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Abstract: The Asian Emerald Ash Borer beetle (EAB, Agrilus planipennis Fairmaire) can cause
damage to all species of Ash trees (Fraxinus), and rampant, unchecked infestations of this insect
can cause significant damage to forests. It is thus critical to assess and model the spread of the
EAB in a manner that allows authorities to anticipate likely areas of future tree infestation. In this
study, a generalized linear mixed model (GLMM), combining the features of the commonly used
generalized linear model (GLM) and a random effects model, was developed to predict future EAB
spread patterns in Southern Ontario, Canada. The GLMM was designed to deal with autocorrelation
in the data. Two random effects were established based on the geographic information provided
with the EAB data, and a method based on statistical inference was proposed to identify the most
significant factors associated with the distribution of the EAB. The results of the model showed that
95% of the testing data were correctly classified. The predictive performance of the GLMM was
substantially enhanced in comparison with that obtained by the GLM. The influence of climatic
factors, such as wind speed and anthropogenic activities, had the most significant influence on the
spread of the EAB.

Keywords: generalized linear mixed model; spatial autocorrelation; random effects; spatial modelling;
Emerald Ash Borer

1. Introduction

The outbreak of the Emerald Ash Borer (EAB, Agrilus planipennis Fairmaire) in the Great Lakes
States of the United States and southwestern Ontario, Canada was first discovered in 2002 [1,2]. Due to
its stealthy and destructive nature, and without natural enemies in North America, the EAB has
aggressively attacked and killed millions of Ash trees in these areas and steadily expanded its range
over time [1,2]. Strategies for the detection and control of the EAB infestation in Canada have mainly
depended on visual surveys and selective culling of trees [3], which are difficult strategies to conduct
over large areas. In addition, the most identifiable symptoms are usually revealed only one year after
the initial infestation [4,5], which could be too late to implement mitigation strategies. As a result,
prevention and control of the beetle’s spread have become imperative. To achieve these goals, it is
important to predict with high accuracy the spread of the EAB into currently unaffected Ash tree
locations. In this regard, the use of species distribution models (SDMs) provides a useful means to
predict areas with a high level of risk, as well as identifying the relevant risk factors.
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Generalized linear models (GLMs) are widely applied in environmental research for SDMs where
categorical response variables are relevant [6]. By analyzing surveyed locations (training data) using
GLMs, the most significant predictors to differentiate healthy Ash trees from those currently infected
can be identified. The generated models are useful to predict the risk levels of the EAB infestation
in future years, which provides a basis for devising risk mitigation strategies and sensitivity tests
to detect the risk exposure. The extension of GLMs, such as generalized additive models (GAMs)
and geographically weighted regression (GWR) models, are robust approaches, widely used for
modeling nonlinear predictors and the local effects of each predictor [7,8]. However, the GLMs and
their extensions may not necessarily be effective in dealing with data that are spatially autocorrelated,
creating statistical issues in estimation and prediction [8,9]. For instance, data autocorrelation often
leads to an overfitted model that lacks the ability to predict an independent dataset.

A simple method to reduce the confounding effects of autocorrelation is to sample one observation
within each neighborhood based on a pre-determined threshold [9]. However, this strategy is not ideal,
since potentially important field data may not be fully exploited. For example, in areas where high
spatial autocorrelation is apparent, more samples need to be removed, which could have an adverse
impact on the predictive ability of the model. Alternatively, mixed-effects models, such as linear mixed
models (LMMs), latent variable models (LVMs), and generalized linear mixed models (GLMMs) can
address the issue of intra-cluster correlation [10–14].

With these mixed-effect approaches, a hierarchical model structure can be used to analyze multiple
levels of data. The basic level models the entire geographic study area with the risk predictors of
interest. In the higher levels, separate spatial clusters, referred to as random effects, can be included to
group the data in order to measure the presence of autocorrelation. In this context, GLMMs are widely
used to analyze ecological data, including presence–absence data, over-dispersed species counts,
and discretized percent cover data [15,16], which can be useful for the spatial analysis of the EAB
species data. However, implementation of GLMMs require an adequate structure of random effects to
provide suitable clusters in the model fitting stage of analysis. This study seeks to develop effective
spatial clustering methods to classify the species data and a GLMM with the spatial clusters to build
SDMs to identify significant risk predictors and to forecast the EAB distribution.

In conventional risk assessment, climatic factors have been shown to have an important impact
on the distribution of invasive species [17,18]. In a large geographic area, the overall surface
temperature, precipitation, and wind speed can reveal the habitat preferences of species. Meanwhile,
other research [4,19,20] has addressed the indirect impacts of anthropogenic factors that can be associated
with long-distance species propagation. Hence, compared with traditional approaches, the study of
the EAB spread across the entire area of Southern Ontario could be complicated, and conditions from
one year to another might differ. To allow for this, we included both spatial and temporal factors in the
SDMs used in this research [9,21,22]. These factors included the year of the field survey, the distance
between the samples and the nearest presence species points from the previous survey. We integrated
different risk factors in the proposed SDMs, such as climatic, physical geographic, biotic, anthropogenic,
and spatiotemporal factors, and analyzed their association with the EAB spread distribution through
different SDMs.

To estimate the significance of the risk factors and reduce the model complexity, stepwise model
selection was used based on Bayesian information. We examined the classification accuracy of the
presence and absence points through cross-validation. The modeling results of the GLMMs with two
proposed spatial random effects were compared with a logistic regression model. The model providing
the highest predictive accuracy was used to produce the risk map for the distribution of the EAB, and a
comprehensive scenario analysis was conducted for risk assessment.
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2. Materials and Methods

2.1. Data

2.1.1. Species Data

The species data used in this research were collected from 2006 to 2012 by the Canadian Food
Inspection Agency (CFIA) [23]. The majority of the samples were obtained via green prism traps and
visual surveys, with a lower proportion of samples obtained via branch sampling. Prism traps and
visual surveys indicate whether trees are infected, whereas branch sampling provides the specific
number of detected EAB beetles and is also more costly and labor intensive. Sampling was conducted
in specific areas where the EAB could potentially have been introduced through human activities such
as areas with visible Ash species decline, urban centers, provincial parks, campgrounds, rest stops
along major transportation corridors, and Ash nursery stocks. In terms of the general shift of survey
locations from one year to the next, each time EAB presence was confirmed within a county in the
study area since 2004, the county was declared regulated and sampling would not be carried out
in subsequent years within the same county. An overview of the EAB presence and absence points
based on these data is displayed in Figure 1 and the yearly summary of presence and absence points is
provided in Table 1.

ISPRS Int. J. Geo-Inf. 2020, 9, 414 3 of 17 

 

2. Materials and Methods  

2.1. Data 

2.1.1. Species Data 

The species data used in this research were collected from 2006 to 2012 by the Canadian Food 
Inspection Agency (CFIA) [23]. The majority of the samples were obtained via green prism traps and 
visual surveys, with a lower proportion of samples obtained via branch sampling. Prism traps and 
visual surveys indicate whether trees are infected, whereas branch sampling provides the specific 
number of detected EAB beetles and is also more costly and labor intensive. Sampling was conducted 
in specific areas where the EAB could potentially have been introduced through human activities 
such as areas with visible Ash species decline, urban centers, provincial parks, campgrounds, rest 
stops along major transportation corridors, and Ash nursery stocks. In terms of the general shift of 
survey locations from one year to the next, each time EAB presence was confirmed within a county 
in the study area since 2004, the county was declared regulated and sampling would not be carried 
out in subsequent years within the same county. An overview of the EAB presence and absence points 
based on these data is displayed in Figure 1 and the yearly summary of presence and absence points 
is provided in Table 1.  

Figure 1. The Emerald Ash Borer (EAB) distribution in Southern Ontario, Canada from 2006 to 2012. 
Green points are the EAB absence points and red points are the EAB presence points. 

In total, 11,229 absence points and 250 presence points were collected across southern Ontario 
between 2006 and 2012. The presence points of known EAB infestations were identified in 23 of 46 
total counties in the study area, and most of these were in the general area of Lakes Erie and Ontario, 
close to the Canada–United States border and in or adjacent to major cities. Many Ash trees in the 
Northern parts of the study area remained healthy and no EAB presence was detected in these areas 
between 2006 and 2012. Since the detected regions were only visited once, more samples were 
obtained between 2006 and 2008 relative to the subsequent years. For example, in 2008, field surveys 
identified the highest number of presence points, and fewer sampled points were obtained in the 
following year. The results of the sampling strategy, shown in Table 1, have the potential to lead to 

Figure 1. The Emerald Ash Borer (EAB) distribution in Southern Ontario, Canada from 2006 to 2012.
Green points are the EAB absence points and red points are the EAB presence points.

In total, 11,229 absence points and 250 presence points were collected across southern Ontario
between 2006 and 2012. The presence points of known EAB infestations were identified in 23 of 46
total counties in the study area, and most of these were in the general area of Lakes Erie and Ontario,
close to the Canada–United States border and in or adjacent to major cities. Many Ash trees in the
Northern parts of the study area remained healthy and no EAB presence was detected in these areas
between 2006 and 2012. Since the detected regions were only visited once, more samples were obtained
between 2006 and 2008 relative to the subsequent years. For example, in 2008, field surveys identified
the highest number of presence points, and fewer sampled points were obtained in the following
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year. The results of the sampling strategy, shown in Table 1, have the potential to lead to inconsistent
and biased samples [3,9]. However, since one of the objectives of this research is to analyze the
movement of the EAB over time, a spreading pattern could be examined during the period of research.
Hence, in the model validation, the impact of time on the spread of the beetle was included. The most
straightforward approach to quantify this factor was to use the date of the sampled points, which was
adopted in this study.

Table 1. Samples collected from field surveys from 2006 to 2012 with 250 presence points and 11,229
absence points.

Year Presence(%) Absence(%) Total

2006 58(0.88%) 6531(99.12%) 6589
2007 69(5.53%) 1177(94.46%) 1246
2008 90(9.03%) 906(90.97%) 996
2009 16(2.11%) 744(97.89%) 760
2010 11(1.35%) 800(98.65%) 811
2011 1(0.25%) 392(99.75%) 393
2012 5(0.73%) 679(99.27%) 684

2.1.2. Risk Predictors

Based on Hoque et al. (2020) [9], four different risk predictors were collected and analyzed for
potential relationships with the spatiotemporal distribution of the EAB (Table 2). The covariate values
of the risk predictors ranged distinctively due to the data sources, given their different units and forms
of measurement. To overcome this, each risk predictor was adjusted to a 1 km by 1 km grid, which was
aligned with the species data collected in the field surveys. In addition, to validate the estimation
of the prediction models, the covariate values of all risk predictors were standardized to the same
numerical level.

Since climactic factors provide important information related to habitat suitability and distribution
of invasive species such as the EAB [22], four different climatic variables were used in this research.
In Southern Ontario, the peak emergence of EAB adults presents in June [3,23]. As a result, climatic
data were collected in June for each year. The monthly average precipitation and solar radiation were
obtained from World-Clim Version 2 Global Climate Data with a spatial resolution of 1 km by 1 km
at the equator [24]. Another important factor is local wind speed, which can have an impact on the
spread of the EAB. Average wind speed records with a range from 30 to 80 m above ground level were
obtained from the Ontario Ministry of Natural Resources [25]. Since the maximum height of adult
green Ash trees is approximately 30 m, wind speed data were collected at a height of 30 m above the
ground. In addition, elevated land surface temperatures may cause changes to habitat and ultimately
lead the spread of the EAB from Southern Ontario to Northern locations [26]. Hence, data were used
from the MODIS/Terra satellite as MOD21A2, which were produced by the temperature emissivity
separation (EST) algorithm. Land surface temperature data were derived as an eight-day composite
output based on emissivity from three MODIS thermal infrared bands 21, 31, and 32 [27]. We adjusted
the resolution to 1 km by 1 km in order to maintain the spatial resolution of the other variables.

The set of physical geographic factors were provided by a digital elevation model (DEM) at a
spatial resolution of 30 m by 30 m [28]. These predictor variables included elevation, slope, and aspect,
which serve as indirect environmental gradients. Their impact on the spread of EAB might be
more related to the general condition of Ash trees, rather than the spread mechanism of the EAB.
The DEM-derived variables are shown to have less impacts on the spatial distribution of species [22],
but reflect the stress level of the Ash trees resulting from EAB infestation. Studies [29,30] suggest that
areas with steeper slopes (>45 degrees) and a history of defoliation are more likely to contain stressed
Ash trees. As shown in Table 2, the aspect values ranged from 0 to 360◦. In this study, we also tried
different transformations of the values, such as grouping them to various general directions (north,
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east, south, and west). For any of the investigated cases, the variable aspect was not a significant factor
controlling the spread of the EAB. As a result, the original aspect data were kept.

Table 2. The fourteen risk predictors used.

Predictor Title Unit Average Data Range Data Format

Climatic factors
Precipitation mm 84.3 (61.0, 109.0) Raster (TIF)
Solar radiation KJ/m2day 21,313 (20,613, 21,822)
June wind speed m/s 3.933 (2.500, 5.430) NAD83
Land surface temperature Kevin 338.6 (321.2, 345.9) Raster (TIF)
Geographic factors
Elevation m 222.40 (41.64, 524.71)

RasterSlope o deg 1.335 (0, 21.025)
Aspect o deg 188.013 (0.104, 359.946)
Biotic factors
Normalized difference vegetation index N/A 0.634 (−0.619, 0.965) Raster (TIF)
Nearest EAB positive location 56,175 (0, 596,180)
from previous years m
Anthropogenic factors, distance to
Population centers m 25,226 (0, 204,697) Vector (points)
Sea ports m 38,441 (241, 212,511) Coordinates
Forest processing facilities m 23,069 (60, 85,454)

Vector (points)Highways m 14,071 (0, 44,905)
Campgrounds m 27,196 (30, 104,972)

The normalized difference vegetation index (NDVI) was used as one of the biotic factors. This was
derived from the thematic mapper (TM) bands of Landsat 5 from the U.S. Geological Survey (USGS)
Earth Explorer website. Scenes between May and August were used for each year within the time
span of the field surveys. Coincidentally, as noted earlier, this is also the peak growing season for
Ash trees [31]. The as-the-crow-flies distance between a new sample point and its nearest presence
location from the previous year was measured as a second biotic factor [9] that could reveal useful
spatiotemporal information of the EAB presence points and spread.

Anthropogenic factors represent the impact of humans on the long-distance artificial dispersal of
the EAB beyond its maximum flight extent. To measure this, we obtained information from Statistics
Canada about locations of medium and large population centers to represent population density.
Information related to forest processing facility locations was collected from the Ontario Ministry of
Natural Resources and was included in the analysis because of the potential for dispersion due to
direct contact with potentially infected Ash logs. The transportation network was provided by Land
Information Ontario (accessed via https://geohub.lio.gov.on.ca/). The locations of seaports in Ontario
were also collected from SeaRates (https://www.searates.com/), and campgrounds, where burning of
potentially infected Ash logs may propagate the insects’ spread, were extracted from an accommodation
dataset created by DMTI Spatial Inc. (https://www.dmtispatial.com/).

https://geohub.lio.gov.on.ca/
https://www.searates.com/
https://www.dmtispatial.com/
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2.1.3. Spatial Autocorrelation among the Risk Predictors

Spatial autocorrelation was evident in the risk predictors among the sampled data described
above. As an example, a 3D scatter plot for three predictors (average wind speed in June, distance to
the nearest EAB positive location, and distance to timber processing facilities) that correspond to three
counties is shown in Figure 2. Three clusters are clearly evident. This suggests that the sampled points
within a geographic neighboring area share similar features. The clusters for the counties of Kawartha
Lakes and Lennox and Addington were closer together, due to their spatial proximity, compared with
that of Waterloo County, shown at the bottom of the scatter plot.
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Spatial autocorrelation in data is typically measured by Moran’s I and Geary’s C [22,32].
These statistics evaluate the degree of dependency and estimate the intensity of geographic relationships
for data collected from the same neighborhood. Suppose the observations y1; y2; . . . ; yn have spatial
correlations with mean µ. Moran’s I statistic is given by Equation (1),

I =
n
∑n

i=1
∑n

j=1 wi j(yi − µ)
(
y j − µ

)
∑n

i=1
∑n

j=1 wi j
∑n

i=1(yi − µ)
2 (1)

where, wij denotes the spatial weight, which can be obtained based on the Euclidean distance between
the ith and jth observations. Moran’s I values were calculated for the 22 counties in Ontario with
known presence points and the results are shown in Table 3. Spatial autocorrelation is statistically
significant in half of the 22 counties (p < 0.05), and also relatively high in Algoma, Hamilton, Lambton,
and Toronto. The overall Moran’s I for the EAB data was estimated to be approximately 0.109, with a
highly significant P value close to 0. Thus, the overall spatial autocorrelation was statistically significant
among the sampled points, and the correlation might be higher than average within some counties.
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Table 3. The estimated spatial autocorrelation of samples (presence and absence points) in 22 counties
based on Moran’s I statistics.

County Name Samples Moran’s I Std Dev P-Value

ALGOMA 125 0.463 0.032 0.000
BRANT 87 −0.012 0.003 0.980
BRUCE 245 0.011 0.015 0.326

CHATHAM-KENT 1838 0.064 0.002 0.000
DURHAM 36 −0.029 0.010 0.932

FRONTENAC 108 −0.009 0.003 0.960
HALTON 64 0.186 0.037 0.000

HAMILTON 52 0.582 0.068 0.000
HURON 549 0.012 0.010 0.150

LAMBTON 231 0.384 0.016 0.000
MIDDLESEX 1841 0.097 0.002 0.000
NIAGARA 89 −0.011 0.045 0.991
NORFOLK 356 0.286 0.015 0.000
OTTAWA 190 0.185 0.014 0.000
OXFORD 265 −0.004 0.012 0.966

PEEL 58 0.149 0.027 0.000
PERTH 124 −0.005 0.002 0.152

PRESCOTT AND RUSSELL 66 −0.016 0.005 0.916
TORONTO 48 0.243 0.041 0.000

WATERLOO 142 −0.012 0.013 0.738
WELLINGTON 109 0.217 0.031 0.000

YORK 50 −0.014 0.006 0.314

2.2. Methodology

As mentioned earlier, GLMMs were developed in this study to model the spread of EAB. By using
hierarchical layers in the analysis, GLMMs can be used to deal with instances where over-dispersion
and correlation are evident. In the following discussion, the basic principles of the GLMM and its
application to modelling the EAB spread are described.

Suppose there are n sampled points collected in a study area and divided into k groups based on
spatial factors as Y1 =

{
y11, y12, . . . , y1n1

}
, Y2 =

{
y21, y22, . . . , y2n2

}
, . . . , Yk =

{
yk1, yk2, . . . , yknk

}
,

and the total samples n is equal to
∑k

i=n ni. GLMMs estimate the relationship between the mean value
of the response variable E

(
yi j

∣∣∣xi j
)
= pi j and risk predictors, which are connected by link function g(·) as

shown in Equation (2),
g
(
pi j

)
= xi j

Tβ+ zi
Tγi, (2)

where i = 1, 2, . . . , k and j = 1, 2, . . . , ni. The linear predictor contains two different effects, namely
fixed effects and random effects. All samples {Y1, Y2, . . . , Yk}

T among k clusters share the same
fixed effect based on the predictors xi j, which have coefficients denoted as β. The statistical inference
on the parameter β shows the significance level of the predictors. The random effects denoted as

γi =
{
γi1, γi2, . . . , γiq

}T
are identically distributed from a common density with mean zero E(γi) = 0

and covariance cov(γi) = G. In Equation (2), zi is an indication that the samples from the ith cluster
share the random effect γi, which could be an intercept and random coefficient variables. In particular,
samples Yi within the ith cluster are modeled by the variable γi, representing the random effect within
their group. Hence, samples within different clusters are modeled by different random effects.

Since the mean values of the random effects are zero, each γi does not have an impact on the
overall population mean. However, with different random effects, the linear predictors in Equation (2)
could be different for the samples within different clusters, which can enhance model robustness
and solve the earlier noted autocorrelation that is evident in the predictor data. To understand the
random effects, consider the example of line fitting for clustered data, where the standard line fitting
generates one line for all data points. However, when considering random effects, different lines could
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be generated to fit data points within different clusters. In this study, each observed point yi j can be
either a presence or absence point, which is modelled with the logistic link function. The observed
samples from the same geographic neighborhood can be grouped into one spatial cluster and, therefore,
different types of spatial random effects can be used in the proposed GLMMs.

For the data used in this study, as shown in Figure 2, clustered patterns from different counties
were revealed and, thus, the samples were grouped by county in the first model. There are 46 counties
in the species data, which can be represented by γi, with i = 1, 2, . . . , 46. Based on the collected data,
some counties had many presence samples, while others were free from any observed EAB infestation.
County boundaries are defined mainly for administrative purposes with no underlying environmental
considerations. Hence, they can vary substantially in spatial extent and environmental conditions.
Given this, a random effects model was also implemented, based on each sample’s geographic location.
To accommodate this, we partitioned southern Ontario into 36 regions with an approximately equal
size of 90 km by 150 km (Figure 3).
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Figure 3. Study area partitioning. Sample locations are grouped into 36 regions to capture the random
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Each region represented one spatial cluster and shared one random effect γi. Nine regions, namely
R2, R3, R4, R5, R6, R30, R31, R35, and R36, had no surveyed data, hence these regions were not used in
the random effects model. In comparison with the use of county random effects, the grid structure could
be adjusted to accommodate different scenarios. For example, the clusters could be formed unevenly
in their spatial structure based on local environmental features or other factors. Thus, two models were
used to analyze the EAB distribution, including one GLMM with county random effects and another
GLMM with regional random effects.

The estimate of regression coefficients β̂ and random effects γ̂i can be obtained through numerical
integration methods, and the predictive probabilities with the logistic link function calculated from

p̂i j =
exp

(
xi j

Tβ̂+ zi
Tγ̂i

)
1 + exp

(
xi jTβ̂+ ziTγ̂i

) . (3)

In the prediction model, the estimated parameters β̂ hold the asymptotic properties of consistency
and normality. Thus, we can conduct statistical inference on each predictor with confidence. Meanwhile,
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γ̂i values are the best linear unbiased predictions (BLUPs). A random intercept is used in the model for
each cluster, which allows the cluster-specific effects to be differentiated. For example, in the clusters
with more samples present, the prediction result may provide a more significant risk effect than those
with lower risk.

In order to assess the significance of each predictor and overall performance of the proposed
GLMMs, different statistical methods can be used. One approach is to examine the model fit by the
residual deviance shown in Equation (4). This is a statistic measuring the difference of the estimated
likelihoods L̂

(
β̂
)

(the proposed model with the parameters of interest) and L̂
(
θ̂
)

(the saturated model,
which can be overparametrized for each sample), namely,

−2
(
log

(
L̂
(
θ̂
))
− log

(
L̂
(
β̂
)))
∼ χ2

(d), (4)

which follows a chi-square distribution. This value can be used to conduct hypothesis testing to
analyze the predictors in the model and compare models with different predictors. In addition, to select
risk predictors with the best fit and control the model complexity, we can validate the model based on
the Bayesian information criterion (BIC), namely,

BIC = −2 log
(
L̂s

(
β̂
))
+ log(n)k. (5)

This expression includes the maximum log-likelihood based on the candidate model in the subset
s and the number of parameters k, which shows the level of complexity. The model with the lowest
values of the Bayesian information criterion represents the best fit model. Other statistics, such as the
Akaike information criterion, adjusted coefficient of determination (R2), and Cp statistic, can be used
to compare different candidate models. Similar model selection results can be expected in most cases,
while the BIC is a more restricted measure to deal with the overfit model for the large sample.

We conducted variable selection for the models using a stepwise process and estimated the values
of the BIC with each step as the selection criterion. The order of adding a predictor at each step was
based on each predictor’s significance level, and the BIC values were compared iteratively to determine
which variable needed to be kept in the model. In addition, the prediction accuracy was another
selection criterion proposed in the stepwise selection process. We applied a five-fold cross-validation
with 100-fold replication to examine the predictive power of each model. Since the candidate models
were proposed to analyze the spatial spread of the EAB, the training sets represented integrated
information across all locations examined in the research. In each spatial cluster, we randomly
sampled 80% of the presence–absence data and combined them as the training group to fit each model.
The remaining data were applied to conduct validation for the classification accuracy.

For comparison, a logistic regression model, one of the most useful GLMs for binary responses
(presence–absence data), was implemented. Since the model assumes independence between
observations, the spatial autocorrelation present in the EAB data first needed to be removed. To do
this, we measured the Euclidean distance between all sample locations based on ground coordinates
and grouped the points through the use of clustering into 1000 neighborhoods. By randomly sampling
one observation from each small neighborhood, a subset with 1000 samples was obtained. For this
subset, the overall Moran’s I statistic was reduced to 0 with a large p-value, indicating that spatial
autocorrelation was reduced to an insignificant level. Hence, the logistic regression model could be
applied with confidence to the testing data for model comparison. The programming of the proposed
model was conducted through the use of the R package ‘lme4’ function (https://www.r-project.org/).

3. Results

The overall performance of each risk predictor was first tested for its significance level and the
goodness of fit by applying the GLMM with the proposed regional random effects, and the result of
the univariate analysis is shown in Table 4. This shows that most of the predictors were significantly
associated with the presence–absence distribution of the EAB, and the estimated deviance showed that

https://www.r-project.org/
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the model fit was similar. However, to analyze all the predictors in one model can cause it to be overly
fitted, resulting in an inaccurate estimation and invalid inference. Consequently, it is important to
determine the predictors included in the proposed SDMs.

Table 4. The significance level and the goodness of fit by each predictor variable based on the univariate
GLMM (Generalized Linear Mixed Model) with the regional random effects.

Predictor Variables Effect p-Value Deviance

Time 0.057 0.0065 2214
Climatic factors

Precipitation −0.591 1.26e-12 2169
Solar radiation −28.504 2.62e-23 2115

June wind speed −3.848 1.60e-81 1375
Land surface temperature 11.950 2.06e-19 2130

Geographic factors
Elevation −0.520 1.31e-12 2168

Slope −0.129 2.78e-06 2193
Aspects 0.039 0.1446 2219

Biotic factors
Normalized difference vegetation index −0.091 2.33e-11 2178

Nearest EAB positive location from previous years −0.010 0.0174 2215
Anthropogenic factors

Population centers −0.174 3.44e-15 2149
Sea ports 0.040 0.0078 2214

Forest processing facilities 0.284 6.38e-40 2022
Highways −0.171 6.12e-08 2190

Campgrounds −0.227 1.23e-19 2128

The variable selection process was conducted based on the results shown in Table 4. For instance,
among all predictors, the model with the average wind speed in June provided the estimation with the
smallest p-value, indicating high confidence or statistical significance. As a result, this predictor was
introduced at the first step. Each column shown in Table 5 indicated the steps of variable selection.
The selection criterion based on the BIC is more restrictive in adding a predictor in comparison with
the other criteria, which is useful in avoiding an overfit model.

Modeling the random effects by county produced overall lower BIC values in comparison with the
model with regional random effects (Table 5). This shows that the random effects with 46 spatial clusters
provided a better overall fit for the EAB data than the other models. In addition, the cross-validation
demonstrated consistent results as shown in Figure 4. Since the species data were unbalanced in
terms of absence points abundance, the true negative rates of the validation data were close to 100%
in all models. Meanwhile, the classification rates of the presence points were around 40% to 60%
and, in general, the true positive rates agreed with the results from the stepwise model selection.
The final step of the selection process provided seven predictors with the lowest BIC values and highest
classification rates, which mainly consisted of climatic and anthropogenic factors, for model validation.

Based on the final result of the variable selection process, the estimations of both the GLMM with
county random effects and the GLMM with regional random effects are shown in Table 6. The coefficient
values for the same predictor are estimated differently between the two models, as well as in the
significance levels of the predictors. The results show that by grouping the presence and absence
samples through different spatial clusters (counties or regions), the overall effect sizes of the predictors
are not identical. Since one subregion may contain multiple counties, as shown in Figure 3, the overall
effect of the linear predictors in each subregion will be parameterized distinctively from the counties
within that region. As a result, the statistical inference of the predictors with different random effects
provides different estimation results.
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Table 5. The stepwise model selection process. In each step, one predictor with the smallest p-value
was added in the model. If the estimated BIC (Bayesian Information Criterion) value decreased, that
predictor variable was kept in the model, and other variables were tested in the next steps. Meanwhile,
if the estimated BIC value increased as an additional variable was included, the predictor variable
was dropped.

Selected Models

Predictor Variables I II III IV V VI VII . . .

Time 4

Precipitation 4

Solar radiation 4 4 4 4 4

June wind speed 4 4 4 4 4 4 4

Land surface temperature 4 4 4

Elevation
Slope

Aspects
NDVI

Nearest EAB positive location from
previous years

Population centers 4 4 4

Sea ports 4

Forest processing facilities 4 4 4 4 4 4

Highways
Campgrounds 4

Model with County

BIC 1975 1158 1158 1156 1163 1135 1144 1065
AIC 1960 1136 1129 1119 1119 1083 1085 1000

Adj R2 − 0.424 0.429 0.436 0.437 0.457 0.457 0.503
Cp 1959 1133 1124 1113 1113 1077 1078 990

Model with Region

BIC 2259 1443 1404 1384 1391 1365 1369 1300
AIC 2244 1420 1374 1348 1347 1313 1311 . . . 1234

Adj R2 − 0.370 0.392 0.405 0.407 0.423 0.426 0.456
Cp 2247 1418 1371 1342 1342 1306 1302 1233

the proposed model.
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Table 6. Estimation results for fixed effects and random effects by the generalized linear mixed model
with the logistic link function. Model 1 stands for the GLMM with county random effect; model 2
stands for the GLMM with regional random effect.

Predictor Variables Model 1 (Std Error) Model 2 (Std Error)

Fixed Effects
Time 0.7989 (0.14) 0.3330 (0.09)

June wind speed −10.3668 (0.62) −8.1574 (0.45)
Land Surface Temperature −4.4333 (6.24) −27.5184 (4.55)

Solar Radiation −36.9254 (13.2) −51.7792 (10.7)
Distance to Forest Processing Facilities −0.2170 (0.13) 0.3281 (0.07)

Distance to Ports 0.8553 (0.12) 0.5067 (0.06)
Population Centers −0.8976 (0.12) −0.3537 (0.07)

Random Effects
Type County Region

Variance 42.19 42.42
Standard deviation 6.495 6.513

In general, climatic factors are negatively associated with the spread pattern from the two models.
In addition, both spatial random effects are estimated with a similar variance of approximately 42.
This suggests that the average effect in each geographical location has the same degree of statistical
dispersion, which reinforces the benefits of the implementation of the GLMMs in this research.
Hence, the averaged values of the geographical effects across different locations in southern Ontario
can produce a numerically wide range with approximate deviation of 6.5, and this difference can
enlarge the prediction intervals and improve the predictive power of the models.

The presence–absence data of the EAB distribution from the year 2013 were used to test the
proposed models. The samples consisted of 22 presence points and 876 absence points (Figure 5).
The prediction results were provided based on the three models discussed in the previous section
(Table 7). The GLMMs provided a better overall performance in comparison with the logistic regression
model. In fact, the predictive accuracy was improved by 20%. Since the data were unbalanced with
more absence than presence points from the species data, all models correctly classified the absence
points in the testing data and produced high true negative rates (specificity) of approximately 99%.

Table 7. Classification accuracy for the validation and testing datasets by the GLM (Generalized Linear
Model) and GLMM, where TNR: true negative rate; TPR: true positive rate.

Testing Data from 2013

Model Random effect TNR TPR Overall
GLM N/A 99.54% 54.55% 77.04%

GLMM
County 98.97% 63.64% 81.30%
Region 98.63% 95.45% 97.04%

Meanwhile, as different random effects were introduced in the proposed models, the true positive
rate (sensitivity) rose to 63.64% from the GLMM with county random effects and reached a maximum
accuracy of 95.45% with region random effects. This implies that the GLMMs allow data correlated
within each cluster to ensure that all useful information is exploited in the analysis, and well-specified
random effects can effectively differentiate risk factors among different clusters. As a result, the proposed
model produced a very high 97.04% overall predictive accuracy for the 2013 data.

The GLMM with region random effects was used to estimate risk exposures of the EAB distribution.
Five risk levels were set for the presence probabilities P

(
yi j = 1

∣∣∣xi j, Regioni

)
, namely, lowest risk

(0%–10%), low risk (10%–20%), moderate risk (20%–40%), high risk (40%–60%), and highest risk
(60%–100%). The 2013 risk map validation (Figure 6) demonstrates that the distribution of the EAB
presents a higher risk near the major cities and in locations along the Canada–US border. The areas
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with previous detections were also exposed to the EAB, and the risk exposure of future species invasion
will be dependent on local climatic and anthropogenic factors as demonstrated in the analysis.
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4. Discussion and Conclusions

In the proposed GLMMs, two types of random effects were established based on the geographic
information provided with the EAB data. One was based on county boundaries (model 1) and the
other was based on regular grids (model 2). The GLMM with the regional random effect generated
better results with an overall accuracy of 97% (Table 7). In addition, the prediction performance of the
GLMMs was substantially enhanced in comparison with the results obtained by the GLMs.

To deal with autocorrelation in the observed data in the GLMM with the regional random effects,
the study region was divided into grids of 6 by 6 pixels (90 by 150 km) (Figure 3). The grid size was
experimentally determined by considering the following two aspects: if the size of the regions was too
big, there would be remaining autocorrelation among the data; on the other hand, smaller regions
could lead to insufficient capture of the properties of the data, leading to inaccurate classification of the
testing data.

Experiments were carried out with different grid sizes (varying from 2 by 2 to 10 by 10 pixels).
The prediction results of the GLMM with different sizes of regions are shown in Figure 7. Even although
the overall accuracy did not vary by grid cell size, the rates for true negative and true positive results
were dependent on how the random effects were characterized. Furthermore, it was shown that the
grid size of 6 by 6 pixels used in this study generated the best accuracies. It is notable that regions with
regular grid sizes were used. In future research, the random effects of the regional factor could be
examined with different sizes, shapes, and geographic coverage within the study area. Data analysis
could be carried out to cluster the data and the generated clusters could be considered as the units for
GLMM modelling.ISPRS Int. J. Geo-Inf. 2020, 9, 414 14 of 17 
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The Bayesian information criterion in Equation (5) was proposed for the selection of predictor
variables. In comparison with the Akaike information criterion, the log(n)k penalty term of the Bayesian
information criterion in Equation (5) largely balanced the model complexity against the overfitting
problem (Table 5). Although seven different risk predictors with spatial random effects formed a
model with eight parameters, the selection process validated the proposed model with the smallest
BIC. In addition, since the presence–absence samples collected by field survey provided substantial
information, the challenges of the unbalanced data were controlled. According to the prediction of the
validation data, the correct classification of the absence samples is higher than in the presence samples.
This can be attributed to the data with 98.7% absence samples, which causes false-positive cases in
the prediction. Meanwhile, the cases of misclassification can be decreased through cross-validation
(Figure 4), and the proposed model provided the highest classification accuracy.

In this investigation, the year of data collection/risk prediction was included as a predicting
variable. The samples that were collected by a one-time visit and in pre-designed locations could be
autocorrelated both spatially and temporally. The EAB spread was a temporospatial process. A linear
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model (either GLM or GLMM) should include predictors to represent the temporal and spatial factors.
Therefore, the year of the detection was included to represent the temporal factor. Furthermore, it was
shown from the results by univariate models (Table 4), that the effect of the time (year) on the spread of
EAB was positive, approximately 0.057, and significant (with a small p-value). This indicated that the
overall risk level was expected to increase for subsequent years in southern Ontario. Including the
variable year in linear modelling was the most straightforward way to consider the temporal factor.
Another approach was to include a time-series analysis in the linear model, which will be pursued in
the future work.

The GLMM with the regional random effect could be used to produce expected risk maps for
future years for decision-making. For example, we simulated the spread of the EAB for 2014, 2016,
and 2018 without any further mitigation measures and under the same environment, such as climatic
factors etc. The predicted risk maps are shown in Figure 8. As participated, it was shown that the EAB
infestation would be more severe without any mitigation measures. Spatially, the results indicate the
regions where the expected risk level was the most for a given year. Such information can be used by
municipalities in their decision-making for forest/tree management. It is important to note that we did
not have EAB data in these three years to validate the results. However, the trends were consistent
with the general spread of EAB reported in Ontario over this time period.ISPRS Int. J. Geo-Inf. 2020, 9, 414 15 of 17 
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could be proposed for the mixed-effect components to achieve a more robust estimation. In this way, 
the forecast of the pattern of the EAB spread can introduce additional random effects. For example, 
the random coefficients of the risk factors, such as the effect of time in different spatial clusters, can 
be integrated with the current settings. By introducing multivariate data with different hierarchical 
levels, a combination of spatial clusters through latent variables can be modeled [33]. With more 
information related to species data, a random effects selection algorithm could be adopted to filter 
important local environmental factors.  
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The results of the GLMM with regional random effects showed that among the fifteen risk predictors
examined from four different categories, climatic factors, such as June wind speed, land surface
temperature, and radiation, as well as human activities, such as the distance to forest processing
facilities and ports, and population centers, had the most significant influence on the spread of the
EAB. None of the biotic and topographic variables were chosen in the models. However, based on
the univariate model analysis (Table 4), it was shown that the effect of these factors on the spread of
EAB was significant due to their correlation with other factors that had more significant impacts [32].
In addition, as shown in [32], the differences in the biotic and topographic variables between the EAB
presence and absence locations were not large compared with those for climatic and anthropogenic
factors. Caution should be made in the interpretation of the effects of these risk factors on the spread of
EAB. For some factors, such as the distance to forest processing facilities, the effects could be positive or
negative depending on how the random effects were characterized. Further studies should be carried
out to examine these effects.
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In further research, the dispersal structure can be included to model the spatial random effects
with the distance-dependence distribution. The variation estimated through the random effects
could be achieved by combining the temporal and spatial correlations within each spatial cluster.
This approach has been intensively analyzed and modeled for the spread of infectious diseases,
which could be proposed for the mixed-effect components to achieve a more robust estimation. In this
way, the forecast of the pattern of the EAB spread can introduce additional random effects. For example,
the random coefficients of the risk factors, such as the effect of time in different spatial clusters, can be
integrated with the current settings. By introducing multivariate data with different hierarchical levels,
a combination of spatial clusters through latent variables can be modeled [33]. With more information
related to species data, a random effects selection algorithm could be adopted to filter important local
environmental factors.
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