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Abstract: The popularity of mobile locate-enabled devices and Location Based Service (LBS)
generates massive spatio-temporal data every day. Due to the close relationship between behavior
patterns and movement trajectory, trajectory data mining has been applied in numerous fields
to find the behavior pattern. Among them, discovering traveling companions is one of the most
fundamental techniques in these areas. This paper proposes a flexible framework named GroupSeeker
for discovering traveling companions in vast real-world trajectory data. In the real-world data
resource, it is significant to avoid the companion candidate omitting problem happening in the
time-snapshot-slicing-based method. These methods do not work well with the sparse real-world
data, which is caused by the equipment sampling failure or manual intervention. In this paper,
a 5-stage framework including Data Preprocessing, Spatio-temporal Clustering, Candidate Voting,
Pseudo-companion Filtering, and Group Merging is proposed to discover traveling companions.
The framework even works well when there is a long time span during several days. The experiments
result on two real-world data sources which offer massive amount of data subsets with different scale
and different sampling frequencies show the effective and robustness of this framework. Besides,
the proposed framework has a higher-efficiency performing when discovering satisfying companions
over a long-term period.

Keywords: traveling companion discovery; spatio-temporal trajectory mining; framework; association
analysis; clusteirng; parameter-setting strategy

1. Introduction

According to the statistics of China’s 2019 telecommunications business, the number of mobile
phone users reached 1.6 billion by the end of 2019 [1]. Due to the development of location techniques
and widespread use of smart devices, personal trajectory data has become an important resource for
understanding personal or group behaviors, and trajectory data mining has become a hot topic in
many of research fields [2]. For instance, Elragal et al. [3] and Shingo Enami et al. [4] used relative
technologies in vehicle management. Tian Qin et al. [5] proposed a method to mine spatio-temporal
routine of people based on mobile phone data. Huan et al. [6] tried to explore social behaviors on mobile
sensors data. Chen et al. [7] made disease predictions based on mobile big data. Xudong Liu et al. [8]
used the taxi trajectory data to identify urban functional regions in Chengdu. Besides, trajectory data
analysis has applied in some practical applications, such as nearby friend recommendation based on
location-based service (LBS) [9] and route navigation in Map Applications, etc.

Discovering accompanying or group behavior pattern is an important branch in mining mobile
trajectory data. The pattern is defined as more than one moving objects that travel together for a period
of time. Such pattern discovery provides significant supports to a large amount of relative fields,
such as control of key personnel, tourism development, accident investigation, group tracking etc.
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It has been applied in significant application scenarios. Tang et al. [10] proposed a loose companion
discovery for military object monitoring to describe the several members may temporarily leave the
group and go back in short time. Meiling Zhu et al. [11] proposed a novel algorithm to find Platoon
companion pattern over a special type of spatio-temporal data stream. Zhu et al. used Hainan tourists
data to find group movement pattern and classified tourists [12], etc. Thus, mining and analyzing
accompanying behavior pattern are necessary for relative applications and academic fields.

Since mobile devices can generate massive amounts of data, one big challenge is brought
into accompanying pattern mining, i.e., high performance of algorithms are needed to process
massive data in limited time. Another major challenge comes from the optimization of the traveling
companion discovering algorithm. Traveling Companion Discovering Algorithm comes from the
Clustering-and-Intersection method [13], which defines the companion candidates to describe the
similar companions in each time snapshot. Tang et al. [14] optimized the Clustering-and-Intersection
algorithm into a smart-and-closed algorithm by combining the buddy structure to improve the
effectiveness of the method. In the mean time. Some studies [12,15] use the similar way to discover
Traveling Companions or other behavior pattern. However, it is easy to cause an omitting candidate
problem with the time-snapshot-slicing-based method, especially when the time period is extremely
short-term. Due to the sparsity of the mobile trajectory data, it is a hazard to cluster these trajectory data
using the unbefitting time segmentation method. Concretely, some cluster-able trajectory data cannot
be clustered possibly and are even filtered as noise. Therefore the approaches based on time-segmented
slicing may not always be completely successful.

In this paper, we propose a new companion discovery method based on the clustering
algorithm and association analysis algorithm to solve the above problems. In contrast to the
time-snapshot-slicing-based methods or models, this method finds the closeness in the location
and the closeness in time reflected in the moving-user data from a holistic perspective. In addition,
more focus is given to the potential correlation between users. For example, if A and B are a pair of
accompanying partners, they are more likely to spend time together in a small region, which can be
defined as that B appears when A appears or A appears when B appears.

The proposed algorithm is an extension and optimization of our previous work [16]. On this
basis, we improve the algorithm and propose a 5-stage framework. Firstly, Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HBDSCAN) [17] is used to mine similar moving
users in a certain geographic area and within the time span. Then, a classical association analysis
algorithm Frequent Pattern (FP-growth) is used to predict the internal association relationships among
similar users, which takes full use of the characteristics of clustered data with high similarity to
find potential accompanying patterns. The following stage involves a filtering strategy which is
used to perform the necessary filtering to obtain the recommended travel companions for certain
pseudo-companion scenarios. The last stage is designed to merge the results data into groups.

The main contributions proposed in this paper are as follows:

• A framework of traveling companion discovery named GroupSeeker is proposed. Through a
five-stage processing flow, GroupSeeker can find potential traveling companions in a huge amount
of trajectory data with high performance and accuracy.

• Parameter Setting Strategies are inherently embedded into GroupSeeker. Primary stages can
determine their parameters according to the characteristic of datasets, which makes the framework
much more practical and applicable.

• A novel Spatio-temporal clustering method is used to deal with trajectory data of long-term time
slices and solve the omitting problem of companion candidates caused by improper short-term
time segmentation in previous work.

• Experimental results on real-world and simulated datasets show the time cost of GroupSeeker is
at a desirable level. Trajectory data for twenty-four hours can be processed within one and a half
hours, which means GroupSeeker can be used in all-weather monitoring jobs.
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The reminder of the paper is organized as follows. Section 2 introduces the related work; Section 3
gives the problem definition and the methodology, including the framework and methods; Section 4
presents the experimental results; Section 5 concludes this paper and gives some discussion about
future work.

2. Related Work

In this section, the related work based on two main categories is introduced, i.e., the trajectory
clustering and the companion pattern discovery.

2.1. Trajectory Clustering

For the clustering of similar trajectories based on the time dimension, Agrawal et al. proposed
the trajectory similarity measurement based on Euclidean distance [18] in 1993. Faloutsos C et al.
and Chan KP et al. used discrete Fourier transform and discrete wavelet transform respectively to
preprocess the trajectory similarity measurement based on Euclidean distance [19,20]. Elnekave S et al.
improved the expression of MBR by proposing MBB (Minimum Boundary Box) smooth trajectory to
deal with the influence of noise better [21].

For clustering based on the similarity of trajectories, the similarity mining of entire trajectory
features is focused on reducing the requirement in the time dimension, only requiring the chronological
order among the trajectory-recording points, thus, general DTWD is used to deal with such
clustering [22]. For local clustering with a single trajectory, Lee et al. presented a framework
that divides first and then aggregates to divide into sub-trajectories according to the principle
of minimum-description length, using the density clustering method [23]. In addition, several
density-based clustering methods were proposed, such as DBSCAN, DENCLUE, OPTICS, etc.
DBSCAN [24] is a widely used spatial location clustering algorithm. It has the characteristics of not
needing to determine the number of clusters in advance and can find clusters of arbitrary shapes [25].
In 1999, OPTICS was proposed by Ankerst M. et al. Instead of producing clusters of a data set explicitly;
however, it creates an augmented ordering of the databaset representing its density-based clustering
structure [26]. Hinneburg, A and Gabriel, HH proposed DENCLUE 2.0 to improve the disadvantage of
DENCLUE 1.0 [27] that making small steps at first could lead to never converges to the maximum [28].
In 2017, Mclnnes et al. proposed a hierarchical density-based clustering algorithm and released a
related codebase as a package in Python to use [17]. Yuqing Yang et al. proposed a trajectory clustering
algorithm to extract trajectory Stays based on the density analysis in spatial-temporal trajectory data
and achieved higher clustering accuracy in the real-world data sets [29].

For clustering of the trajectory points, Gao Y et al. proposed a constrained k-nearest neighbor
queries among trajectories [30]. A Subtrajectory Clustering algorithm based on the Fréchet Distance
using GPU was proposed by Gudmundsson J et al. [31] to take advantage of continuous Fréchet
Distance as the measurement of similarity among trajectory curves which has obvious performance
advantages. Similarly, Deng Z et al. proposed a modified OPTICS algorithm, called Tra-OPTICS,
to cluster trajectory. Besides, a GPU-based version is proposed to optimize performance, called
G-Tra-OPTICS, which is based on the STR-tree as the indexing structure [32]. Yuan, G et al. summarized
these important techniques of trajectory clustering [33].

For semantic trajectory clustering, Xiao X et al. proposed a method for finding similar users using
category-based history [34]. Ying JC et al. proposed semantic trajectory clustering based on the location
prediction to recommend the user to the next dimension [35]. Liu S et al. presented an approach to
achieve recognition of hot spots among trajectories [36]. Andrienko et al. presented generic techniques
and visualization guidelines to support movement data analysis, using the trajectory clustering on a
real air traffic data-set [37]. Olive, X., and Morio, J. applied the trajectory clustering in the air traffic
management and validated the effectiveness of the proposed method on a real-world trajectory set [38].
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2.2. Companion Pattern Discovery

Through analyzing the behavioral patterns of mobile-object groups, accident investigation and
group tracking based on the spatio-temporal environment can be realized. In a series of research
outputs, representative trajectory patterns were defined, mainly including flock [39], convoy [40],
swarms [41] and gathering [42]. In 2016, Zhenzhen Wang et al. presented a literature review to
summarize the existing travel behavior studies that applied mobile phone data and have discussed the
potential of mobile phone data in advancing travel behavior research [43].

Gudmundsson et al. [39] defined the flocking model which optimizes the early research population
patterns by predefining the regional shape and population size. The convoy model defined by
Jeung et al. [40] realized trajectory mining with arbitrary shapes based on density clustering, avoiding
predefined spatial thresholds, and the model requires a certain number of moving objects to be
connected in density over k durations. Further optimization based on the first two models was the
Swarm model defined by Li et al. [41]. In their method, the time is not required to be continuous
when the moving objects move together for a certain period of time. Zheng et al. [42] defined
gathering pattern that simulates group events in trajectories, such as celebrations, parades, protests, etc.
In addition, effective index structures and fast patterns based on bit vectors are proposed to improve
mining efficiency. Fan Chen et al. proposed a method for detecting group interactions for groups of
varying numbers of objects [44]. Zhang et al. [45] used the spatio-temporal graph to retrieve gathering.
The researchers presented the CUTis [46] (Clustering Trajectory data stream), which is a processing
algorithm for an incremental trajectory data stream. A method for identifying the group movement
pattern through mobile phone call detail records (CDRs) based on similarity to discover tourist groups
was proposed by Zhu et al. [12]. An algorithm for finding gradual moving objects clusters pattern
among trajectory streams was proposed by Yujie Zhang et al. [15]. In order to discover accompanying
vehicles, in intelligent transportation system (ITS), a typical application in software engineering
technology, Meiling Zhu et al. [47] proposed a method for discovering Traveling Companions through
Automatic Number Plate Recognition (ANPR) data stream, using frequent sequence mining with time
constraints. Zhang et al. [15] used the sliding window to mining the cluster pattern in trajectory data.

Moreover, the correlation analysis algorithm is used in the trajectory analysis and pattern
discovery. Xia Dawen et al. [48] proposed a method using a parallel frequent pattern growth algorithm
based on map-reduce to analyze trajectory big data. Hu et al. [49] used OPTICS clustering and
association. Based on frequent item-set, Al-badwi et al. [50] proposed a breadth-first and depth-first
hybrid distributed approach with Frequent itemset mining (HD-FIM) on Spark to increase the efficiency
of discovering companion vehicles.

Regarding to the methods of discovering traveling companions, Puntheeranurak et al. [46]
proposed a micro-group-based clustering algorithm to reduce the computational cost and they
conducted experiments on a real taxi trajectory data and synetic data. Nevertheless, their research is
difficult to avoid Companion Candidate Omitting Problem and the scale of their testing samples are
smaller than our work. Besides, Xinning Zhu et al. [12] proposed a threshold-based method and safe
semi-supervised support vector machines (S4VMs) to calculate the similarity vectors of tourists and
detect their transportation mode for finding the group movement pattern through CDRs. However,
this research and the proposed framework are mainly used in special applications such as tourism.
Thus, the motivation of their work is actually different from our research. In contrast, our research is
closer to the study of the underlying framework in the filed about discovering traveling companion.

3. Materials and Methods

In this section, the problems are illustrated to describe the situation for our methods and problem
definitions are presented to facilitate subsequent descriptions. Finally, a framework is proposed,
including five stages to discover traveling companion.
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3.1. Problem Statement

3.1.1. Companion Candidate Omitting Problem

Traveling Companion is a set of moving objects that move together as a group for a period
of time. In terms of spatio-temporal trajectory data, traveling companions are formalized as a set
of moving objects, whose spatial positions are density-connected in a cluster within a short-term
time span. Previous studies divided continuous time into time snapshots in order to discover
traveling companions from spatio-temporal trajectory data and checked each time snapshot for
candidate partners. However, since real-time spatio-temporal trajectory data is not always uniformly
sampled in the time dimension or the geographic dimension, such time-division operations may
lead to the problem of omitting candidates. We will describe the above issues in detail, and give the
definitions used in the following work.

After preprocessing the real-world non-intensively sampled trajectory data, two data
characteristics are found:

• Signals of real-world positioning data may be blocked during acquisition and transmission.
The reason for blocking is because users can actively turn off devices or terminate location
service and the transmission of location information may be interfered or blocked by
surrounding environments.

• Due to differences in sampling methods and loss of data transmission, trajectory data will be
sparse or partially lost during data collection.

Because of the above characteristics, when the conventional accompanying-pattern discovery
algorithm uses a time-segment slicing method in a highly sparse trajectory data set, the recording
points at the edges of the formed clusters are likely to be filtered as noises due to the inappropriate
duration of time slices.

Figure 1 shows a companion candidate omitting examples. There are adjacent time snapshots, i.e.,
s1, s2 and s3. One or more clusters in each snapshot can be obtained after cluster processing, along
with several unclustered points such as A, B and C. Because the time segmentation happens to be
in the middle of their sampling times, it can be seen that sample A and B are divided into different
time snapshots even though they actually have a tight relationship. If merging s1, s2 and s3 into
one long-time snapshot, a cluster including points A and B will be founded during clustering and
the cluster will be a potential companion candidate for the following processes. In fact, A and B are
traveling buddies, whereas C is a real noise point. That is the classic companion candidate omitting
problems caused by inappropriate time snapshot boundaries. This problem arises more frequently
when trajectory data is more sparse.

The probability of this problem is related to the length of the time segment. For example, if raw
data contains trajectory records in a region within one day, researchers would hope to avoid omitting
problems as much as possible. There are two choices about whether to slice 24 h according to 5 min,
or directly calculate according to the whole 24 h. If choosing time-segment based on short-term slicing,
it will lead to an increased possibility of introducing problems. On the contrary, if a method can use
1 day or several hours of trajectory data as input this possibility will be greatly reduced. Obviously,
frequent short-time slicing can easily introduce the Companion Candidate Omitting Problem, resulting
in non-noisy records being filtered out.

From a holistic perspective, we take records in a longer-term time span as mining targets.
Closer geographical similarity and closer temporal dimension features are concerned. The trajectory
clustering algorithm is used to mine the similar features in spatio-temporal dimension for these
records among users. Meanwhile, the frequent accompanying situation is regarded as the important
standard to discover Associated Traveling Companion Candidate (ATCC). Then the characteristics of
the accompanying scenarios are combined to specifically confirm the accuracy of the accompanying
situation. It will greatly improve the robustness of the method to the degree of data density.
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Figure 1. An example of companion candidate omitting problem.

3.1.2. Problem Definition

• Definition 1 (Snapshot Set): A time snapshot set S = {s1, s2, ..., sn}is a collection of series of
short-time snapshots. which can be seen as an extension to a shorter-time snapshot.

• Definition 2 (Record Group): A Record Group R = {r1, r2, ..., rn} is a collection of all moving
object records in a snapshot set S = {s1, s2, ..., sn}, n represents the number of moving objects
within the time set. For a moving object oj , the number of the records rj is k, and rj = {rj

1, rj
2, ..., rj

k}
• Definition 3 (Locational Potential Candidate (LPC)): A Candidate Set C = {c1, c2, ..., cm} is a

set as a set of companion candidates clustered by location information, where m represents the
number of clusters. This paper uses the density-based clustering algorithm. Some parameters
need to be defined. δs is defined as a size threshold of clustering, ε is used as a distance threshold.
The default distance formula of several clustering algorithms is based on the Euclidean distance
formula, which can provide certain efficiency advantages. However, in order to facilitate the
parameter setting of trajectory data mining and improve the accuracy of trajectory data mining
results, the distance formula here may be replaced by a distance formula that better meets the
needs of the scene. A locational potential candidate set is a cluster set satisfying w.r.t. δs and ε.

• Definition 4 (Time and Location Potential Candidate (TLPC)): On the basis of potential
candidates for position, the clusters of the candidates satisfy clustering based on time to
form clusters. The collection of objects in these clusters is regarded as Time and Location
Potential Candidate. Among them, δt

s is defined as the minimum cluster size. In addition,
because HDBSCAN is used to weaken another distance parameter, it is not defined here.

• Definition 5 (Associated Traveling Companion Candidate(ATCC)): min_sup is the minimum
support threshold for the association analysis and min_con f is the minimum confidence threshold.
The candidate set M = {m1, m2, ..., mq} satisfies an association rule dictionary W. The key-value
pair of the dictionary W corresponds to the frequent item and its support. m is a frequent item
with its support not less than the minimum support. The key of the association rule is a frequent
item M with its confidence is not less than the minimum confidence.

• Definition 6 (Pseudo-companion Scenarios): The Pseudo-companion scenarios refer to scenarios
that already have potentially associated companionship while some important features do not
fully conform to the accompanying pattern.

• Definition 7 (Tolerance Strategy): When performing trajectory data mining in a sparse data set,
some parameters cannot be set strictly. Otherwise, it will be difficult to find the research objects
that meet the relevant conditions. For this reason, a Tolerance Strategy needs to be considered to
discover moving objects.

• Definition 8 (Traveling Companion (TC)): Q = {q1, q2, ..., qn} is a set of traveling companion,
where a traveling companion group qi is a group that satisfies the number of records satisfying
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the potential accompany situation is greater than the frequency threshold δ f , and the proportion
of the records satisfying is greater than the percentage threshold δr within the time period S.

3.2. Methodology

3.2.1. Framework

Raw trajectory data generated from different sensing sources has different data formats and
positional accuracies. A flexible framework named GroupSeeker is proposed to discover traveling
companions from those divers trajectory data. The framework primarily includes a five-stage
processing flow, which is composed of Data Preprocessing, Spatio-temporal Clustering, Candidate
Voting, Pseudo-companion Filtering and Group Merging. Then a series of parameter-setting strategies
throughout the whole processing flow are proposed to deal with different scenarios. The entire
processing is shown in Figure 2. The various categories of sampling methods could bring several
different characteristics of trajectory data and this paper focuses on two sampling methods, i.e., GPS
and CDRs, which have the characteristics of collecting easily and having huge scales.

Figure 2. The framework of the entire processing.

Data Preprocessing removes unnecessary fields in raw trajectory data and filters noise and
redundant data in remaining fields. Then the entire trajectory data is split into many sub-trajectory data
sets to reduce the computational overhead. In the Stage II, Spatio-temporal Clustering, trajectory data
is clustered in the spatial dimensional to discover Location Potential Candidate (LPC). Through
clustering these LPC, Time and Location Potential Candidate (TLPC) can be discovered from the
temporal dimensional. In addition, Candidate Voting stage focuses on the accompanying frequency
between each pair of users in TLPC to discover the Associated Traveling Companion Candidate
(ATCC). Subsequent Stage IV is Pseudo-companion Filtering that aims to offer some rules to filter
some confusing pseudo-companions from ATCC. At the last stage, called Group Merging, it is to
merge the companion sets with the same moving objects to make them as an accompanying group
with multiple objects. As a semi-supervised framework, parameter-setting strategies could offer
some significant strategies to guide these methods in Stage II, stage III and Stage IV to set relatively
appropriate parameters.
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3.2.2. Data Preprocessing

Stage I, Trajectory Data Preprocessing, aims to standardize the raw trajectory data, no matter what
type of data source it comes from. A set of standardized sample data is shown in Table 1. Since many
redundant fields are included in the raw data, such as acquisition-action number, base-station number,
cell number, operator code, administrative-area code, and altitude, acquisition action number, base
station number, cell number, operator code, administrative area code, etc., it is necessary to use
various preprocessing methods in this stage including noise filtering (trajectory cleaning), trajectory
segmentation, map-matching.

Table 1. Data pre-processed form (from two data sources).

Data_Source Time User_ID Latitude Longitude

Traveling User Dataset 2014-11-16 14:53:56 XXXXXXXXXXX 4X.XXX627 8X.XXX317
GeolifeV1.3 2009-04-09 18:28:10 u3 39.999966 116.327415

Firstly, these redundant fields are abandoned and the remaining fields get uniform naming,
such as Time, User ID, Longitude, Latitude and an index number. When cleaning these trajectories, some
obvious noise points should be filtered, such as records containing error data type corresponding to a
certain filed, records including wrong longitude and latitude in the range of known geographic area,
and records containing timestamp that does not match the actual sample time. Besides, median filtering
is used to deal with the single-noise point and Kalman filtering is used to deal with continuous-noise
points. Using a stay point detection method through these filtered data, stay points in these trajectories
could be found, which could be used to guide the further-patterns discovery. To reduce the computing
scale for trajectory clustering and mining as much as possible about the behavior patterns among the
sub-trajectory segments, the trajectory-segment operation is executed to divide the whole trajectory
records into several sub-trajectories. We split a sparse trajectory data set into 18 sub-datasets and split
Geolife trajectory data set into 19 sub-data set according to the number of records. A part of trajectory
data is selected for map-matching to briefly verify the reliably of the trajectory data. In addition, the
filtered data basically conforms to the map and there is no big drift.

3.2.3. Spatio-Temporal Clustering

To find representative sub-trajectories or public propensity behaviour through different moving
users, trajectory clustering plays an important role by clustering similar trajectories. Generally, a feature
vector is used to represent a trajectory. The similarities of two trajectories can be measured by
calculating the distance between their feature vectors. The input of clustering algorithms in previous
companion discovery is the data in a time segmentation. Because of the difficulty in collecting complete
data and the data sparsity, it is a hazard to cluster these trajectory data using the unbefitting time
segmentation method. Concretely, some cluster-able trajectory data cannot be clustered possibly and
are even filtered as noise data. Therefore the approaches based on time-segmented slicing may not
always be completely successful. Thus, a Spatio-temporal clustering for location-and-time dimension
is proposed to solve these problems that cause omitting traveling companions.

Figure 3 shows the clustering process in detail. In this processing, HDBSCAN is used to discover
Location Potential Candidate (LPC) and Time and Location Potential Candidate (TLPC). LPC shows
the similarity in location attributes. On this basis, TLPC requires the similarity in the time dimension
more strictly. Figure 4 shows an example of a specific process for combining data fields. In Figure 4a,
a set of data samples is presented that several fields (User ID, Latitude, Longitude, Time) are the
remained fields after preprocessing and the Fill field is added for these records as LPC. To discover LPC,
two parameters are used to limit the minimum size of the cluster and the neighborhood-distance threshold,
which make HDBSCAN get the steady and effective results to discover LPC and to filter some noise which
cannot be clustered. A Fill field is increased into the collection of LPC to increase the dimension to meet
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the requirement. The value of FILL field is set to 1 to simplify the calculation. In each cluster of LPC,
HDBSCAN is executed once to find TLPC, including similar time-and-location characteristics, and to
filter some noise records. The Figure 4b. illustrates this process visually. In Algorithm 1, steps 4–8
show the stage from the algorithm level. Notably, the number of these filtered records could influence
the promotion of satisfying records. For different research purposes, they are valued differently.

Algorithm 1: Spatio-temporal Clusteirng and Companion Voting Algorithm.
Input: Trajectory records set R, a period time S; Distance thershold ε, size threshold δs for

location clustering, the size threshold δt
s for time clusteirng; support threshold min_sup

and confident threshold min_con f
Output: Assocaited Users frequencey-itemset Set M

1 location potential candidate set Cl = Φ;
2 location and time potential candidate set Ct

l = Φ;
3 User ID set UID = Φ;
4 Cl←cluster R with ε and δs during S;
5 foreach cluster ci∈Cl do
6 Ct

l←cluster ci with δt
s;

7 foreach cluster ct
j∈Ct

l do
8 AID← the account ID of ct

j;

9 associated companion frequent-itemset set M = Φ;
10 associated rule dictionary W = Φ;
11 frequent itemset set F = Φ;
12 Using FP-growth algorithm F← find frequent itemsets in UID ;
13 W← get ( fi,coni) by finding items fi in F and its confidence coni≥min_con ;
14 for ( fi,coni)∈W do
15 M← get the user ID ui from fi

16 return M;

Figure 3. The Detailed Process Example of Methodology.
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(a) data samples. (b) clustering processes.

Figure 4. Trajectory Clustering for Discovering Time and Location Potential Candiate.

3.2.4. Companion Voting

Mining the frequent pattern is to discover the frequent-temporal mode from the extensive
trajectory data, which could mine the rules of publicity or frequent paths in public trajectories. In this
method, information such as location, time and semantic information could be combined to mining
the characteristics of moving objects.

Stage III takes advantage of the FP-growth algorithm to discover Associated Traveling Companion
Candidate (ATCC) and FP-growth algorithm is a tree-based method using the frequent items.
A technique is used to shorten the time for this algorithm to search through the suffix tree.
Specifically, because the FP-growth searches from the frequent single-item set to the frequent
n-item set, the potential accompanying situation between two users will be focused on and the
convergence time will be reduced greatly, if the length of the suffix is set to 2. In order to further
mine users with accompanying patterns, the occurrence of associations between users is worth noting.
In addition, a collection including all of the user set from each TLPC is regarded as the target to find
ATCC. The Total Proportion of Accompanying Frequency (TPAF) between two users in this collection is
calculated by Equation (1), which will be compared with a parameter and be used to vote for ATCC.
The Mutual Promotion of Accompanying Frequency (MPAF) is calculated using Equation (2) to judge
the occurrence of the accompanying pattern between two users. Furthermore, it will be compared
with a threshold to decide whether to vote for these two users meeting ATCC. In Algorithm 1, steps
12–15 show how to discover ATCC using FP-growth. Figure 3 shows the Companion Voting process in
detail, such as building FP-tree, calculating TPAF and TPAF to get ATCC.

If two records of user X and Y that want to analyze the TPAF, the corresponding TPAF is:

TPAF(X, Y) = P(XY) =
number(XY)

number(All_Samples)
(1)

For X and Y, the MPAF is obtained as:

MPAF(X ⇐ Y) = P(X|Y) = P(XY)/P(Y) (2)

3.2.5. Pseudo-Companion Filtering

Pseudo-companion Filtering aims to offer significant rules for filtering some confusing
Pseudo-companion scenarios. These pseudo-companion situations in discovering Traveling
Companion Patterns from the ATCC are from the intermediate results in previous processes. Figure 3
shows the Pseudo-companion Filtering process in detail and the process need to use the Filter Rules
Set for Different Data Sources (DTS).

Due to the diversity of trajectory data, there is no recognized method of confirmation to evaluate
the sparseness of trajectory data. Combined with the analysis of experimental data, the sparseness of
the trajectory data discussed in this article can be regarded as follows. It is the average value of the
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number of individual user records per unit time as a standard. When this value is larger, the data set
is denser, otherwise the data set is sparse. Generally, positioning and sampling are used to quickly
determine the sparseness of data sources. According to the sparseness of the data source, different
data types at this stage will correspond to different rule sets, which will affect the time cost of this
stage but improve the accuracy of the results.

The sparseness of the data affects the judgment of such pseudo-complications. Therefore, it is
necessary to distinguish between pseudo-companion scenarios in different data sources. Through the
visualization of the intermediate results of the experiment and the situation of mobile data sources,
we briefly distinguished the pseudo-companion scenarios in the two types of data types. In order to
prevent these scenes from interfering with the real accompanying results, the necessary filtering rules
are proposed. Table 2 shows these scenarios, scenario descriptions and corresponding rules.

For different data sources, there are some differences in the factors that distinguish
Pseudo-companion scenarios. For example, in a long-term period, users from ATCC may not have
many accompanying records for sparse sample sets. Meanwhile, it can be determined that they have
accompanying circumstances. Certainly, it may be identified as a short-term encounter.

In Algorithm 2, steps 1–20 show this stage. Among them, steps 1–2 are short pseudo codes of this
stage. Steps 4–20 clearly show one of the rule sets, which is a scenario of filtering brief contact in the
intermediate result set from the sparse data source.

Table 2. Pseudo-companion Filtering: Scenario Names, Description and Rule Sets.

Data
Source Type

Scenarios
Names

Scenarios
Description

Filtering
Rules

Breif Contact
There is a small amount of close
contact in the total record of A

or B within a small area.

The number of pseudo-accompanying records
is small and the total number of records is
relatively small. If either is less than the

relative threshold, the two objects are filtered.

Traveling
Users Data No-contact

There is almost no close contact
in the total record of A or

B within a small area.

Pseudo-accompanying cases account for a so small
proportion but the distance between the central

geographic location of two objects is within
the signal strength range of a base station.

Geolife Breif Encounter
A and B have frequent contacts in a

small area within a short-term
period within a small area.

The time span of the accompanying records is short-term.
The directions of these moving objects change after

these records. There is no accompanying
record for a long-term period.

3.2.6. Group Merging

The purpose of Stage V is to discover Traveling Companions including multiple users rather
than only a pair containing two users. The set including multiple users is regarded as a group.
Figure 3 shows the Group Merging process in detail. It is necessary to identify whether there is a
group accompanying situation and decide to merge them. In the Stage III for discovering Associated
Traveling Companion Candidate (ATCC), a trick is used to optimize computational overhead to reduce
the convergence time, which leads the research scenarios to be discussed between two users. However,
the virtual number of accompanying users may be multiple, such as tourist groups, participants in
group activities of a family of three in shopping, etc. From the perspective of the designer, it is necessary
to mine further the final stage for the Multiple-User situation that may exist among the traveling
companion candidate previously discovered. If these users are filtered in Pseudo-companion Filtering
and are stayed, they should be merged using existing common sub-sets. For instance, for the set
{{u0, u3}, {u3, u4}}, because two of the sub-items contain a common sub-set {u3}, we merge the two
sub-items and remove the other true subsets. Finally, the set changes to {{u0, u3, u4}}. In Algorithm 2,
steps 19–25 show this process in the last stage.
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Algorithm 2: Pseudo-companion Filtering and Group Merging Algorithm.
Input: associated companion frequent-itemset set M, a frequency threshold δ f ; Trajectory

records set R; distance threshold δd, time difference threshold δt records number
threshold δr;

Output: Traveling Companion Set Q
1 foreach mi∈M do
2 execute the corresponding rule sets;
3 #e.g. in Step 4 to 20#;
4 num1 ← 0 ;
5 num2 ← 0 ;
6 D1, D2← Rm1

i
, Rm2

i
;

7 N1 ← The number of records in D1;
8 N2 ← The number of records in D2;
9 foreach D1j∈D1 do

10 foreach D2k∈D2 do
11 T1← T[D1j];
12 T2← T[D2k];
13 if (4T(T1, T2)≥δt) and (d(D1j, D2k) ≥δd) then
14 num1←num1 + 1;
15 num2←num1 + 1;
16 break;

17 if (num1≤δ f ) or (num2≤δ f ) then
18 remove mi from M ;

19 if (num1/N1≤δr) or (num2/N2≤δr) then
20 remove mi from M ;

21 foreach mi∈M do
22 foreach mj∈M do
23 if i is j then
24 continue;
25 else
26 mi←mi∪mj

27 remove all dupicate subsets in M;
28 Traveling Companion Set Q = Φ;
29 for each mi∈M do
30 qi← records rmi in R during S;
31 Q← all of pi;

32 return Q;

3.2.7. Parameter Setting Strategy

Since many factors need to be considered in the scenario of discovering traveling companion
patterns by combining with real-world data samples, the algorithms related to parameter settings are
used in three significant stages of this framework (Spatio-temporal Clustering, Companion Voting,
Pseudo-companion Filtering). Some of these algorithms have obvious semi-supervised methods.
Although we have reduced the number of parameters and simplified the complexity of using those
as much as possible during the implantation of important algorithms. For example, we no longer
consider using DBSCAN but use HDBSCAN as a clustering algorithm, it is inevitable to think about
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optimization of existing parameters and establishment of a set of strategies. The necessary parameter
strategy will boost the effectiveness and efficiency of the method, which could reduce the learning cost
for this method. In addition, all parameter notations are archived in Table 3.

• General Strategy: The general strategy is explained here in order to highlight the tolerance strategy.
First, the haversine formula is a formula especially calculated to the distance between two points
through their latitudes and longitudes. Many clustering algorithms include a parameter called
“metric”, which can be set as “haversine”. Secondly, for discovering Traveling Companions,
the minimal clustered number for clustering should be larger than 3 to reduce the number
of clusters. Moreover, for the support-and-confidence setting, Table 4 shows a preliminary
correspondence between participation and confidence level. We hope to guarantee a higher
confidence level, so the default confidence value set in this study is 0.6. For the support level, we
will focus on the frequency of the target object at the same time and not necessarily require to get
a ratio. Finally, it is important for the consistency of the results of a data set to ensure the distance
threshold parameter. For instance, for ε and δd, they are set to the same value in consideration of
sampling accuracy at different stages. Absolutely, if the purpose of applications requires stricter
filtering, it needs to set the latter parameter smaller.

• Tolerance Strategy: Compared with the strictness of the general strategy, the tolerance strategy
provides good support for the data sets from some special data sources, such as CDRs. Besides,
it is difficult to give a clear value range for some parameters for various data sets, while the
proposed tolerance strategy can guide users to weaken some parameter setting ideas from the
purpose of mining. The original intention of this strategy is that for data samples with higher
sparseness, strict threshold constraints are bound to make the result set as small as possible.
In fact, the setting of this strategy comes more from the practicality of the results. In this field,
the sparseness of trajectory data has always been a major challenge. At the same time, it is difficult
for some specific data sources to collect data information of all users in a specific geographic area
within a long period of time. This results in the sparseness of real-world data that is reasonable
and unavoidable. For this reason, researchers should hope to make full use of each recorded
information (except obvious noise). Specifically, for some important scenarios, such as mining the
behavior patterns of specific groups and specific individuals to discover the traveling companion
pattern, sometimes various factors disturb the collecting process so that these data are caused to
be sparse. In this case, the tolerance strategy can better prevent some records from being strictly
filtered out, which is more likely to find other related moving objects. In our study, it is important
for δ f and δr in data source D1 to consider tolerance. These two parameters can be set to larger
values to limit the confusion scenarios, such as only a small number of records are related and
most of the records are far apart, or the number of records of an object is so small that it should be
filtered out.

Table 3. Description of Parameter Notations.

Parameters Description Parameters Description

ε the distance threshold in HDBSCAN δs
the minimal clustered number

for location clustering

δt
s

the minimal clustered number
for time clustering min_sup the minimal support threshold

for FP-growth

min_conf the minimal confident threshold
for FP-growth δ f

the minimal frequency threshold
for the records number

δd
the minimal distance threshold

between two records δt
the maximal time span threshold

between two records
δr minimal records promotion threshold metric distance formula
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Table 4. Correspondence Table of min_conf Value and Confidence Level.

min_conf [0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1.0]

Confidence Level low relatively low medium relatively high high

4. Experiment and Results

All the algorithms are implemented in python 3.8.2 on PyCharm and are performed on computers
with Intel Core i7-8550U CPU 1.80 GHz, 16.0 GB RAM and windows 10.

4.1. Data Sets

Based on the two real-world data sets, various sample sets are extracted based on different criteria..
The criteria are shown as follows:

• The Sampling Frequency
• The Number of Records for Individuals
• Effective Duration
• Data Collection Period

• D1 (Traveling Users Dataset): This dataset is collected from real users in a certain region of China
between 16 November 2014 and 18 November 2014, which was provided by a communication
provider in China. The locations are from the cell-sites which are connected with many
phones. The raw spatial trajectory data mainly includes the latitude and longitude coordinates,
time-stamp and user information. When we got this dataset, personal-sensitive information in
the dataset was anonymized and the coordinate information was re-adjusted by this provider for
privacy protection.

• D2 (Geolife Trajectory): This dataset was collected in (Microsoft Research Asia) Geolife project
from 182 users between April 2007 and August 2012 [51–53]. A GPS trajectory from that set is
represented by a sequence of time-stamped points containing information on latitude, longitude
and altitude. 91.5% of the tracks are in a dense representation, e.g., every 1–5 s or every 5–10 m
per point, the overview of this data set shown in Figure 5:

Figure 5. (a,b) Overview of D2 [53].

It is essential to choose suitable data sets. For D1 and D2, after data preprocessing, they are
divided into many subsets according to the number of records. For instance, we split Geolife data
set into 19 subsets according to the amount of 800,000 records. In these subsets, we choose 5 subsets
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from D1 and D2 relatively, which are shown in Table 4. Notably, a simulated data set called Sim1 is
generated based on a subset from D2. Sim1 is regarded as a subset from the real-world and simulated
sources D3.

Despite the fact that Sim1 has a small size, it contains two companion simulation users we added
for a particular user, which could quickly verify the effectiveness of the algorithm. The generation of
the two simulation data comes from understanding the trajectory of a real user, especially to be able
to have a simple understanding of its state changes, the most basic of which is its direction change
in the two dimensions of latitude and longitude. By recording a state-change matrix, the basic state
changes can be learned from the simulation data and hence the traveling companion’s behavior can
be simulated.

Except for Sim1 and Set5, other subsets have similar data size and a similar number of records.
10 samples subsets (Set1–Set5 and Geo1–Geo5) are randomly selected from D1 and D2 respectively
in order to compare with the impact of the sparseness and density of the dataset in the real-world
scene on the algorithm results. Set5, whose size is about half of the remaining 9 sample sets, is used to
show the effect of data size on the method. Certainly, for dealing with the scale of 800,000 records, our
experimental environment can be close to the its memory limit.

4.2. Pseudo-Companion Scenarios Filtering Display

Some typical intermediate results are visualized in Figures 6 and 7, which are the situations that
need to be filtered out. In order to facilitate the display, we select a data type of rule set to use. It is the
case of the two-types scenarios in the sparse data set.

Figure 6. (a–d) Brief Contact and No-contact.

In sub-figures of Figure 6, although there is brief contact between two users. For one of two users,
the number of records representing the contact processing does not stand at a big proportion of the
total number of records. Hence, they are filtered by the rule sets. For the Figure 6b, they could be
regarded as the no-contact scenario because they have few records presenting close contact. Finally,
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the Figure 6d. is a partial enlargement of Figure 6c. and the close-contact records between two users
still account for too few, so they are not considered to be real companions satisfying the proportion
of records. The sub-figures in Figure 7 show the cases of satisfying the filtering rules. Among them,
the Figure 7a. is the result of Sim1 including three users. These users move together in a small area.
In addition, the Figure 7d. is the partial enlargement of Figure 7c.

Figure 7. (a–d) Filtered Results.

4.3. The Results of Traveling Companion Discovery and Validation

4.3.1. Measuring Time Overhead

Table 5 highlights the time overhead of 10 data subsets in the framework, which is illustrated in
Stage II to Stage V. It is evident that Stage II is the largest time-overhead stage in these 10 data subsets
and has great differences between D1 and D2. The time overhead in Stage III is affected by the scale
of the data subset. In Stage V, when the result of the previous stage leads to the absence of multiple
targets, its time overhead will be 0. In addition, we use the average number of users’ records to show
the sparseness of each data subset. Obviously, D1 is more spare than D2. Thus, the parameter setting
should not be too strict for D1. Otherwise, it would be difficult to discover TC. In practice, the filter
rules for this result is to filter the brief contact for D1. Since this rule set is not used in D2 with a dense
sampling effect, so the time cost is 0 in Stage IV for D2. Finally, it is worth mentioning that the time
overhead in Group Merging is too shorter than other stages to be negligible in this scale of data set.
Therefore, the overhead in Stage V is not shown in Table 6. Related parameter settings are shown in
Table 7. The distance are measured in meters, and the time threshold are measured in seconds.
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Table 5. Time Overhead in Main Stages and The Number of Results.

Source Data
Set Duration2 Duration3 Duration4 Total

Duration
Average Duration

for D1/D2 TC# Total TC
Users#

Set1 5724.4 2.1 50.3 5776.8 7 14
Set2 5572 2.1 55.5 5629.6 2 6
Set3 5421.9 1.7 1.5 5425.1 1 2
Set4 5381.5 2.8 145.8 5530.1 1 2

D1

Set5 5961.8 0.5 0 5962.3

5664.78

0 0
Geo1 3192.2 0.1 0 3192.3 0 0
Geo2 2428 0.2 0 2428.2 1 2
Geo3 2702.8 0.2 0 2703 1 4
Geo4 2890.3 0.2 0 2890.5 1 2

D2

Geo5 3023.3 0.2 0 3023.5

2847.5

1 3
D3 Sim1 413.4 0.2 11.8 425.4 425.4 1 3

Table 6. Data Sets Information.

Source Data Set Data Size Number of Records Duration

Set1 51,256 KB 800,000 24H
Set2 51,246 KB 800,000 24H
Set3 50,880 KB 800,000 10H
Set4 50,930 KB 800,000 8H

D1

Set5 29,469 KB 464,746 5H
Geo1 41,080 KB 800,000 17D
Geo2 41,496 KB 800,000 30D
Geo3 41,874 KB 800,000 17D
Geo4 41,927 KB 800,000 22D

D2

Geo5 41,927 KB 800,000 31D
D3 Sim1 7848 KB 125,367 80M

D: day(s); H: hour(s): M: minute(s).

Table 7. Parameter-setting table corresponding to this experiment result.

Source ε δs δt
s δd δt min_sup min_conf δr

D1 500 4 4 200 120 0.6 0.8 0.5
D2 5 4 4 5 5 0.6 0.8 -
D3 500 4 4 200 120 0.6 0.8 0.5

4.3.2. Significant Result Analysis

The number of TC in each data subset is shown in Table 5. Although some subsets produce a
few or no results, it matches the real-world data scenarios with no accompanying pattern. In the
following, some special and meaningful TC are presented by visualizing the experimental results.
For instance, u0, u3, u4, and u30 are recommended from Geo3 as a TC. In the this long-term period
of Geo3, all of them move through the road network in this geographic area within a close period
of time. Therefore, their trajectories, which are shown in Figure 8, are very similar and the coverage
rate among them is so high. The main difference is shown in Figure 8a. that is a small part of the
trajectory difference exists, which may result from a short-term separation or a certain amount of
data loss caused by a difference in the positioning signal. On the other hand, u0 and u3 have the
same records within a long-term period. We further checked the undivided D2 dataset to verify this
situation. It has been found that their records appeared same from 0:52 on 30 March 2009 to 2:58 on 5
July 2009. Therefore, it is reasonable to guess that this is likely to be the case of an individual carrying
two mobile devices, which could offer positive support in the management of special objects, such as
focusing on individuals or groups with sensitive behaviors. The sample data is shown in Table 8.
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(a) sub-figure 1.

(b) sub-figure 2.

Figure 8. (a,b) Typical results in D2.

Table 8. Partial Data of Experimental Results.

Data Source Time User_ID Latitude Longitude

2009-04-09 18:28:25 u0 39.999912 116.32751
2009-04-09 18:28:25 u3 39.999912 116.32751
2009-04-09 18:28:27 u30 40.000008 116.327446
2009-04-09 18:28:28 u4 39.99983 116.32712
2009-04-09 18:28:29 u30 40.000008 116.32754
2009-04-09 18:28:30 u30 39.999996 116.32745
2009-04-09 18:28:30 u3 39.999924 116.327484
2009-04-09 18:28:30 u0 39.999924 116.327484
2009-04-09 18:28:31 u30 39.99999 116.32748
2009-04-09 18:28:33 u4 39.99989 116.32744

D2

2009-04-09 18:28:35 u0 39.9999 116.32745

5. Conclusions and Discussion

At present, mobile positioning devices represented by navigation devices, smart wearable devices,
and smart infrastructures are increasingly popular in daily life. LBS has become an important element,
and which is not available to most people. Locatable devices and LBS provide sufficient conditions for
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generating a massive amount of mobile trajectory data. The trajectory traveling companion discovery
algorithm is widely used as an important method for discovering accompanying behavior patterns.
However, it is necessary to improve the applicability and efficiency of the method as much as possible
under the premise of current information explosion and diverse sampling methods.

Thus, as one basic support technology of many trajectory data mining applications, this paper
proposes an applicable framework GroupSeeker to discover traveling companions in vast
spatial-temporal data. The framework includes a five-stage processing flow and the core algorithms lie
in the following three stages, Spatio-temporal Clustering, Companion Voting, and Pseudo-companion
Filtering. GroupSeeker successfully avoids the problem that useful clusters are considered to be
noise due to bad time segmentation. Besides, considering the different sparseness of data sources,
the parameter setting strategies are proposed to improve the reliability of the framework and reduce
the learning cost. Moreover, a set of imperfect but indeed effective methods for filtering confusing
scenarios is proposed. In practice, parameters in GroupSeeker could be set according to the purpose of
mining and specific scenarios. Finally, the framework is evaluated on several real-world datasets with
different sparsity and data sizes. The experimental results show practically efficiency and stability.

In the future, more focus can be given to how effectively extract the features in the
Pseudo-companion scenarios. Besides, it is necessary for the framework to further reduce the number
of parameters and to simplify the parameter-setting strategies. In addition, if the entire framework can
be upgraded in combination with a high-performance parallel and distributed computing solution
to reduce the overhead time in Clustering Stage, the efficiency of the whole framework will be better
optimized. Moreover, we plan to use a large amount of labeled accompanying trajectory data combined
with machine learning methods to conduct more detailed rule formulation and algorithm design for
the Pseudo-companion Filtering stage in our future work.
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Abbreviations

The following abbreviations are used in this manuscript:

ANPR Automatic Number Plate Recognition
ATCC Associated Traveling Companion Candidate
CDRs call detial records
DBSCAN density-based spatical clustiny of application with noise
DENCLUE density-based clustering
DTS Different Data Source
DTWD Dynamic Time Warping Distance
HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise
HD-FIM a breadth-first and depth-first hybrid distributed approach with Frequent itemset mining
ITs intelligent system
LBS Location-Based Service
LPC Locational Potential Candidate
MBB Minimal Bounding Box
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MBR Minimum Bounding Rectangle
MPAF The Mutual Promotion of Accompanying Frequency
OPTICS Ordering points to identify the clustering structure
TLPC Time and Location Potential Candidate
TC Traveling Companion
TPAF The Total Proportion of Accompanying Frequency
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