowater and Monica Wachowicz; Methodology, Software,
Writing—Original Draft Preparation, David Bowater; Writing—Review & Editing, Supervision, Funding
Acquisition, Monica Wachowicz. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the NSERC/Cisco Industrial Research Chair (Grant IRCPJ 488403-14).

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Van der Zee, E.; Scholten, H. Spatial dimensions of big data: Application of geographical concepts and spatial
technology to the internet of things. In Big Data and Internet of Things: A Roadmap for Smart Environments;
Bessis, N., Dobre, C., Eds.; Springer: Cham, Switzerland, 2014; pp. 137–168. [CrossRef]

2. Cao, H.; Wachowicz, M. The design of an IoT-GIS platform for performing automated analytical tasks.
Comput. Environ. Urban Syst. 2019, 74, 23–40. [CrossRef]

3. Kamilaris, A.; Ostermann, F. Geospatial analysis and the internet of things. ISPRS Int. J. Geo Inf. 2018, 7, 269.
[CrossRef]

4. Sun, G.; Chang, V.; Ramachandran, M.; Sun, Z.; Li, G.; Yu, H.; Liao, D. Efficient location privacy algorithm
for Internet of Things (IoT) services and applications. J. Netw. Comput. Appl. 2017, 89, 3–13. [CrossRef]

5. Eldrandaly, K.A.; Abdel-Basset, M.; Shawky, L.A. Internet of spatial things: A new reference model with
insight analysis. IEEE Access 2019, 7, 19653–19669. [CrossRef]

6. Granell, C.; Kamilaris, A.; Kotsev, A.; Ostermann, F.O.; Trilles, S. Internet of things. In Manual of Digital Earth;
Guo, H., Goodchild, M., Annoni, A., Eds.; Springer: Singapore, 2020; pp. 387–423. [CrossRef]

7. Mahdavi-Amiri, A.; Alderson, T.; Samavati, F. A survey of digital earth. Comput. Graph. 2015, 53, 95–117.
[CrossRef]

8. Alderson, T.; Purss, M.; Du, X.; Mahdavi-Amiri, A.; Samavati, F. Digital earth platforms. In Manual of Digital
Earth; Guo, H., Goodchild, M., Annoni, A., Eds.; Springer: Singapore, 2020; pp. 25–54. [CrossRef]

9. Sahr, K.; White, D. Discrete global grid systems. In Proceedings of the 30th Symposium on the Interface,
Computing Science and Statistics, Minneapolis, MN, USA, 13–16 May 1998; pp. 269–278.

10. Sahr, K.; White, D.; Kimerling, A.J. Geodesic discrete global grid systems. Cartogr. Geogr. Inf. Sci. 2003, 30,
121–134. [CrossRef]

11. Topic 21: Discrete Global Grid Systems Abstract Specification. Available online: http://docs.opengeospatial.
org/as/15-104r5/15-104r5.html (accessed on 2 August 2018).

12. Amiri, A.; Samavati, F.; Peterson, P. Categorization and conversions for indexing methods of discrete global
grid systems. ISPRS Int. J. Geo Inf. 2015, 4, 320–336. [CrossRef]

13. Li, Z. Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future
Directions. 2019. Available online: https://arxiv.org/abs/1907.12182 (accessed on 21 March 2020).

14. Purss, M.B.J.; Peterson, P.R.; Strobl, P.; Dow, C.; Sabeur, Z.A.; Gibb, R.G.; Ben, J. Datacubes: A discrete global
grid systems perspective. Cartogr. Int. J. Geogr. Inf. Geovis. 2019, 54, 63–71. [CrossRef]

15. Sirdeshmukh, N.; Verbree, E.; Oosterom, P.V.; Psomadaki, S.; Kodde, M. Utilizing a discrete global grid
system for handling point clouds with varying locations, times, and levels of detail. Cartogr. Int. J. Geogr.
Inf. Geovis. 2019, 54, 4–15. [CrossRef]

16. Yao, X.; Li, G.; Xia, J.; Ben, J.; Cao, Q.; Zhao, L.; Ma, Y.; Zhang, L.; Zhu, D. Enabling the big earth observation
data via cloud computing and DGGS: Opportunities and challenges. Remote Sens. 2019, 12, 62. [CrossRef]

17. Birk, F. Design and Implementation of a Scalable Crowdsensing Platform for Geospatial Data. Master’s
Thesis, Ulm University, Ulm, Germany, 2018.

18. H3: Uber’s Hexagonal Hierarchical Spatial Index. Available online: https://eng.uber.com/h3/ (accessed on
27 September 2019).

19. Sahr, K. On the optimal representation of vector location using fixed-width multi-precision quantizers.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2013, 40, 1–8. [CrossRef]

20. Purss, M.B.J.; Liang, S.; Gibb, R.; Samavati, F.; Peterson, P.; Ben, J.; Dow, C.; Saeedi, S. Applying discrete
global grid systems to sensor networks and the Internet of Things. In Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5581–5583.
[CrossRef]

http://dx.doi.org/10.1007/978-3-319-05029-4_6
http://dx.doi.org/10.1016/j.compenvurbsys.2018.11.004
http://dx.doi.org/10.3390/ijgi7070269
http://dx.doi.org/10.1016/j.jnca.2016.10.011
http://dx.doi.org/10.1109/ACCESS.2019.2897012
http://dx.doi.org/10.1007/978-981-32-9915-3_11
http://dx.doi.org/10.1016/j.cag.2015.08.005
http://dx.doi.org/10.1007/978-981-32-9915-3_2
http://dx.doi.org/10.1559/152304003100011090
http://docs.opengeospatial.org/as/15-104r5/15-104r5.html
http://docs.opengeospatial.org/as/15-104r5/15-104r5.html
http://dx.doi.org/10.3390/ijgi4010320
https://arxiv.org/abs/1907.12182
http://dx.doi.org/10.3138/cart.54.1.2018-0017
http://dx.doi.org/10.3138/cart.54.1.2018-0009
http://dx.doi.org/10.3390/rs12010062
https://eng.uber.com/h3/
http://dx.doi.org/10.5194/isprsarchives-XL-4-W2-1-2013
http://dx.doi.org/10.1109/IGARSS.2017.8128269

ISPRS Int. J. Geo-Inf. 2020, 9, 335 17 of 17

21. Alderson, T.; Mahdavi-Amiri, A.; Samavati, F. Offsetting spherical curves in vector and raster form.
Vis. Comput. 2018, 34, 973–984. [CrossRef]

22. Gibb, R.; Raichev, A.; Speth, M. The rHEALPix Discrete Global Grid System. 2016. Available online:
https://datastore.landcareresearch.co.nz/dataset/rhealpix-discrete-global-grid-system (accessed on
17 July 2018). [CrossRef]

23. Gibb, R.G. The rHEALPix Discrete Global Grid System. In IOP Conference Series: Earth and Environmental
Science, Proceedings of the 9th Symposium of the International Society for Digital Earth (ISDE), Halifax, NS, Canada,
5–9 October 2015; IOP Publishing: Bristol, UK, 2016. [CrossRef]

24. Sahr, K. Central place indexing: Hierarchical linear indexing systems for mixed-aperture hexagonal discrete
global grid systems. Cartogr. Int. J. Geogr. Inf. Geovis. 2019, 54, 16–29. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00371-018-1525-7
https://datastore.landcareresearch.co.nz/dataset/rhealpix-discrete-global-grid-system
http://dx.doi.org/10.7931/J2D21VHM
http://dx.doi.org/10.1088/1755-1315/34/1/012012
http://dx.doi.org/10.3138/cart.54.1.2018-0022
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The rHEALPix DGGS
	Static Offset Regions
	Single Resolution
	Multiresolution

	Mobile Offset Regions
	Results
	Static Offset Regions
	Mobile Offset Regions

	Conclusions
	References

