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Abstract: The growing amount of openly available, meter-scale geospatial vertical aerial imagery
and the need of the OpenStreetMap (OSM) project for continuous updates bring the opportunity to use
the former to help with the latter, e.g., by leveraging the latest remote sensing data in combination with
state-of-the-art computer vision methods to assist the OSM community in labeling work. This article
reports our progress to utilize artificial neural networks (ANN) for change detection of OSM data to
update the map. Furthermore, we aim at identifying geospatial regions where mappers need to focus
on completing the global OSM dataset. Our approach is technically backed by the big geospatial
data platform Physical Analytics Integrated Repository and Services (PAIRS). We employ supervised
training of deep ANNs from vertical aerial imagery to segment scenes based on OSM map tiles to
evaluate the technique quantitatively and qualitatively.

Dataset License: ODbL
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1. Introduction

It is natural to ask how the growing amount of freely available spatio-temporal information,
such as aerial imagery from the National Agriculture Imagery Program (NAIP), can be leveraged
to support and guide OpenStreetMap (OSM) mappers in their work. This paper aims at generating
visual guidance for OSM [1] mappers to support their labeling efforts by programmatically identifying
regions of interest where OSM is likely to require updating.

The outlined approach is based on translating remote sensing data, in particular vertical aerial
images, into estimated OSMs for the regions contained in the image tiles. This first step exploits an
image-to-image translation technique well studied in the deep learning domain. In a subsequent stage,
the estimated OSM is compared to the current map to produce a “heat map”, highlighting artifacts
and structures that alert mappers to locations that require updates in the current OSM. The output
provides computer-accelerated assistance for the labeling work of OSM volunteers.
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1.1. OpenStreetMap Data Generation Assisted by Artificial Neural Networks

OpenStreetMap is an open-data, community-driven effort to join volunteers in order to map
the world. It provides a platform to label natural artifacts and human infrastructure such as buildings
and roads manually. Labeling is largely a manual process done through an online tool that allows the
submission of artifact definitions and their Global Positioning System (GPS) coordinates on top of
geo-referenced satellite imagery [2].

It is difficult to maintain consistent global coverage with this manual process given the growth of
data volume in OSM, as well as the number of artifacts and structures to be mapped. At the beginning
of 2018, the compressed overall OSM Extensible Markup Language (XML) history file was 0.1 terabytes
(TB) (2 TB uncompressed). Five years earlier, the historical data was less than half, about 40 gigabytes
(GB) compressed. A back of the envelope calculation shows the effort involved in the creation
and update of labels:

Assuming an OSM community member adds a new vector data record (nodes, ways, and tags in
OSM parlance) of order of tens of kilobytes (KB) in minutes, the time invested-to-real time ratio reads:

=
estimated time invested by one OSM mapper to label all data

total time to collect all OSM data

=
compressed OSM data size · decompression factor/(mapper label speed bit rate)

total time to collect all OSM data

=
60 · 106KB · 20/(20KB/60s)

5 · 365 · 24 · 60 · 60s
(1)

∼ 106/(4 · 104) ∼ 25 .

Thus, approximately, an estimated 20 to about 30 mappers would need to work around the clock
to generate OSM labels. This raises the question of whether the process can be automatized, generating
a labeled map from geo-referenced imagery.

1.2. An Approach to OSM Generation Based on Deep Learning

One technique for producing maps from geo-referenced imagery is to treat the problem as a two
step process in which pixel-wise segmentation is performed before pixels are grouped into vectorized
entities like building outlines or road networks. Modern approaches to the segmentation problem
typically use some form of encoder-decoder architecture incorporated into the ANN. These techniques
employ an encoder to down-scale and a decoder upscale subsequently an image. Examples of such
architectures are Mask R-CNN [3], SegNet [4,5], Pix2Pix [6,7], and U-Net [8]. See Appendix A for a
primer on these architectures.

It becomes clear that segmentation may be formulated as a generic image-to-image mapping
task. This approach is implemented and studied in this work. In particular, applying a numerical
saddle-point optimization scheme This is also known as the minimax problem [9]. For details given
the context of the CycleGAN training procedure, see Appendix A and [10].), the CycleGAN [11,12]—a
system of cyclically-trained generative adversarial networks (GAN), to be precise—manages to
establish a mapping between two sets of images, even without the need for any pixel-to-pixel
correspondence of pairs of images from the sets. Among others, an intuitive description of
the methodology is provided in Section 2.3.

1.3. Related Work

The challenge to identify human infrastructure from vertical aerial imagery has attracted an
increasing amount of attention in recent years. Research in this field has advanced, e.g., on building
detection [13–15], land use classification [16–19], and road network identification [20–27].
Among others, these approaches vary in the data used. While several of the previously cited
publications directly estimate the outline of a road network from images, others use the GPS data
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or GPS trajectories. Returning to the general problem of map generation, References [28–31] are
conceptually closest to our approach of image-to-image translation with the CycleGAN. A collection
of literature references is maintained by the OSM community in a wiki consisting of various works of
machine learning related to the OSM project [32].

1.4. Contributions

This paper reports our progress in applying deep learning techniques to generate OSM features.
In particular, we focus on buildings and road infrastructure. Section 2.2 provides some detail on our
management of geospatial images using the IBM PAIRS database. The remainder of Section 2 delves
into the ANN design, training, and inference. The set of experiments described in Section 3 forms
the basis of both intuition and quantitative analysis of the potential and hurdles to implementing a
deep learning approach to OSM generation. Visual inspection of our data is used to explore aspects of
image-to-image translation in the context of OSM data change detection from vertical aerial imagery in
Section 4. As Supplemental Material, Appendix A provides a technical primer regarding deep learning
in the context of our specific approach.

The contribution of this study is summarized as follows:

1. We demonstrate the application of a modified CycleGAN with an attention mechanism trained
on NAIP vertical aerial imagery and OSM raster tiles.

2. We quantify the accuracy of house detection based on the approach above and compare it to a
state-of-the-art house detection network architecture (U-Net) from the remote sensing literature.

3. We exemplify the extraction of a heat map from the big geospatial data platform IBM PAIRS that
stores OSM raster tiles and maps generated by the modified CycleGAN. This way, we successfully
identify geospatial regions where OSM mappers should focus their labor force.

4. We provide lessons learned where our approach needs further research. In the context of
OSM map tiles that assign different colors to various hierarchies of roads, we inspect the color
interpolation performed by the modified CycleGAN architecture.

2. Materials and Methods

Automated detection of human artifacts using ANNs requires structured storage and querying of
high-resolution aerial imagery, cf. Section 2.2, as well as efficient handling of the intermediate outputs
of the training process. Our work leverages the PAIRS remote sensing image repository for this task.
The basics of image storage and retrieval in PAIRS covers Section 2.1. Sufficient discussion is provided,
and the reader is encouraged to use the PAIRS engine via its public user interface [33] to explore
the data used in this paper. Finally, Section 2.3 presents the design chosen for the ANN used to provide
the results and insights of Sections 3 and 4.

2.1. Scalable Geo-Data Platform, Data Curation, and Ingestion

The PAIRS repository [34–36] is intended to ingest, curate, store, and make searchable data by
geo-temporal indexing for many types of analysis. PAIRS falls within the category of databases
developed explicitly to optimize the organization of geo-spatial data [37–39]. Applications built on
PAIRS range from remote sensing for archeology [40] and vegetation management [41] to the curation
and indexing of astronomical data [42]. PAIRS maintains an online catalog of images for real-time
retrieval using an architecture based on Apache HBase [43] as a backend store.

A major strength of the platform is the ability to scale, project, and reference images of differing
pixel resolution onto a common spatial coordinate system. As noted above, imagery comes from many
sources, resolution levels, and geospatial projections. A key function of the PAIRS data ingestion phase
is to rescale and project raster images from all sources onto a common coordinate system based on
the EPSG:4326/WGS 84 [44,45] Coordinate Reference System (CRS). The internal PAIRS coordinate
system employs a set of nested, hierarchical grids to align images based on their resolution. This works
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as follows: PAIRS defines a resolution Level 29 to be a square pixel of exactly 10−6 Deg × 10−6 Deg in
longitude and latitude. Resolution levels are increased or decreased by factors of two in longitude and
latitude at each step such that the pixel area decreases or increases quadratically. Level 28 pixels are
2×10−6 Deg × 2×10−6 Deg, and so on. The PAIRS Level 26 approximately corresponds to a resolution
of 1 × 1 meter at the Equator—this can also be conceived of as a QuadTree [46].

For example, during the ingestion of a raw satellite image tile to a specified level of 23,
the ingestion pipeline performs the necessary image transformations to rescale the original pixels to a
size of 64×10−6 Deg × 64×10−6 Deg. Rather than store individual pixels per each row of the database,
the transformed image is partitioned into an array of 32 × 32 pixels called a “cell”. The cell is stored
in HBase using a row key based on the longitude and latitude of the lower left corner of the cell at
the resolution level of the cell. A timestamp of when the data was acquired is added to the key. A cell
is the minimal addressable unit of image storage during queries.

This system of storing aligned and scaled images front loads the ingestion pipeline with CPU
intensive image transformations, but it is optimized for performance when retrieving and co-analyzing
raster images from multiple data sources. The common CRS and pixel size make it very easy to extract
and work with images from different sources and resolutions. In particular, this concept aligns pixels
in space for ready consumption by image processing units such as convolutional neural networks.

Finally, PAIRS refers to a set of images obtained at different times from the same source, band,
and level as a “datalayer”. The datalayer is exposed in the PAIRS user interface as a six digit number
layer ID. A collection of datalayers is called a “dataset”. Going forward in this paper, we provide
the layer ID of the utilized images.

2.2. Data Sources

For decades, government and space agencies have made available an increasing corpus of
geospatial data. However, the spatial resolution of non-defense satellite imagery has not yet
reached the single meter scale. Multi-spectral imagery at tens of meters in pixel resolution has been
globally collected by satellites from the European Space Agency (ESA) and the United States
Geological Survey (USGS)/national Aeronautics and Space Administration (NASA) on a weekly
basis, cf., e.g., the Sentinel-2 [47] and Landsat 8 [48] missions, respectively. Figure 1 shows
the historical timeline of the spatial resolutions of satellites generating vertical aerial imagery on
a global scale [49–51]. Applying a rough exponential extrapolation (t ∼ − log r.), we do not expect
data for our approach to be available worldwide for at least two more decades.
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Figure 1. Naive extrapolation for the increase of spatial resolution r > 0 over time t for publicly
available satellite imagery with global coverage.

However, as the NAIP program demonstrates (cf. Section 2.2.1), national and statewide or
county programs freely release equivalent data on a per country basis to the public domain such that
the approach we outline here becomes an option already today. Beyond satellite imagery, there exists,
e.g., light detection and ranging (LiDAR) [52,53] and radio detection and ranging (Radar) [54,55],
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to just name a few more sources. In fact, LiDAR provides data down to the centimeter scale and can
serve as another source of information for the automation of OSM map generation.

2.2.1. NAIP Aerial Imagery

Since 2014, the U.S. Department of Agriculture (USDA) has provided multi-spectral top-down
imagery [56] in four spectral channels: near-infrared, red, green, and blue, through the National
Agriculture Imagery Program (NAIP) [57]. The data are collected over the course of two years for a
wide range of coverage over the Contiguous United States (CONUS) with spatial resolutions varying
from half a meter to about two meters. Our experiments were based on data available for Austin,
TX, and Dallas, TX, in 2016. We did not use the near-infrared channel, which is particularly relevant
for agricultural land. Specifically, Listing 1 references these PAIRS raster data layers in terms of
their PAIRS layer IDs: 49238, 49239, and 49240,for the red, green, and blue channel of the aerial
imagery, respectively.

2.2.2. OSM Rasterized Map Tiles

OSM raster data are based on the OSM map tile server [58], generating maps without text.
The map tiles are updated about every quarter year, only. In fact, when it comes to generating, e.g.,
a timely heat map as discussed in Section 3.2, it is vital to base the processing on a more frequently
updating tile server with daily refresh such as performed in the case of the tile server [59]. Once again,
we list the PAIRS layer IDs for reference: they are 49842, 49841, and 49840 for the red, green, and blue
spectral channels, respectively. As before, the PAIRS resolution Level 26 was used.

2.2.3. Data Ingestion into PAIRS for NAIP and OSM

Figure 2 provides a flow diagram on how we integrated the IBM PAIRS data platform into the data
curation for the methodology discussed in Section 2.3: NAIP vertical aerial imagery and tiled OSM
maps enter the PAIRS ingestion engine that curates and spatio-temporally indexes the raster data into
the EPSG:4326/WGS 84 CRS. In our scenario, we chose to use the PAIRS resolution Level 26 for both
NAIP imagery and OSM maps. Thus, there exists a direct one-to-one correspondence for all spatial
pixels of all raster layers involved. More specifically, for each 512 × 512 NAIP red green blue (RGB)
image patch out of PAIRS, we retrieved a corresponding 512 × 512 RGB image as the OSM map tile to
train the ANN. Resolution level L, per definition, translates to:

PAIRS spatial resolution (PAIRS resolution level L) = 229−L/106 (2)

degrees latitude or longitude, i.e., with L = 26, we have 23 × 10−6=0.000008 degrees.

NAIP imagery server

OSM tiling server
PAIRS geospatial data
curation and indexing

supervised training of ANN

OSM map inference

PAIRS overview generation

OSM vector data for
detected features

(e.g. roads/houses)

PAIRS query with UDF
OSM change detection

heat map

data processing
geo-spatial indexing

in database
information

flow
information

flow

Figure 2. IBM PAIRS data and processing workflow for OSM change detection heat map generation.
Dashed boxes represent data sources and sinks, and solid boxes encapsulate processing units.
The right-hand side column of aligned (colored) raster grids serves as a cartoon of nested geospatial
indexing in IBM PAIRS.
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After curating and geo-indexing the rasterized OSM and NAIP data with PAIRS for training
and testing, we randomly retrieved pairs of geo-spatially matching OSM and NAIP RGB images of
512 × 512 pixels at 1 m spatial resolution. For two cities, Austin and Dallas in Texas, the obtained
data were filtered to contain an average building density of more than one thousand per square
kilometer. From this perspective, our work was limited to densely populated areas. Once training
the ANN converged, NAIP data were pulled from PAIRS, and the inferred map could be ingested
back as separate layers—a total of 3 in our case, one for each RGB channel with the byte data
type, respectively.

While the generated map is uploaded, the system can automatically build a pyramid of spatially
aggregated pixels in accordance with the QuadTree structure of the nested raster layer pixels. Thus,
PAIRS layers get automatically generated having a lower spatial resolution level L < 26 to serve
as coarse-grained overview layers. The same overview pyramid building process can be triggered
after a separate code queries out data with the aid of a PAIRS user defined function (UDF), generating
the change detection heat map at high spatial resolution Level 26, cf. Listing 1. Then, an overview
layer generation process based on pixel value summation will result in a heat map (cf. Figure 3f) small
in data size. This way, the amount of data to be queried out of PAIRS for the change detection heat
map is significantly reduced.

(a) RGB-channels of NAIP imagery (b) RGB-encoded OSM raster tile (c) fw-CycleGAN generated map

(d) TN “FP” FN

TP (discrete)
OSM vs. generated map

(e) 1 or 0 (binary) OSM
missed labels

(f)
0 . . . 2048 . . . 4096 (continuous)

sum-aggregation of (e)

Figure 3. Illustration of data processing for change detection in OSM data from aerial imagery
visualized for the combined human infrastructure features of buildings and road networks. The top
row depicts samples of the raw data of our study, Figure 3a,b, and the resulting generated map,
Figure 3c, from the fw-CycleGAN. Figure 3d illustrates the pixel labeling of the fw-CycleGAN
versus the OSM ground truth as follows: TP—OSM and the fw-CycleGAN agree on the existence of
human infrastructure (true positive); TN—both OSM and the fw-CycleGAN do not indicate human
infrastructure (true negative); FP—the fw-CycleGAN identifies human infrastructure missed by OSM
(“false positive”); Note: We use quotation marks, because a significant fraction of FP pixels are TP;
as is obvious from the ground truth satellite image, Figure 3a; FN—OSM labels human infrastructure
missed by the fw-CycleGAN (false negative); Figure 3e reduces Figure 3d by showing “false positives”
(numerical pixel value 1), only, on a (numerical pixel value 0).
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Listing 1. PAIRS query JSON load to generate high-resolution data as the basis for the heat map of
change detection. Note, that we artificially broke the string of the user-defined function (UDF) under
key expression. This syntax is not defined by the JSON standard, but is convenient for reasons of
readability. A tutorial introducing the PAIRS query JSON syntax can be found online [66].
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Listing 1. PAIRS query JSON load to generate high-resolution data as the basis for the heat map of
change detection. Note, that we artificially broke the string of the user-defined function (UDF) under
key expression. This syntax is not defined by the JSON standard, but is convenient for reasons of
readability. A tutorial introducing the PAIRS query JSON syntax can be found online [66].

{
" s p a t i a l " : {

" type " : " square " ,
" coordinates " : [32 .67333 , −97 .47027 ,32 .68056 , −97 .43536]

} ,
" temporal " : {

" i n t e r v a l s " : [ { " snapshot " : " 2020−3−11 " } ]
} ,
" l a y e r s " : [

{ " a l i a s " : "OSMBlue" , " id " : " 49840 " , " output " : f a l s e } ,
{ " a l i a s " : "OSMGreen" , " id " : " 49841 " , " output " : f a l s e } ,
{ " a l i a s " : "OSMRed" , " id " : " 49842 " , " output " : f a l s e } ,
{ " a l i a s " : "GenMapRed" , " id " : " 50155 " , " output " : f a l s e } ,
{ " a l i a s " : "GenMapGreen" , " id " : " 50156 " , " output " : f a l s e } ,
{ " a l i a s " : " GenMapBlue " , " id " : " 50157 " , " output " : f a l s e } ,
{ " a l i a s " : " naipRed " , " id " : " 49238 " , " output " : f a l s e ,

" temporal " : {
" i n t e r v a l s " : [ { " s t a r t " : " 2016−1−1 " , " end " : " 2016−12−31 " } ]

} ,
" aggregat ion " : "Max"

} ,
{ " a l i a s " : " naipGreen " , " id " : " 49239 " , " output " : f a l s e ,

" temporal " : {
" i n t e r v a l s " : [ { " s t a r t " : " 2016−1−1 " , " end " : " 2016−12−31 " } ]

} ,
" aggregat ion " : "Max"

} ,
{ " a l i a s " : " naipBlue " , " id " : " 49240 " , " output " : f a l s e ,

" temporal " : {
" i n t e r v a l s " : [ { " s t a r t " : " 2016−1−1 " , " end " : " 2016−12−31 " } ]

} ,
" aggregat ion " : "Max"

} ,
{ " a l i a s " : "HeatMap" ,

" express ion " : "
math : abs ($GenMapRed−66)<10 ? (

math : abs ( $GenMapGreen−49)<10 ? (
math : abs ( $GenMapBlue−48)<10 ? (

math : abs ( p a i r s : nvl ($OSMRed,−128)−66) >2 ? (
math : abs ( p a i r s : nvl ( $OSMGreen,−128)−49) >2 ? (

math : abs ( p a i r s : nvl ( $OSMBlue,−128)−48) >2 ? (
1

) : 0
) : 0

) : 0
) : 0

) : 0
) : 0

"
}

]
}

3. Numerical Experiments

The following sections provide details on the experiments we performed given the data
and methodology introduced in Section 2.

3.1. Feature-Weighted CycleGAN for OSM-Style Map Generation

Utilizing a CycleGAN training scheme developed for unpaired images comes with benefits
and drawbacks. On the one hand, the scheme is independent of the exact geo-referencing of
the OSM map. In fact, it does not even require any geo-referencing at all, making it perfectly
fault-tolerant to imprecise OSM labels. However, as we confirmed by our experiments, training
on geo-referenced pairs of aerial imagery and corresponding OSM rasterized maps captured
the pixel-to-pixel correspondence. In addition, our training procedure was feature-agnostic as it
incorporated the overall context of the scene, which of course depended on the aerial image input
size. On the other hand, effectively training the CycleGAN model was an intricate task due to

2.3. Deep Learning Methodology

In contrast to most approaches cited at the end of Section 1.3, we tackle the problem of OSM data
extraction—such as buildings and roads from aerial imagery—by employing a “global” perspective
of image-to-image translation, that is: orthoimages (i.e., aerial photographs) covering spatial patches
of about a quarter of a square kilometer are transformed by a deep learning encoder-decoder (ED)
network G to generate rasterized maps without text labels. As mentioned earlier, Appendix A provides
a specific primer to readers unfamiliar with the subject of deep learning in the context of our work.

The fact that buildings, roads, and intersections are typically much smaller in size compared
to the aerial image defines our notion of “global”. The convolutional layers of G iteratively mix
neighboring pixel information such that the final segmentation label per pixel of the generated
OSM map tile is derived from all the pixel values of the input image. This way, conceptually
speaking, the OSM raster tile pixel color generated by G of, e.g., a building is determined by its
context, i.e., surrounding buildings and road network infrastructure and, if present, natural elements
such as trees, rivers, etc. This treatment goes beyond analyzing, e.g., the shape, texture, and color of a
building’s roof or a street’s surface to be classified.

In particular, for our work, G stems from a generator network of the CycleGAN architecture.
The technique closest that we are aware of in the context of OSM data was presented by [28–31].
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In [28,29], for example, the authors pretrained an ED network F to reconstruct missing pixels removed
by an adversarial ED-type network D. In a second step, F was trained on the orthoimage segmentation
task where pixel-level labels existed.

Informally speaking and to illustrate the CycleGAN training procedure for readers outside
the field of artificial neural networks: Consider a master class on cartographic mapping with a lecturer
and 4 students corresponding to the four artificial neural (sub)networks to be trained. The course is
organized such that Student 1 takes vertical aerial images and aims at learning how to draw maps
from these. Student 2 gets real (i.e., authentic) maps from the lecturer to learn how to distinguish them
from the maps generated by Student 1 while, at the same time, Student 1 wants to deceive Student
2. In a similar fashion, Student 3 takes maps to generate plausible vertical aerial images that get
challenged by Student 4, who receives real vertical aerial imagery from the lecturer to compare with.

The lecturer provides a vertical aerial image to Student 1, who generates a map from it, which is
then forwarded to Student 3. In turn, Student 3 generates an artificial vertical aerial image and hands it
to the lecturer. The lecturer compares this image to the reference; vice versa, the lecturer also has maps
that she/he provides to Student 3 first to get back from Student 1 a generated map to compare.

Several key aspects can be inferred from the illustrative example that are essential to our approach
of image-to-image translation in the context of OSM map tile generation:

• When training is completed, we use the ANN corresponding to Student 1 in order to infer OSM
raster map tiles from NAIP vertical aerial imagery.

• During the entire training, the lecturer did not require the availability of pairs of vertical aerial
imagery and maps. Since OSM relies on voluntary contributions and mapping the entire globe is
an extensive manual labeling task, not requiring the availability of pairs of vertical aerial imagery
and maps, it allows the use of inaccurate or incomplete maps at training time.

• To exploit the fact that in our scenario, we indeed have an existing pairing of NAIP imagery
and OSM map tiles, we let the lecturer focus her/his attention on human infrastructure (such
as roads and buildings) when determining the difference of the NAIP imagery handed to Student
1 to what she/he gets returned by Student 3. This deviation from the CycleGAN procedure is
what we refer to as fw-CycleGAN (feature-weighted CycleGAN) in Section 3.1.

We trained from scratch the fw-CycleGAN (Appendix A has details on the architecture) and a
U-Net for reference on data drawn from Austin. To quantify the model’s accuracy, we focused
on the ratio R of false negatives (FN) versus true positives (TP) with respect to building detection
(cf. Figure 3). That is, we counted the number of missed buildings and put it in relation to the correctly
detected ones according to OSM data labels. Since OSM is a crowdsourced project, we refrained from
counting false positives (FP), i.e., we did not consider a house detected by the trained network that was
not represented in OSM as an indication of low model performance. On the contrary, we employed
such false positives to serve as the basis for the generation of the heat map. In order to identify
true positives and false negatives, we inferred an OSM-like map with the aid of the trained ANN
taking NAIP imagery as the input. We then compared the outcome to the corresponding OSM data of
the geospatial area. We took the ratio intersection over union (IoU) [60] with a threshold value of 0.3 to
identify a match (IoU> 0.3) or a miss (IoU< 0.3). Our choice of a fairly low IoU threshold accounted for
the partial masking of residential houses due to vegetation, particularly in neighborhoods of the two
cities’ suburbs.

2.4. Computer Code

The code for training the U-Net and CycleGAN was implemented in PyTorch [61]. Open-source
repositories like [62,63] exist, respectively. The feature-weighting was easily incorporated by modifying
the training loss function through an additional penalty term based on the feature mask in Figure 3d.
The OSM rasterized map tiles were generated from [64]. A Python library that wraps the PAIRS query
API is open-source on GitHub [65] with a detailed tutorial [66] and free academic access [33].
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3. Numerical Experiments

The following sections provide details on the experiments we performed given the data
and methodology introduced in Section 2.

3.1. Feature-Weighted CycleGAN for OSM-Style Map Generation

Utilizing a CycleGAN training scheme developed for unpaired images comes with benefits
and drawbacks. On the one hand, the scheme is independent of the exact geo-referencing of
the OSM map. In fact, it does not even require any geo-referencing at all, making it perfectly
fault-tolerant to imprecise OSM labels. However, as we confirmed by our experiments, training
on geo-referenced pairs of aerial imagery and corresponding OSM rasterized maps captured
the pixel-to-pixel correspondence. In addition, our training procedure was feature-agnostic as it
incorporated the overall context of the scene, which of course depended on the aerial image input
size. On the other hand, effectively training the CycleGAN model was an intricate task due to
challenges in its practical implementation. In particular, the generator networks might encode and hide
detailed information from the discriminator networks to optimize the image reconstruction loss
more easily, which is at the heart of the CycleGAN optimization procedure [67]. To counteract this,
we added a feature-weighted component to the training loss function, cf. Appendix A for details,
denoting the architecture as fw-CycleGAN. In our initial experiments, we observed low performance
and instabilities when training the CycleGAN on OSM data without feature weighting.

While the computer vision community maintains competitions on standardized datasets such
as ImageNet [68,69], the geospatial community established SpaceNet [70,71] with associated challenges.
One of the previous winning contributions for building identification relied on the U-Net architecture
employing OSM data as additional input [72]. Thus, we quantitatively evaluated our fw-CycleGAN
model performance when being restricted to house identification against a U-Net trained on the same
data. Details are shown in Table 1 and read as follows.

Table 1. Quantitative numerical analysis of building detection from NAIP and OSM data.

Training (90%) Testing (10%) Ground Truth House Density Network Architecture R = FN/TP † F1-Score ‡

Austin Austin OSM as-is ∼1700 km−2 fw-CycleGAN 0.35 * 0.69
U-Net 0.37 0.77

visual inspection fw-CycleGAN 0.23 * 0.83
U-Net 0.23 0.88

Dallas OSM as-is ∼1300 km−2 fw-CycleGAN 0.60 ** 0.55
U-Net 1.01 0.51

* OSM has missing house labels, cf. Figure 3, top row; hence, the value improves when those are included by
visual inspection. ** Networks have spatial dependency driving up R in addition to missing house labels.
† TP—number of true positives, FN—number of false negatives. ‡ This standard evaluation metric combines
the two independent errors, type I (false positive) and type II (false negative), of statistical hypothesis
testing [73]. It is normalized to [0, 1], assuming 1 if and only if both errors are zero. On the other hand, if any
of the two errors approaches 1, the F1-score drops to zero. Best performance metrics are highlighted in bold.

We trained the image-to-image mapping task utilizing our fw-CycleGAN with OSM
feature-weighted, pixel-wise consistency loss. Training and testing data were sampled from the Austin
geospatial area with house density greater than one thousand per square kilometer on average.
In addition, model testing without further training was performed on samples from the Dallas, TX
region. Moreover, a plain vanilla U-Net architecture was trained on the binary segmentation task
“Pixel is building?” as a reference. For testing, we evaluated the ANN’s ability to recognize houses by
counting false negatives and true positives. Since the random testing might be spatially referencing an
area not well labeled by OSM, we did not explicitly consider false positives. However, we list the F1
score that incorporated both false negatives and false positives.

While both networks, U-Net and fw-CycleGAN, were comparable in terms of false negatives
versus true positives for testing in the same city, transfer of the trained models into a different spatial
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context increased false negatives relative to true positives significantly more for the U-Net compared
to the fw-CycleGAN, i.e., by way of example, we demonstrated (fw-)CycleGAN’s ability to better
generalize compared to the U-Net. Moreover, we performed a manual, visual evaluation of the ANN’s
false positives due to OSM’s incomplete house labeling for Austin. Crunching the numbers by human
evaluation, we ended up with an estimate of the “true” model performance that was significantly
higher because false positives turned into true positives.

As mentioned, we performed pure model inference of aerial imagery picked from Dallas without
additional training. As expected, the accuracy decreased, because we transferred a model from one
geospatial region to another: the R-value of fw-CycleGAN increased from 0.35 to 0.60, i.e., the number
of false negatives increased relative to the number of true positives.

The topic of transfer learning has at least a decade of history in the literature [74–76] with recent
interest in the application to remote sensing [77]. Picking two random examples for illustration, let us
mention vital applications: the inference of poverty maps from nighttime light intensities that have
been generated from high-resolution daytime imagery [78] and, moreover, mitigating the scarcity of
labeled Radar imagery [79]. It is the subject of our ongoing research to utilize the fw-CycleGAN model
trained on sufficiently OSM-labeled areas in order to add buildings to the training dataset of less
densely covered terrain. The underlying rationale is to improve OSM’s house coverage in areas where
false positive map pixels trace back to pending labeling work waiting for the OSM mapper’s activity.
Indeed, we performed a manual, visual assessment (carried out by one of the authors within a day of
labor) for one hundred sample aerial images from Austin and compared them to corresponding OSM
raster map tiles and their fw-CycleGAN-generated counterparts. The result is summarized by the last
row of Table 1 and reads as: The increase of true positives for house detection due to the manual
reassignment of false positives drove up model performance by about 10 to 11 percent in terms of
recall = (1 + R)−1. Accordingly, the overall F1-score was raised by about 0.88/0.77− 1 ≈ 14% to
0.69/0.83− 1 ≈ 20%.

3.2. fw-CycleGAN for OSM Data Change Detection

As previously stated, the trained fw-CycleGAN could be used for change detection. The data
processing workflow is illustrated in Figure 3. Specifically, having generated an OSM-like RGB map M̂
image (Figure 3c) from a corresponding georeferenced NAIP orthoimage (Figure 3a), we could extract
vectorized features from the rasterized map by simply filtering for the relevant colors. For example,
buildings were typically of color (R,G,B)=(194,177,176), which we determined from manually
sampling dozens of OSM raster tiles at the centroid geo-location of known buildings in Texas. On
the other hand, roads had several color encodings in OSM map tiles, reflecting the hierarchical structure
of the road network. A qualitative discussion on the topic of color interpretation of OSM-like generated
maps follows in Section 4, in particular Figure 5.

Figure 3d color-encodes the overlay of the actual OSM map M (Figure 3b) with the generated
OSM map M̂ (Figure 3c): Green pixels denote spatial areas where neither M nor M̂ have valid human
infrastructure features; blue pixel mark features present in both, black ones highlight false negatives;
and yellow ones indicate features detected by the fw-CycleGAN not present in the OSM dataset.
The latter case can be noise-filtered and curated as shown by Figure 3e with yellow representing
numerical value 1 and deep purple encoding 0. Notably, there was a number of small isolated groups
of pixels that stem from minor inaccuracies of the geo-spatial alignment of OSM data versus NAIP
satellite imagery. In fact, settings of the OSM raster map tile code used a fixed width of a given road
type, which did not necessarily agree with the varying spatial extent of real roads. However, we did not
discard these pixels and spatially aggregated to end up with Figure 3f, where color encodes the number
of false positive pixels from the center binary plot—all counted within the area of the coarse-grained
pixel: black indicates zero pixel count and yellow the highest pixel count.

Obviously, most of the road network appeared to be correctly labeled by OSM. If roads were
misaligned in OSM, typically a prominent and extended linear patch arose, as, e.g., within the pixel
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sub-bounding box [100, 200] × [0, 100] of the center plot. Moreover, various yellow blobs in, e.g.,
[100, 400] × [400, 500] flagged missing house labels in OSM. To summarize the findings visually,
the high-resolution, one meter binary map could be coarse-grained by aggregation based on pixel
value summation. The corresponding result is depicted in Figure 3f.

In generating all the above results, the big geospatial data platform IBM PAIRS was key to sample
pairs of patches scalably from the NAIP vertical aerial imagery and the rasterized OSM map. We
detail the workflow in Section 2.4 and Appendix A. In addition, having ingested the generated map M̂
as PAIRS raster data layers, an advanced query to the system with JSON load presented by Listing 1
yielded maps like Figure 3e.

PAIRS uses Java-type signed byte data such that RGB color integers are shifted from the interval
[0,255] to [-128,127]. The IBM PAIRS-specific function pairs:nvl($A, defaultValue) returns
the pixel value of layer with alias A—if existing in the database. Otherwise, defaultValue is spilled to
prevent unpredicted handling of, e.g., not-a-number representations, NaN.

In addition, note that we applied a trick to assemble all NAIP data tiles collected over the course
of the year 2016 with the PAIRS query on the fly: The temporal maximum pixel value aggregation
"Max" simply picks the one-and-only pixel existing for some (unknown) day of 2016. NAIP data come
in tiles and are registered in time to the date when they were photographed.

The central element of the JSON query being the user defined function is given by:

math:abs($alias - expectedChannelValue) < colorValueTolerance ? returnValue : defaultValue

The above defines a conditional statement that yields returnValue for each spatial pixel if
the pixel value of the layer with alias is close to the expected value expectedChannelValue within a
given tolerance specified by colorValueTolerance; defaultValue is picked otherwise.

If the result is subsequently being reingested into PAIRS, cf. Figure 2, overview layers can be
automatically generated to sum the pixel values iteratively by local spatial grouping and aggregation
such that a coarse-grained heat map of change detection can be constructed, cf. Figure 3f.

4. Results and Discussion

The various experiments we conducted with the fw-CycleGAN as a generator for OSM rasterized
map tiles led to many qualitative observations worth sharing in the following. Moreover, it motivated
part of our upcoming research activity to advance map extraction from aerial imagery from
the perspective of change detection. In particular, more quantitative studies were required to guide
successive improvement of model accuracy. Moreover, we aimed at implementing distributed training
schemes [80,81] on the IBM PAIRS platform to utilize the heterogeneous and large amount of vertical
aerial imagery available globally. We targeted to go beyond the data volume of benchmarks such
as SpaceNet. This provides opportunities for leveraging, e.g., Bing [82] satellite imagery provided
as the background of today’s OSM online data editor [2] to guide OSM mappers with labeling.

4.1. Building Detection for OSM House Label Addition

As detailed in Section 3, our fw-CycleGAN was capable of translating NAIP imagery into
OSM-style raster maps from which features such as houses and roads could be extracted. Referring
to Figure 4, we employed this capability to infer a coarse-grained heat map that might help OSM
mappers identify regions where labeling efforts should be intensified. Given the limited capacity of
volunteers, cf. Equation (1), such information should help to plan OSM dataset updates efficiently, or
at least provide an estimate of the work ahead, which can be tracked over time.
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illustration-relevant OSM raster tile map color encodings:
bare land building road street main street throughway highway grassland vegetation water

Figure 4. OSM change detection heat map for buildings. The plot depicts a residential area in
the southwest suburbs of Dallas. The upper plot shows the map inferred by the trained fw-CycleGAN;
the plot in the middle hosts the OSM map tiles without text; and the lower strip illustrates the RGB
representation of NAIP imagery overlayed by the inferred heat map (cf Figure 3f) of change detection
for buildings—a key result of this work. Red labels Ia, Ib, II, and III in the middle panel serve
as guidance for the eyes for the discussion in the main text. We vertically aligned three plots of the same
spatial extent.

In the following, we focus on the three distinctive areas in Section 3 marked by red roman
capital letters:

I Given the OSM map tiles, it is apparent that in the middle of the figure, Region b has residential
house labels, while Region a has not yet been labeled by OSM mappers. Given NAIP data from
2016, the fw-CycleGAN is capable of identifying homes in Region a such that the technique
presented in Figure 3 revealed a heat map with an indicative signal. Spurious magnitudes in
Region b stemmed from imprecise georeferencing of buildings in the OSM map, as well as
the vegetation cover above rooftops in the aerial NAIP imagery.
Referring back to Listing 1, we had to allow for small color value variation with magnitude
2·1=2 regarding the RGB feature color for buildings in the rasterized OSM map M. Thus,
our approach became tolerant to minor perturbations in the map background other than bare
land ((R,G,B)=(242,239,233), cf. sandy color in Region a) such as the grayish background in
Region b needs to be accounted for. Similarly, a wider color-tolerance range of 2·9=18 was set for
the generated map M̂, which was noisier. Moreover, as we will discuss in Figure 5, we observed
that the fw-CycleGAN tried to interpolate colors smoothly based on the feature’s context.

II fw-CycleGAN correctly identified roads and paths in areas where OSM had simply a
park/recreational area marker. However, for the heat map defined by Listing 1, we restricted
the analysis of the generated map M̂ to houses only—which was why the change in the road
network in this part of the image was not reflected by the heat map.

III This section of the image demonstrated the limits of our current approach. In the generated
map, colors were fluctuating wildly, while patches of land were marked as bodies of water
(blue) or forestry (green). Further investigation is required if these artifacts were the result of
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idiosyncratic features in the map scarcely represented in the training dataset. We are planning
to train on significantly larger datasets to answer this question.
Another challenge of our current approach was exhibited by more extensive bodies of
water. Though not present in Figure 4, we noticed the vertical aerial image-to-map ANN
of the fw-CycleGAN to generate complex compositions of patches in such areas. Nevertheless,
the heat map generated by the procedure outlined in Section 3.2 did not develop a pronounced
signal that could potentially mislead OSM mappers. Thus, there were no false alarms due to
these artifacts; regardless, an area to be labeled could be potentially missed in this way.

4.2. Change of Road Hierarchy from Color Interpolation

We turn our focus to road networks now. In contrast to buildings, streets have a hierarchical
structure in OSM. The OSM map tile generator code assigns various colors to roads based on their
position in this hierarchy. Figure 5, center plot, prominently illustrates the scenario for a motorway
junction with exits to local streets in blue, green, yellow, orange, and white.

illustration-relevant OSM raster tile map color encodings:
bare land building road street main street throughway highway grassland vegetation water

Figure 5. Road hierarchy change detection from OSM color encoding. The figure shows a highway
junction with exits located north of the residential area discussed in Figure 4. The upper panel shows
the map inferred from the trained fw-CycleGAN; the plot in the middle hosts the OSM map tiles
without text; and the lower strip shows the NAIP imagery.

Let us elaborate on this kind of “change detection” concerning color interpolation of OSM
sub-features labeled by different RGB values of the corresponding pixelated OSM map tiles:

I We begin by focusing on the circular highway exits. As apparent from the illustration,
the fw-CycleGAN attempted to interpolate gradually from a major highway to a local street
instead of assigning a discontinuous boundary.

II For our experiments, the feature weighting of the CycleGAN’s consistency loss was restricted
to roads and buildings. Based on visual inspection of our training dataset of cities in Texas,
we observed that rooftops (in particular, those of commercial buildings) and roads could
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share a similar sandy to grayish color tone. This might be the root cause why on inference,
the typical brown color of OSM house labels became mixed into the road network, as clearly
visible in Region c. Indeed, Regions a and b seemed to support such a hypothesis. More
specifically, roads leading into a flat, extended, sandy parking lot area (as in Region a) might
be misinterpreted as flat rooftops of, e.g., a shopping mall or depot, as in Region IIIa and IIId.

III In general, the context seemed to play a crucial role for inference: Where Regions a to d
met, sharp transitions in color patches were visible. The generated map was obtained from
stitching 512 × 512 pixel image mosaics without overlap. The interpretation of edge regions
was impacted by information displayed southwest, northwest, northeast, and southeast of
it. Variations could lead to a substantially different interpretation. Without proof, it might be
possible that the natural scene southwest of Region d induced the blueish (water body) tone on
the one hand, while, in contrast, the urban scene northeast of Region a triggered the alternating
brown (building) and white (local road) inpainting on the other hand.

IV Finally, Regions a and b provided a hallmark of our feature-weighting procedure. Although
the NAIP imagery contained extended regions of vegetation, the fw-CycleGAN inferred bare
ground.

The above considerations call for a deeper, more quantitative understanding of the CycleGAN
architectures when it is being utilized as a translator from vertical aerial imagery to maps. Training on
bigger sets of data might shed light on whether or not more diverse scenes help the network to refine
scene understanding. However, there is conceptual-, network-, and training design-relevant questions
as well. More studies along the lines of [67] are needed for a clear understanding of the inference of
CycleGAN-type architectures for robust computational pipelines in practice.

5. Conclusions and Perspectives

In summary, this work highlighted the OSM label generation by image-to-image translation of
vertical aerial photographs into rasterized OSM map tiles through deep neural networks. Table 1
presented quantitative measures of accuracy with respect to building detection for two different ANN
architectures. First, transferring a trained ANN model from one geographic area to another impacted
the overall accuracy of the detection. Secondly, manual inspection revealed that the overall accuracy
of the model could be skewed by incomplete OSM labeling. Based on this insight, in another recent
work, we developed an iterative scheme to retrain the ANN given its prediction from previous training
runs [10].

Moreover, we elaborated on how to leverage the big geo-spatial data platform IBM PAIRS to
generate heat maps that bear the potential of drawing OSM mapper’s attention to regions that
might miss sufficient labeling. We demonstrated and qualitatively discussed the approach for
building (change) detection and shared insight on how color-encoded road hierarchies (local road vs.
highway) could highlight a change in road type employing the fw-CycleGAN for the vertical aerial
imagery-to-map translation task.

Our work intended to serve as an interdisciplinary contribution to stimulate further research in
the area of artificial intelligence (AI) for OSM data generation. Naturally, its success depended on
the availability of free, high-resolution vertical aerial imagery. Although extrapolating the trajectory of
spatial resolutions of globally available satellite imagery indicated that the OSM community might
have to wait until the 2040s for this approach, governmental programs such as NAIP might enable it
on a country-by-country basis already.

As a next step, it will be useful to test the viability of our methodology on medium resolution
satellite imagery such as those from the Sentinel-2 mission. Furthermore, our approach of
image-to-image translation is not limited to the RGB channels of vertical aerial imagery. Part of
our future research agenda is to exploit LiDAR measurement as another source for high-resolution
information on the centimeter scale from which false-RGB channels of various elevation models can be
constructed for map generation by the fw-CycleGAN.
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6. Patents

A U.S. patent on the feature-weighted training methodology of segmenting satellite imagery with
the fw-CycleGAN has been submitted [83]. A distantly related patent that identifies and delineates
vector data for (agricultural) land use is [84]. The IBM PAIRS technology is, e.g., protected by patent [85].
Among others, the patent application [86] details the overview layer generation that was used here
to generate the change detection heat maps. Other patents exist protecting the IBM PAIRS platform.
They are not directly related to this work.
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Abbreviations

The following abbreviations are used in this manuscript:

AI artificial intelligence
ANN artificial neural network
CNN convolutional neural network
CONUS Contiguous United States
CRS coordinate reference system
Deg unit of degrees to measure angles
ED encoder-decoder
ESA European Space Agency
FN false negative
FP false positive
fw feature-weighted
GAN generative adversarial network
GPS Global Positioning System
IoU intersection over union
LiDAR light detection and ranging
M, M̂ OSM rasterized map

ground truth, ANN generated version
NAIP National Agriculture Imagery Product
NASA National Aeronautics and

Space Administration
OSM OpenStreetMap
PAIRS Physical Analytics Integrated Repository

and Services
Radar radio detection and ranging
RGB red green blue
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S, Ŝ vertical aerial imagery
ground truth, ANN generated version

TN true negative
TP true positive
TX Texas
UDF User-Defined Function
USDA U.S. Department of Agriculture
USGS U.S. Geological Survey
{T,G,M,K}B {Tera,Giga,Mega,Kilo}bytes
XML Extensible Markup Language

Appendix A. Primer on ANNs from the Perspective of Our Work

As alluded to in the main text, this final section intends to introduce the OSM community
informally to the aspects of the CycleGAN ANN architecture to provide a holistic picture of our
technical work as presented in this paper.

Initially, let us assume we want to model a complex functional dependency M̂ = G(S). In cases
where S represents a geo-referenced RGB aerial image, we have components Sijk ∈ [0, 255], the range
of valid byte-type integer values, with i and j the pixel (integer) indices for longitude and latitude
coordinates and k being reserved for indexing the color channels. Defining M as a corresponding
rasterized OSM map with elements Mijk, G intends to generate an approximation M̂ close to M based
on its input S. One way of measuring the deviation of M and M̂ is to determine the pixel-wise
quadratic deviation:

L(M, M̂) = (M− M̂)2 ∼ ∑
i,j,k

(Mijk − M̂ijk)
2 (A1)

formally referred to as the loss function. Given a set of training data {(S, M)}, L’s minimization
numerically drives the optimization process by adjusting G’s parameters, also known as supervised
model training [89].

In the AI domain, G is represented by an ANN. One sub-class of networks is convolutional neural
networks (CNNs). In computer vision, typically, CNNs iteratively decrease the input S’s resolution
in dimensions i, j and increase it in k by two actions: first, slide multiple (e.g., k′ = 1, 2, . . . , 6),
parametrized kernels K(n)

i′ j′k′ with size of order of a couple of pixels (e.g., i′, j′ = 1, 2, 3) over the input to
convolve the image pixels according to the linear function:

S(1)
ijk·k′ = ∑

i′ ,j′
Ki′ j′k′Si+i′ j+j′k . (A2)

Subsequently, applying an aggregation function A to neighboring pixels of S(1) accomplishes
the reduction in size for dimensions labeled by i, j. A popular choice is to non-linearly aggregate
by picking the maximum value, referred to as max-pooling. Most often, given A(S(1)), one more
non-linearity σ : R→ R is separately applied to each pixel:

Ŝ(1)
ijk = σ

[
A
(

S(1)
)

ijk

]
(A3)

such that the dimensions of A(S(1)) and Ŝ(1) are the same. There exists a wide variety of choices for
σ—all having their own benefits and drawbacks [90]. Very roughly speaking, σ suppresses its input
x ∈ R below a characteristic value σ0 > x and amplifies above, σ0 ≤ x, thus activating the signal x
as output σ(x).

The procedure from S to Ŝ(1) can be iterated N times to end up with image pixels S(N)
ijk with

reduced spatial dimensions i, j = 1 . . . I . 10 and significantly increased feature channel dimension
k� 10. The step from Ŝ(n) to Ŝ(n+1) is associated with the term of a neural network layer, parametrized
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by the kernel weights K(n)
ijk . We may write the overall transformation as Ŝ(N) = eN(S) and reference it

as the CNN encoder. In a similar fashion, we can deconvolve with a CNN decoder to obtain:

M̂ = dN(Ŝ(N)) = dN(eN(S)) . (A4)

Decoding Ŝ(N) to M̂(N) involves a convolution operation such as in Equation (A2) as well.
However, in order to increase the spatial dimensions for i, j again, upsampling M(N) = U(Ŝ(N)) is
applied first. The simplest approach may be to increase the number of pixels by a factor of four
through the replication of each existing pixel in both spatial dimensions labeled by i, j. However,
how do we decrease the number of channels? The multiplication k · k′ in Equation (A2) suggests
the number of channels increases, only. However, nothing prevents us from averaging over k such that
the number of output channels is precisely determined by the number of kernels applied. In practice,
multiple convolutions may get executed with activation σ on top fusing in data from other CNN
layers. Informally speaking, in the case of the U-Net architecture, the channels of M̂(n) get additionally
concatenated with Ŝ(n) in order to constitute the input of deconvolution layer n that generates M̂(n−1).
This leakage of information from different ANN layers is referred to as skip connections, a central
piece for the success of the U-Net. For more details on how encoders and decoders conceptually
differ, Reference [91] provides insight and references. In particular, our U-Net implementation utilizes
transposed convolutional layers for decoding.

Successively reducing the number of channels from deconvolution layer N, N − 1, . . . via n
down to . . . , 2, 1 allows us to end up with an output that matches the dimensions of the OSM map
tile image M such that Equation (A1) can be computed. Variation of the kernel parameters of all
encoding and decoding layers exploits the ANN training procedure in order to minimize L. Of course,
the objective is not simply to optimize the pixelwise distance of a single pair (M̂ = G(S), M), but to
minimize it globally for all available NAIP satellite imagery and correspondingly generated maps vs.
its OSM map tile counterparts.

The function G = dN ◦ eN is what we referred to as the encoder-decoder above. A variant of
it is the variational autoencoder [92]. Instead of directly supplying Ŝ(N) = eN(S) to dN , the output
of the encoder is interpreted as the mean and variance of a Gaussian distribution. Samples of this
distribution are fed into dN , subsequently. Similarly, an ANN transforming uncorrelated random
numbers into a distribution approximated by statistics of given data—such as OSM map tile pixel
values M—is known as a generative adversarial network [93]. For those, speaking on a high level, two
networks, a generator G = dN and a discriminator, which resembles an encoder, D(M) = e(M) ∈ [0, 1],
compete in a minimax game to fool each other in the following manner: Random numbers z fed into G
need to generate fake samples ŷ = G(z) = M̂ such that when shown to D(M̂), its numerical output
value is close to one. In contrast, the objective of D is to have D(M̂) ≈ 0. This task is not trivial to
accomplish for D, since its training optimization function encourages D(M) ≈ 1 for real samples M.
Hence, the more G is able to generate maps M̂ that yield D(M̂) ≈ 1, the better they represent real OSM
raster tiles M.

Finally, setting G = dN ◦ eN instead of simply G = dN and running the GAN game both ways,
i.e., from NAIP imagery to OSM map tiles, and vice versa, two closed cycles can be constructed:

Ŝ = GS(GM(S)) and M̂ = GM(GS(M)) (A5)

resulting in two cycle consistency loss contributions to L:

(Ŝ− S)2 and (M̂−M)2 , (A6)

respectively. The only difference of CycleGAN vs. fw-CycleGAN is a weighting of the summands in
(Ŝ− S)2 according to whether or not the corresponding pixels of M represent a human infrastructure
feature like buildings or roads.



ISPRS Int. J. Geo-Inf. 2020, 9, 427 18 of 22

A key observation: The optimization of these two loss functions does not require the existence
of any (pixel-wise) pairing between training data NAIP imagery S and OSM map tiles M.
More specifically, this fact has been exploited to infer associations as exotic as translating pictures
of faces to pictures of ramen dishes, cf. [12] for example. In a broader sense, the disentanglement of
image pairs for the image-to-image translation allows CycleGAN, and its modification fw-CycleGAN,
to be invariant with respect to OSM data inaccuracies regarding the geospatial referencing. Moreover,
this implies tolerance with respect to spatial areas that lack OSM labels. However, we mention
the ramen-to-face translation to stress that the CycleGAN approach allows for a very wide range
of interpretations, which is the challenging part to be quantitatively addressed in future research.
Furthermore, the parallel training of four networks, namely GS, GM, DS, and DM, which have millions
of adjustable parameters each, is non-trivial from a numerical viewpoint.

In conclusion, let us underline the informal nature of this brief review, which aims at nothing
more but a high-level introduction. For example, in Equation (A2), we dropped the additive bias term
typically available for each output channel. We did not discuss relevant training topics like dropout [94]
and batch normalization [95], among others. Technical details can be presented in a much more
sophisticated fashion. Therefore, the brevity with which the material was covered cannot do justice to
the significant breadth and depth of the research on artificial neural network architectures. Moreover,
proper training of ANNs led to advanced optimization techniques which were discussed in [96,97].
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