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Abstract: Preventing and controlling the risk of importing the coronavirus disease (COVID-19) has 
rapidly become a major concern. In addition to air freight, ocean-going ships play a non-negligible 
role in spreading COVID-19 due to frequent visits to countries with infected populations. This 
research introduces a method to dynamically assess the infection risk of ships based on a data-
driven approach. It automatically identifies the ports and countries these ships approach based on 
their Automatic Identification Systems (AIS) data and a spatio-temporal density-based spatial 
clustering of applications with noise (ST_DBSCAN) algorithm. We derive daily and 14 day 
cumulative ship exposure indexes based on a series of country-based indices, such as population 
density, cumulative confirmed cases, and increased rate of confirmed cases. These indexes are 
classified into high-, middle-, and low-risk levels that are then coded as red, yellow, and green 
according to the health Quick Response (QR) code based on the reference exposure index of Wuhan 
on April 8, 2020. This method was applied to a real container ship deployed along a Eurasian route. 
The results showed that the proposed method can trace ship infection risk and provide a decision 
support mechanism to prevent and control overseas imported COVID-19 cases from international 
shipping. 

Keywords: COVID-19; international shipping; overseas imported cases; risk assessment; automatic 
identification systems; ST-DBSCAN; health QR code 

 

1. Introduction 

The novel coronavirus disease (COVID-19) was first reported in December 2019 in Wuhan, 
China [1]. It was found that COVID-19 is a coronavirus with high person-to-person transmissibility 
and infectivity, probably higher than the previously identified Severe Acute Respiratory Syndrome 
(SARS) and Middle East Respiratory Syndrome (MERS) [2–5]. According to currently available data 
published by different research teams, the average basic reproduction number (R0) of COVID-19 
indicates that the average secondary infections produced by infected people without intervention 
may be as high as 3.28 [3]. Unfortunately, as there is still no specific antiviral agents and vaccines 
available to treat this new infection, preventing person-to-person transmission measures, such as 
keeping suitable social distance, family quarantine, and even locking down entire cities to restrict the 
flow of people, have so far become the main, if not only, choice for many countries [6]. However, 
these measures are still not sufficient to stop the rapid spread of this coronavirus at a global scale. 
Therefore, most countries have witnessed a rapid increase in confirmed cases, and COVID-19 has 
actually begun to spread globally [6].  



ISPRS Int. J. Geo-Inf. 2020, 9, 351 2 of 14 

 

According to global COVID-19 outbreak statistics maintained by the Center for System Science 
and Engineering (CSS) at Johns Hopkins University [7] (see Figure 1), as of April 10, 2020, there were 
more than 1.6 million confirmed cases, nearly 100,000 deaths, and more than 350,000 recovered cases 
worldwide. A total of 184 countries have confirmed COVID-19 infections, with the highest number 
of infections currently in the United States, followed by countries in Europe including Spain, Italy, 
the United Kingdom, and France. 

 

Figure 1. Global COVID-19 statistics as of April 10, 2020 [7]. 

Although the pandemic is spreading globally, the pandemic in a several countries, such as 
China, has been effectively controlled. On April 8, 2020, the city of Wuhan, China’s most severely 
affected city, began lifting its lockdown, indicating a new stage of China’s pandemic control. For 
instance, as illustrated by the evolution of the COVID-19 pandemic in China, as shown by recent data 
[8], it clearly appears that one of the main challenges once the pandemic is relatively under control, 
is to carefully monitor imported cases thus raising the level of interest in accurate monitoring policies 
oriented to air, land, and maritime transportation, this being a major challenge not only for China [9] 
but also the world. 

Preventing the risk of imported COVID-19 cases as well as supporting the resumption of the 
local economy has become the main focus of many countries. However, returning to work and 
resuming production means that people will begin to commute at a large scale; this significantly 
increases the risk of pandemic transmission. In order to effectively prevent a resurgence in the 
pandemic and resume work and production smoothly, the Alibaba Group has developed a tracing 
health QR (Quick Response) code system to identify different degrees of infection risks based on 
people’s daily activities and movements. People can obtain their health code by providing their 
phone number, name, and ID [8].  

By scanning the QR code, a system based on these principles will show whether a given person 
has been in proximity to someone who has been infected using a coding system based on three 
different colors: green, yellow, and red—as shown in Figure 2. The red QR code represents the highest 
risk (i.e., potential infection) which requires 14 days of quarantine. The yellow QR code indicates 
general risk (i.e., caution required) and 7 days of quarantine is required. The green QR code (i.e., good 
health) indicates a very low or null risk of infection. People with green codes are free to move as they 
like such as entering public buildings, taking public transportation, and returning to work [6]. The 
reason for the red or yellow health codes may result from movement through key pandemic areas or 
close proximity to a confirmed or suspected case. The system was first applied to the city of 
Hangzhou and gradually applied to more than 200 other cities in China. This method has made 
important contributions to China’s control of the spread of the pandemic and the resumption of 
production [8]. Nowadays, since this method is well diffused and understood and the principles have 
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been adopted by many countries worldwide, we considered it as a reference and it was retained for 
our approach to the ship risk evaluation. 

   

Figure 2. Red, yellow, and green health Quick Response (QR) codes used to indicate the COVID-19 
infection status of people [8,9]. 

While most imported COVID-19 cases mainly enter by either land or airports, depending on 
frontier control policies, maritime traffic also plays a non-negligible role in spreading overseas 
COVID-19. It is well known that international shipping has played an important role in ensuring 
global trade and supply chains during this coronavirus outbreak. However, ships often travel 
through many countries and regions, and COVID-19 can likely be brought from one country to 
another by the crew on board. This makes ships one of the possible channels spreading the virus, 
although this is probably at a different scale and magnitude compared to airlines. 

For instance, it has been reported that several seafarers on board the container vessel Gjertrud 
Maersk tested positive for COVID-19 in China. The Gjertrud Maersk was probably the first container 
ship worldwide to report carrying the coronavirus [10]. Moreover, cruise ships also attract a lot of 
attention when it comes to imported cases. For example, the Princess cruise ship caused a large 
number of overseas imported cases [11,12]. Imported COVID-19 infections from international 
shipping should not be overlooked when making decisions or taking measures to prevent and control 
the risk of overseas imported viruses. Given the tight resources of countries for pandemic prevention, 
maximizing pandemic prevention with limited resources is a very challenging task. Evaluating the 
risk level of each ship and generating a customized prevention strategy is crucial. While recent 
studies have estimated the imported COVID-19 risk from airlines [13,14], there are still, to the best of 
our knowledge, very few studies investigating infection risks from international shipping.  

In order to fill this gap, this study introduces a method to evaluate the dynamic risk from 
international shipping of COVID-19 infections based on a data-driven approach. The approach 
developed first automatically identifies stop events: the ports approached and the nearest countries 
based on AIS data and ST-DBSCAN (a density-based algorithm for discovering clusters in large 
spatial databases with noise) algorithm that has the advantage of taking into account spatial and 
temporal dimensions. The ships’ COVID-19 exposure indexes at different dates over the previous 14 
days are then derived and modeled based on the daily COVID-19 infection statistics of the 
approached countries including population density, cumulative confirmed cases, and their increase 
in rates. These indexes are further classified into the three risk levels based on the three-color code 
index: red, yellow, and green [15]. 

The main contributions of this study are summarized as follows. First, this study is, to the best 
of our knowledge, one of the very few studies dynamically evaluating the infection risk of 
international ships at the global scale. Second, this study developed a data-driven model to provide 
a quantitative estimation of COVID-19 infection risk from ships using real-time ship trajectory data 
and COVID-19 infection statistics that is potentially applicable to any individual ship. The exposure 
index in Wuhan on the final day of the lockdown is considered as the reference to classify the COVID-
19 risk levels for individual ships. The main reason for this is that on April 8 it was a turning point in 
the risk level for the city of Wuhan after which the local authorities then applied different prevention 
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and control measures. This index threshold can be considered a valuable reference for authorities to 
make proper COVID-19 prevention and control measures and policies. 

The following sections are structured as follows. The next section introduces the key datasets 
used and the main processes developed in assessing the ship infection risks. Section 3 introduces a 
case study of a container ship deployed along a Eurasian route in order to evaluate the proposed 
method after which the results are provided. Finally, Section 4 provides the conclusions and outlines 
the findings and further work. 

2. Materials and Methods 

2.1. Overall Framework 

The main procedure and datasets used in this study are described in Figure 3. As shown, the 
COVID-19 ship risk assessment method is basically a data-driven approach that includes four key 
datasets and six sequential steps.  

 

Figure 3. The overall framework of assessing the COVID-19 infection risk of ocean-going ships. 

The first step is to detect ship “stop” events with the ST-DBSCAN algorithm that integrates ship 
AIS data as inputs and automatically extracts “stops” spatially and temporally. The detected stops 
are further classified into hoteling stops and other stops based on distances between their locations 
and land boundaries. Similarly, hoteling stops are then mapped to their nearest ports and countries 
based on their distance to ports. This allows us to approximate and identify arrival and departure 
dates and the travel sequences of the approached ports and countries of a given ship. 

These datasets are further used to search for the COVID-19 pandemic statistics of the related 
countries during the visit period of a ship by taking advantage of the tidycovid19 R package which 
has the objective of providing transparent access to various authoritative, publicly available COVID-
19 data sources at the country-level on a daily basis [16]. Therefore, this allows us to derive daily 
COVID-19 exposure indexes as well as the past 14 day cumulative exposure indexes. An exposure 
index denotes the degree of a ship exposed to infected countries (which will be explained in more 
detail in the next sections). As previously mentioned, the last step is to take the exposure index of 
Wuhan on April 8, 2020, when the city ended its lockdown, as a reference index. This reference index 
is applied to classify the 14 day cumulative exposure indexes into three different risk levels. These 
risk levels, together with the ship’s characteristics, are further encoded into QR codes with red, 
yellow, or green colors for high risk, middle risk, and low risk, respectively. 

2.2. Data Sources 
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Four main datasets were used in this study including the global ship AIS dataset, global port 
location datasets, global COVID-19 infection datasets, and global administration boundary datasets. 
Each of these datasets is described as follows. 

The first dataset was the dynamic AIS data which is mainly used as an input of ST_DBSCAN to 
identify ship stops. Each dynamic AIS record usually includes several attributes including the 
Maritime Mobile Service Identification (mmsi) of a ship, the timestamp (time)—when the AIS 
information is generated indicating the number of seconds experienced from the generation time of 
an AIS point to January 1, 1970; the latitude and longitude coordinates (lon, lat); and the speed over 
ground (sog). The unit of sog is the knot; one knot is approximately equal to 1852 meters per hour. 
Dynamic AIS information is usually updated every few seconds or minutes according to ship speed 
and change of course [17]. For instance, AIS messages are usually updated every 3 min when a ship 
stops at a berth or anchorage and updated every 2–3 seconds when sailing at high speed. A ship 
trajectory can be expressed as a series of AIS points arranged in chronological order. It can be 
expressed as  𝑡𝑟𝑎𝑗 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑖, ⋯ 𝑝𝑛} , where 𝑝௜. 𝑡𝑖𝑚𝑒 > 𝑝௜ିଵ. 𝑡𝑖𝑚𝑒 , and the 𝑖௧௛  point could be 
expressed as 𝑝𝑖 = {𝑚𝑚𝑠𝑖, 𝑡𝑖𝑚𝑒, 𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑠𝑜𝑔}. 

The second dataset is the global shipping port location. A port can be represented as 𝑝𝑜𝑟𝑡 ={𝑝𝑜𝑟𝑡𝐼𝑑, 𝑝𝑜𝑟𝑡𝑁𝑎𝑚𝑒, 𝑝𝑜𝑟𝑡𝐿𝑜𝑛, 𝑝𝑜𝑟𝑡𝐿𝑎𝑡, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦}, where 𝑝𝑜𝑟𝑡𝐼𝑑  represents the unique identification 
number of the port; 𝑝𝑜𝑟𝑡𝑁𝑎𝑚𝑒 represents the name of the port; 𝑝𝑜𝑟𝑡𝐿𝑜𝑛 represents the longitude of 
the port; 𝑝𝑜𝑟𝑡𝑙𝑎𝑡 represents the latitude of the port; and 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 represents the name of the country 
where the port is located, this being an important input of our approach.  

The third dataset is the global COVID-19 statistics. The data mainly come from the global 
COVID-19 infection statistics maintained by the Center for Systems Science and Engineering at John 
Hopkins University in the United States. This dataset is currently one of the most authoritative 
datasets for COVID-19-related research. The dataset includes the number of confirmed COVID-19 
cases, deaths, and recoveries by country since January 22, 2020. This dataset is updated on a daily 
basis by accessing data from official public health agencies such as the World Health Organization. 
In addition, a publicly available R language package, called tidycovid19, integrates the economic and 
social data of each country, such as population, land area, and gross domestic product (GDP), with 
the pandemic data to facilitate COVID-19-related research [16].  

Currently, the tidycovid19 package integrates seven datasets including COVID-19 data from 
Johns Hopkins University CSSE, government dataset provided by the Assessment Capacities Project 
(ACAPS), data from the Oxford COVID-19 Government Response Tracker, Mobility Trends Reports 
provided by Apple, Google COVID-19 Community Mobility Reports data, Google Trends data, and 
country-level economic data provided by the World Bank. While these datasets are given according 
to different spatial and temporal resolutions, most provide country-level data but are still not local- 
or city-based data [16]. 

The last dataset is the global administrative boundaries (GADM) [18]. The GADM dataset 
provides country-based geographical data including regional levels, such as province or state, city, 
district, and county, with high spatial resolution. This dataset is primarily maintained by the 
University of California and can be used free of charge for academic and other non-commercial 
purposes. This dataset has been used to identify ship hoteling stopovers. 

2.3. Identification of Approached Ports and Countries 

This section explains the detailed processes applied for the identification of the ports and 
countries a ship may pass through based on AIS data and application of the ST-DBSCAN algorithm. 
The AIS data are widely used to investigate ship behaviors at regional and local levels [19–21]. The 
focus here is on detecting a ship’s stop behaviors, and the main processes applied are explained as 
follows. 

The first step is to automatically extract the ship stops as revealed by their AIS data. A ship stop 
can be identified from either a cluster of AIS points that denotes a location where a ship stays for 
several hours or even days (e.g., berth, anchorage). Given the fact that ship AIS messages of a ship 
are broadcasted every few seconds or minutes, the density of the AIS points near stop locations is 
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relatively higher than other locations [22]. Therefore, ship stops can be detected by identifying these 
high-density areas.  

The ST-DBSCAN [23], an unsupervised machine learning method based on spatial and temporal 
density, has been applied to automatically identify ship stops. The ST-DBSCAN algorithm is an 
extension of the DBSCAN algorithm [24]. The DBSCAN methods usually identify density clusters 
from the spatial dimension, while the ST_DBSCAN can detect clusters by integrating the temporal 
dimension. Therefore, ST_DBSCAN is applied in order to identify ship stops spatially and 
temporally. 

The ST-DBSCAN algorithm requires five parameters: 𝐷, 𝑒𝑝𝑠1, 𝑒𝑝𝑠2, 𝑀𝑖𝑛𝑃𝑡𝑠, and ∆𝜖, where 𝐷 
represents a set of data points; 𝑒𝑝𝑠1 and 𝑒𝑝𝑠2, respectively, represent the maximum spatial and 
maximum difference among non-spatial attributes; 𝑀𝑖𝑛𝑃𝑡𝑠  represents the minimum number of 
neighbors to form a cluster within the 𝑒𝑝𝑠1 and 𝑒𝑝𝑠2 limits; ∆𝜖 represents a threshold that denotes 
the difference between the average distance of a point to its neighborhood and the average distance 
of a cluster. If that difference is greater than ∆𝜖, the point will not be classified into this cluster. This 
parameter is mainly used to avoid generating clusters for non-spatial values [23]. Since this situation 
has little impact on our case, this parameter was not considered. 

The value of each parameter of the ST-DBSCAN algorithm may have a significant impact on the 
results of the cluster analysis. We set the value of these parameters mainly based on domain 
knowledge according to the constraints of our study. The value of the first parameter, 𝐷, was set as 
the AIS points which had speeds less than 1 knot, since these points were very much likely to denote 
the stop of a ship, since ship stops mainly occur at anchorages or berths where ships basically remain 
stationary or move at very small speeds. Considering the fact that the distance between two 
sequential AIS points is very close when a ship stops at a terminal or anchorage and the length of a 
ship is generally around a few hundred meters, this study assumed that the value of 𝑒𝑝𝑠1 was equal 
to 0.005 degrees which is approximately 500 meters. Similarly, we set the value of the third parameter, 𝑒𝑝𝑠2, to 2 h, since the time intervals between two terminal stays of a ship are usually much longer 
than 2 h. This means that when the time interval between two AIS trajectory points exceeds 2 hours, 
these two points will not be in the same stop cluster. In order to identify the ship stops at some 
locations with poor AIS signal coverage where very limited AIS points are available, we set the fourth 
parameter, 𝑀𝑖𝑛𝑃𝑡𝑠, to 2 points. This reveals that a stop cluster will be identified as long as there are 
at least two AIS points within the range of 𝑒𝑝𝑠1 and 𝑒𝑝𝑠2.  

After setting these parameters and running the ST-DBSCAN algorithm, we were able to identify 
a series of ship stop clusters. Each stop cluster included at least two AIS points with a speed lower 
than one knot. Then, we chronologically ordered the AIS points of each stop and took the timestamp 
of the first and last points as the start and end times of each stop, respectively. Therefore, we selected 
all AIS points reported between the start and end times as a stop. These stops can be expressed 
as  𝑠𝑡𝑜𝑝𝑠 = {𝑠𝑡𝑜𝑝1, 𝑠𝑡𝑜𝑝2, ⋯ , 𝑠𝑡𝑜𝑝𝑖, ⋯  𝑠𝑡𝑜𝑝𝑛} ; each stop represented a series of chronological AIS 
trajectory points, and the 𝑖𝑡ℎ  stop could be expressed as 𝑠𝑡𝑜𝑝௜ = {𝑝௜ଵ, 𝑝௜ଶ, ⋯ , 𝑝௜௝, ⋯ 𝑝௜௠} , where 𝑝௜௝. 𝑡𝑖𝑚𝑒 > 𝑝௜௝ିଵ. 𝑡𝑖𝑚𝑒, 𝑚 represented the total number of points included in the stop.  

The spatial and temporal features of each stop cluster were derived based on the AIS points they 
contained. The features of a stop can be expressed as 𝑠𝑡𝑜𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒௜ ={𝑠𝑡𝑜𝑝𝐼𝑑, 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒, 𝑒𝑛𝑑𝑇𝑖𝑚𝑒, 𝑠𝑡𝑜𝑝𝐿𝑜𝑛, 𝑠𝑡𝑜𝑝𝐿𝑎𝑡, 𝑚} , where 𝑠𝑡𝑜𝑝𝐼𝑑  represents the unique 
identification number of the stop, 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 and 𝑒𝑛𝑑𝑇𝑖𝑚𝑒, respectively, represent the start and end 
times of the stop with 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 = 𝑝௜ଵ. 𝑡𝑖𝑚𝑒 and 𝑒𝑛𝑑𝑇𝑖𝑚𝑒 = 𝑝௜௠. 𝑡𝑖𝑚𝑒 , 𝑠𝑡𝑜𝑝𝐿𝑜𝑛  and 𝑠𝑡𝑜𝑝𝐿𝑎𝑡 
represent the latitude and longitude coordinates of the stop, which is the median of the latitude and 
longitude coordinates of all the AIS points included in the stop, and 𝑚 denotes the number of AIS 
points included in the stop. 

The next step was to distinguish the stopovers from anchorage and other stops. The main idea 
behind this approach was that when a ship is relatively very close to a port for a significant amount 
of time, the probability of having regular exchanges between the crew and the city is relatively high. 
It was noticeable that not all stops happened at terminals. Ships usually wait at anchorages for hours 
and even days. Since our approach is only interested in stops at ports, it was necessary to exclude 
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non-berth stops. This could be achieved by calculating the shortest distance between stop locations 
and the land shoreline. Stops with a distance less than a distance threshold would be considered as 
stopovers. The GADM datasets were used to calculate the shortest distance of each stop to the 
mainland. Compared to anchorages, terminals were generally much closer to the coastline. We 
assumed that a stop was a stopover if its distance to the coastline was less than 2 km based on our 
own knowledge of real stop locations and suggestions from domain experts. 

It was essential to further link their associated stops with their associate ports and countries. The 
global port dataset which contains the latitude and longitude coordinates of each port was employed 
to find the ports and countries a stop may be related to. We first computed the distances among all 
of the stopovers and ports. Then, for a specific stopover, the nearest port would be the one located. 
As a result, the ports and countries a ship passed through are identified based on AIS data and on 
the application of the ST-DBSCAN algorithm. Moreover, since each stop had a start and end time, we 
could figure out the start, end date, and stay duration of each port a ship visited. 

2.4. Estimation of COVID-19 Exposure Index  

The risk of COVID-19 infection was impacted by many factors. In a related work, Hu and his 
colleagues took cumulative confirmed cases, population, and migration index as derived from Baidu 
as three main factors to evaluate the exported risk of COVID-19 from Hubei Province and the 
imported risk of COVID-19 in Guangdong Province and its cities in China [25,26]. The work of Boldog 
[27] tried to assess the risk of a COVID-19 outbreak for a given country based on three parameters 
including the connectivity between the country and China, the cumulative confirmed cases in China, 
and the local basic reproduction number 𝑅଴ [27].  

We introduced a cumulative COVID-19 exposure index to evaluate the risk of a ship being 
infected by COVID-19. This index mainly takes the cumulative confirmed cases over the past 14 
days—because the generally accepted incubation period of COVID-19 is 14 days—population 
density, and the increase in the rate of confirmed COVID-19 cases into account. It could be 
approximated as follows: 

𝑐𝑚𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥௧ = ෍ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥௧௧
௧ିଵସ  (1) 

where 𝑡 denotes the date a ship arrived at a port or country, 𝑐𝑚𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥௧ denotes the 14 day 
cumulative exposure index, and 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥௧ denotes the exposure index at the day 𝑡 which can 
be expressed as follows: 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥௧ = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 × (𝑐௧ − 𝑑௧ − 𝑟௧) × 𝑔𝑟𝑜𝑤𝐹𝑎𝑐𝑡𝑜𝑟௧ (2) 

the 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 refers to the population density adjustment factor of the country approached 
which is defined as the population density of the country divided by the global average population 
density. This factor is used to adjust the impact of population density on COVID-19 infection. We 
assumed that the higher the population density, the higher the level of risk. 𝑐௧, 𝑑௧, 𝑎𝑛𝑑 𝑟௧, respectively, 
represent the total number of confirmed cases, deaths, and recovered cases at day 𝑡. These data were 
downloaded from the CSSE at Johns Hopkins University according to the country’s name and the 
date of the ship’s visit. The number of confirmed cases minus the recovered cases and deaths 
represent the current active confirmed cases. We assumed that the number of active confirmed cases 
was proportional to the infection risk.  

The 𝑔𝑟𝑜𝑤𝐹𝑎𝑐𝑡𝑜𝑟௧ is an adjustment of the daily change of the confirmed cases on infection risk. 
We assumed that the infection risk level of a ship in a country was much higher with increasing 
confirmed cases than with decreasing confirming cases. The 𝑔𝑟𝑜𝑤𝐹𝑎𝑐𝑡𝑜𝑟௧ is then derived as follows: 𝑔𝑟𝑜𝑤𝐹𝑎𝑐𝑡𝑜𝑟௧ = 1 + 0.5 ∗ 𝑎𝑑𝑑𝐶𝑎𝑠𝑒𝑠௧𝑎𝑏𝑠(𝑎𝑑𝑑𝐶𝑎𝑠𝑒𝑠௧) + 𝑎𝑏𝑠(𝑎𝑑𝑑𝐶𝑎𝑠𝑒𝑠௧ିଵ) (3) 

where 𝑡 − 1 represents the day before 𝑡, the 𝑎𝑑𝑑𝐶𝑎𝑠𝑒𝑠௧ denotes the number of increased confirmed 
cases at the date 𝑡. If the number of confirmed cases decreases, the value will be negative. According 
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to the above formula, the ship exposure index can be calculated dynamically. The range of the 𝑔𝑟𝑜𝑤𝐹𝑎𝑐𝑡𝑜𝑟 was controlled from 50% to 150%. This means that the higher the increase rate, the closer 
to 150%. For example, if the number of the increased cases grows dramatically, the 𝑔𝑟𝑜𝑤𝐹𝑎𝑐𝑡𝑜𝑟 will 
be close to 150%. By contrast, when the number of confirmed cases drops sharply, the 𝑔𝑟𝑜𝑤𝐹𝑎𝑐𝑡𝑜𝑟 
will be close to 50%. 

2.5. Assessment of COVID-19 Infection Risk Level 

As previously mentioned, the 14 day cumulative exposure index of Wuhan on April 8, 2020 was 
considered as the reference to classify the infection risk of a ship into different levels. The reason 
behind is that the city of Wuhan, the most seriously infected city in China, ended its over two-month 
lockdown on April 8, 2020; probably indicating that the COVID-19 pandemic situation had 
fundamentally changed in Wuhan. The COVID-19 infection data for the 14 days before lifting the 
lockdown of Wuhan can be obtained from the website of the National Health Commission of the 
People’s Republic of China. The population density of Wuhan is approximately 1283 people per 
square kilometer. The number of confirmed cases was reduced and with a growth coefficient 𝑅଴ less 
than 1. Finally, based on the method previously introduced, we derived the 14 day cumulative 
exposure index of Wuhan on the day of cessation of lockdown. This index was used as a reference to 
categorize the infection risk of a ship into different levels based on its cumulative COVID-19 exposure 
index. The risk level of a ship was then expressed as follows:  𝑟𝑖𝑠𝑘𝐿𝑒𝑣𝑒𝑙= ቐ ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘, 𝑖𝑓 𝑐𝑚𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥 > 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 𝑙𝑜𝑤 𝑟𝑖𝑠𝑘, 𝑖𝑓 𝑐𝑚𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥 = 0  𝑚𝑖𝑑𝑑𝑙𝑒 𝑟𝑖𝑠𝑘, 𝑖𝑓 𝑐𝑚𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥) (4) 

We categorized the infection risk of a ship into high, middle, and low levels which were, 
respectively, represented by red, yellow, and green QR codes. The red QR code indicates that the 
ship has passed through a high-risk zone; a yellow QR code refers to an average risk level; and a 
green one indicates that the ship is healthy with a very low risk. The main idea behind this approach 
is to help local authorities make appropriate prevention and control policies based on a given ship 
infection risk level. The same approach might also be useful for ship owners and crew to plan less 
risky navigation routes. 

3. Case Study 

The proposed method was applied to a real container ship to assess its daily infection risk. This 
experimental ship was a container ship deployed on a Eurasian route. The ship was built in 2006, 
with a gross tonnage of 4713 tons, a deadweight tonnage of 6009 tons, an overall length of 116.5 
meters, and a breadth of 15.9 meters. We extracted the AIS trajectory data of the ship after January 1, 
2020, from the global AIS dataset as input. As of April 8, 2020, there were 60,936 ship trajectory points 
for the ship. Among them, there were a total of 20,091 trajectory points with a speed of less than 1 
knot, accounting for about one-third of the total volume of data. The AIS data transmission rate was 
time dependent and also affected by many factors such as the ship t, speed over ground (sog), course 
over ground (cog), and navigation status. The mean AIS transmission rate available in this study was 
approximately 20 points per hour.  

The AIS points with a speed of less than 1 knot were extracted as an input to the ST-DBSCAN 
algorithm to automatically identify the ship stops. In order to improve the ST-DBSCAN algorithm 
computation time, before stop detection, trajectory points were grouped into several subgroups to 
keep the data volume of each subgroup small enough. Therefore, before stop detection, we grouped 
these trajectory points into several subgroups to keep the data volume of each subgroup small 
enough so that the ST_DBSCAN algorithm could rapidly converge. This grouping process was 
mainly based on two parameters: the first parameter was the time interval between two points, while 
the second parameter was the maximum amount of data in each group. When the time interval 
between two trajectory points was greater than 5 h, it was divided into two groups. The data volume 
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of each group was counted. If it was greater than 10,000 points, then the grouping process was 
performed. This process was not stopped until the amount of data in each group was lower than 
10,000 or if it could no longer be divided.  

Based on the grouping process, we obtained three groups of datasets. For each group, ST-
DBSCAN was applied to calculate the stop clusters. Here, we set the 𝑒𝑝𝑠1 to 0.005, the 𝑒𝑝𝑠2 to 2 
hours, and the 𝑀𝑖𝑛𝑃𝑡𝑠 to 2 points. This meant that the time interval between any two AIS trajectory 
points was within two hours, and the distance between the two AIS trajectory points was lower than 
0.005 degrees; two or more than two data points could then form a stop event. Finally, we obtained 
a total of 43 stop events. Although these stops were identified, it was still necessary to remove 
anchorage stops to determine the ports the ship visited. For this purpose, we calculated the distance 
of each stop to its nearest coastline as shown in Figure 4. Based on our own knowledge of usual 
stopover locations and domain knowledge, we considered a stop with a distance of less than 2 
kilometers as a berth stop. Finally, we obtained 29 berth stops.  

 
Figure 4. Minimum distance between ship stops and coastlines. 

By removing anchorage stops, this gave 29 berth stops that occurred in 15 ports in nine countries. 
The specific locations of these ports are shown as red dots, and the countries passing by are 
highlighted in purple as shown in Figure 5. From that figure, one can clearly identify the ports and 
countries the ship passed by as derived from the ship AIS trajectory (in green dots). It is worth noting 
that a ship may visit a port or country more than once, and there are likely multiple stop events 
during a given visit. 
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Figure 5. The AIS trajectory and the approached ports and countries of the ship. 

Next, our approach extracted the country-based COVID-19 data related to the ship stopovers 
from the COVID-19 statistics maintained by the CSSE at Johns Hopkins University through the R 
package of tidycovid19. Key data included the number of confirmed cases, deaths and recovered cases, 
population density, etc. Since no confirmed cases were reported in the Netherlands when the ship 
arrived (January 18–19, 2020), overall, we obtained data for eight countries. It was noticeable that the 
duration of a ship stop may exceed 24 hours, and some ports had multiple stops at a same date. Table 
1 shows the ship stopovers and their associated ports and countries at each date. This table shows 
that there were 17 ship stopover events that covered a period of 32 days. The number of stops was 
much lower than the total number of stops, as we only retained the first stop of each port for each 
date.  

Table 1. Ship stops and associated ports and countries for each date. 

Date Stop_id Port Name Country Name 
9 February 2020 2_3 Pasir Panjang Singapore 

10 February 2020 2_3 Pasir Panjang Singapore 
16 February 2020 2_5 Yangshan China 
17 February 2020 2_5 Yangshan China 
19 February 2020 2_6 Tianjin Xingang China 
20 February 2020 2_6 Tianjin Xingang China 
22 February 2020 2_7 Qingdao China 
23 February 2020 2_7 Qingdao China 
24 February 2020 2_8 Chinhai Korea, South 
25 February 2020 2_8 Chinhai Korea, South 
28 February 2020 2_16 Zhoushan China 
29 February 2020 2_16 Zhoushan China 

2 March 2020 2_17 Yantian China 
3 March 2020 2_17 Yantian China 
3 March 2020 2_18 Yantian China 
3 March 2020 2_19 Yantian China 
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6 March 2020 3_1 Tanjung Bin Malaysia 
7 March 2020 3_1 Tanjung Bin Malaysia 
8 March 2020 3_1 Tanjung Bin Malaysia 
23 March 2020 3_4 Tanger Med Morocco 
24 March 2020 3_4 Tanger Med Morocco 
28 March 2020 3_5 Bremerhaven Germany 
29 March 2020 3_5 Bremerhaven Germany 
30 March 2020 3_5 Bremerhaven Germany 
30 March 2020 3_7 Hamburg Germany 
31 March 2020 3_7 Hamburg Germany 

3 April 2020 3_8 Gothenburg Sweden 
4 April 2020 3_8 Gothenburg Sweden 
5 April 2020 3_9 Aarhus Denmark 
7 April 2020 3_10 Wilhelmshaven Germany 
8 April 2020 3_10 Wilhelmshaven Germany 
8 April 2020 3_11 Bremerhaven Germany 

Figure 6 shows the evolution of the number of confirmed cases for each visited country. This 
shows that China and Germany had the highest number of confirmed cases, while the number of 
confirmed cases for the other countries approached was lower than 15,000 cases on April 8, 2020. 
Figure 6 also shows that the pandemic in China tended to be stabilized, while the number of new 
cases in Germany increased rapidly. 

 

Figure 6. Evolution of the number of confirmed cases of the approached countries. 

According to the date of each port stopover, the data for each country were extracted and the 
daily COVID-19 exposure index and 14 day cumulative exposure index of the ship was derived. 
Figure 7 shows the 14 day cumulative exposure indexes of the ship at different dates and the 
corresponding risk levels and health QR codes. 
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Figure 7. The 14 day cumulative exposure indexes and risk levels for COVID-19 of the ship. 

As shown in Figure 7, the risk of infection fluctuated greatly. The 14 day cumulative exposure 
index curve started in Singapore with an index close to the null value on February 9 2020; then, the 
index rose rapidly and reached its peak in China with an index around 850,000 on February 29 2020. 
After that, with the ship leaving China, the risk of exposure began to decline rapidly and hit bottom 
in Morocco on March 24, 2020. Then, the index started pulling in a straight line under the influence 
of the quick spread of COVID-19 in Europe. As also shown in Figure 7, most of the dates were at high 
risk with a red health QR code, while only seven dates were at a middle risk level, mainly when the 
ship visited Singapore and Morocco (note that the figure does not show the date with an exposure 
index of null). 

4. Conclusions 

Preventing and controlling the increasingly severe risk of COVID-19 imported from overseas 
has currently becomes one of the main concerns of many countries when taking measures to protect 
their citizens and to restart the economy. As the imported risk of COVID-19 from international 
shipping should not be ignored, this study introduced a data-driven and machine learning approach 
to automatically and dynamically estimate the COVID-19 risk of international shipping that also has 
the potential to be generalized at the global level. It may provide decision support mechanisms for 
preventing infections of COVID-19 from ocean-going ships for all the approached countries. The 
potential of the proposed approach was illustrated and applied to a real container ship that 
successfully provided a daily trace of cumulative exposure indexes and risk levels of the experimental 
ship.  

The illustrative real ship application shows that the proposed method can be applied to 
pandemic risk monitoring of most ships. Theoretically, as long as ship AIS data are available, the 
model principles can be used to monitor the infection risk of a ship on a daily basis. Although this 
paper is mainly aimed at international sailing ships, it is also suitable for domestic trade and inland 
waterway ships. The proposed method can also obtain the exposure indexes and risk levels of a ship 
approaching any country and could provide support for different countries to prevent the 
importation of infections. Also, due to the impact of the pandemic, the shipping schedule of many 
ships has been seriously disturbed. It is common for ships to jump over ports, which may lead to the 
difference between the actual sailing route and the schedule. One of the advantages of using AIS data 
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is that it favors the accurate tracking of ship trajectories and provides valuable information on ship 
behaviors. 

However, there are still many directions to explore to improve the approach both at the data and 
methodological levels. First, the detailed travel history of a seafarer and the real exposure condition 
during his/her visit to a country may have a significant influence on the risk of infection. Moreover, 
infection data and risks might be further refined at the local and port levels, but such data are not 
always available. Indeed, ship infection risk is also related to the prevention measures taken by the 
approached ports and countries. However, this factor is so far not considered by our modeling 
approach, as it is qualitatively difficult to evaluate. Finally, while the current approach is applied to 
maritime trajectories and the evaluation of ship infection risks, the principles behind the method 
developed might be extended towards other trajectory contexts in land and air with some minor 
adaptations. 
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