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Abstract: Space–time prisms are used to model the uncertainty of space–time locations of moving
objects between (for instance, GPS-measured) sample points. However, not all space–time points in a
prism are equally likely and we propose a simple, formal model for the so-called “visit probability”
of space–time points within prisms. The proposed mathematical framework is based on a binomial
random walk within one- and two-dimensional space–time prisms. Without making any assumptions
on the random walks (we do not impose any distribution nor introduce any bias towards the second
anchor point), we arrive at the conclusion that binomial random walk-based visit probability in
space–time prisms corresponds to a hypergeometric distribution.

Keywords: geographic information science; time geography; space–time prisms; random walk;
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1. Introduction

Due to the discrete nature of moving object data, typically measured by GPS devices at distinct
moments in time, there exists an inherent uncertainty between measured locations. Modelling the
aforementioned uncertainty is necessary for a wide range of applications and space–time prisms
have been extensively investigated as a tool for this purpose. They have been used in studying
accessibility [1–3], human behaviour [4–6], criminal offense patterns [7], as well as for the study of
transportation [8–11]. A space–time prism is the demarcation of all the possible space–time locations
accessible by a moving object between two measured space–time locations (called anchor points),
given a physical constraint on its velocity. The spatial projection of the prism, also called the potential
path area, is an envelope of the spatial whereabouts of the moving object between the measured spatial
locations. Further discussions and mathematical formulations for the various components of time
geography are detailed by Miller [12].

In its basic form, a space–time prism lacks an internal structure, meaning that the space–time
points in a prism are not distinguished and are assigned equal importance. Since there is an infinite
number of velocity bound paths within the prism, we can observe that each point inside a prism
is visited by infinitely many of them (with the exception of some boundary points of the prism).
This observation leads to the conclusion that there is no apriori reason to distinguish between
space–time points inside the prism, unless some further assumption is adopted besides the velocity
bound. On the other hand, some basic trajectory reconstruction methods, the first being linear
interpolation between anchor points [13], assumes that the linear path between the anchor points
is the most likely one among the infinite collection of paths bounded by the prism. Still, in many
applications, such as animal or human movement [14–16], it is obvious and plausible that certain
points in the prism, such as those on a linear interpolation path, should be considered more likely than
points towards the boundary of the prism that require a considerable detour to visit.
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For many applications, it is also desirable to know the likelihood of points in a prism to be visited.
We can take the example of bird migration data from animal ecology [17,18]. Systems like Argos [19]
can only collect the measured data points sparsely to save battery life. While constructing a prism
from such sparse data points might result in a large potential path area, we will be able to answer
certain queries that are prominent in animal ecology. For instance, if the location of a bird colony with
a disease like influenza is known, a relevant query could be the probability of a migrating bird having
been in contact with the diseased bird colony. Other queries in this application concern the probability
of a bird having visited some food sources. Another application is related to the alibi query, where it is
relevant to know with which likelihood a potential suspect could have visited a crime scene or could
have met another suspect [20]. Obviously, the use of technology not only contributes to pursuing the
safety of society. Over-policing using technology in the urban environment has been criticized too.
and raises, for instance, privacy issues. For this type of concerns, we refer to [21].

In the literature, several proposals have been made to assign probability values to space–time
points within a prism, thus providing the prism with an internal structure that expresses the unequal
movement opportunities within the prism. A great deal of progress has been achieved by leveraging
parametric probability distributions as models for the expected interior structure of space–time prisms.

Whereas in the basic model, the value assigned to space–time points is Boolean (possible or
impossible to visit), an improved accessibility metric would enable a better understanding of various
paths and movement opportunities available for the moving object within the prism [22–26].

The notion of probability distributions in space–time prisms for movement in the plane,
has become known as “visit probability” and has been studied by various researchers. Winter and
Yin [24] model visit probability in a prism using the theory of random walks and they arrive at the
result that the internal distribution is of a bivariate multinomial nature at any given time. Their work
was initially based on undirected random walks, which was extended later to include the directional
aspect by introducing a bias to the destination anchor in their model. The distribution they obtained
from the undirected model was then translated to establish that the distribution is at its peak around
the axis connecting the first and the second anchor point, that is, at the shortest path. Further,
they extend the model from the discrete to continuous space by applying the continuous analog of the
bivariate multinomial distribution, namely the bivariate normal distribution. In order to maintain the
constraints on movement as determined by the prism parameters, they adjust the standard deviation
of the distribution to fit the directional bias towards the second anchor point. They also clip the
distribution along the prism boundaries.

The work of Winter and Yin is extended by Song and Miller [26] with separate methods to simulate
the visit probability in prisms for both the discrete and continuous case. Like Winter and Yin, they used
a random walk model for the discrete case, but they modify it to include various other parameters
such as the directional element (to account for the second anchor point), the maximum velocity and
the remaining time budget (by actively revising the random walk matrix after each time step). In the
continuous case, they model a framework on the Brownian bridge approach. Brownian motion is a
continuous stochastic process which was initially designed to model the movement of infinitely-often
colliding atomic particles. Whereas, Brownian bridges are a variant of Brownian motion used to
model movement between two locations, and are used to evaluate stock prices as well as patterns of
migration in the animal ecosystem [27]. As Brownian bridges in two dimensions effectively produce a
probability distribution of a bivariate normal nature [28], Song and Miller conclude visit probability to
be of the same nature. While the result reinforces the work done by Winter and Yin, it is not based on
many of the assumptions made in the earlier work. Song and Miller base their work on an established
movement theory. In order to ensure that the Brownian bridges stay within the limits of the prism
boundary, they use the notion of truncated distributions, a conceptual method to restrict the domain
of a parent distribution [29]. They use a variable called the “dispersion parameter” to capture the
variations in the movement ability of the object within the prism. The value of the dispersion parameter
can be based on real-life movement data. Song and Miller’s simulations of visit probability produce
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results similar to the intuitive expectations where the distribution is the highest along the axis of the
prism. Some further approaches to visit probability, less relevant to the present paper, are discussed in
the related work section.

This paper explores the approaches started in Winter and Yin [24] and in Song and Miller [26] in
more detail. We propose a mathematical framework for random walk-based visit probability within
one- and two-dimensional space–time prisms. In fact, like these authors, we consider movement in a
prism that is constrained to what Burns calls fine-grid networks (see pages 33–34 of [30]). Our random
walk, at each point, has the (random) choice between two directions: going left on the grid or going
right on the grid. However, unlike these authors, we make no assumptions on the random walks,
we impose no distributions, we have no truncations and we do not introduce a bias towards the second
anchor point. Simply by defining the random walk on a grid and making no further assumptions,
we arrive at a more natural conclusion: random walk-based visit probability in space–time prisms
corresponds to a hypergeometric distribution. This conclusion reflects what is really going on in this
situation, when no distributions are a priori imposed on the walks in the prism. We then further
explore this hypergeometric distribution and investigate, for instance, what happens when the grid
is refined. This is relevant to the problem of how to extend this distribution from the grid network
to the complete prism. For the complete one-dimensional, we can obtain a distribution by extending
the result for grids to the complete prism by using barycentric coordinates. This results in a linear
interpolation of the grid case. This approach gives a more continuous result, as opposed to the
voxel-based approach of, for example, References [31,32] and of the random-walk part of [24,26].
In the one-dimensional case, fine-grid networks naturally fill the space–time prism. This is not the case
for the two-dimensional case, where the fine-grid network occupies a volume of a pyramidal-shaped
prism within the classical space–time prism. We conclude the paper by exploring example applications
where our approach could be usefully applied. These applications include movement modelling in
space–time space applied to human and animal movement and interaction, trajectory data cleaning
and analysis and trajectory data querying.

Organisation: This paper is organized as follows. After some introductory definitions in Section 3,
we define and explore our random walk model for one-dimensional prisms in Section 4. In Section 5,
we deal with the case of movement in a two-dimensional space. We discuss example application areas
in Section 6. Our conclusion is given in Section 7.

2. Related Work

The notion of space–time prisms was introduced in the early 1970s in the area of “time geography”
by Hägerstrand [33] to model the accessibility of locations, also with respect to time. In the 1990s,
the space–time prism model entered into the GIS community with works by Janelle and Goodchild
and Miller [34,35], where it was mainly used as a method for analyzing the potential activity of people
in some environment (a well-known reference in this context is [35]). Later on, this model became
popular in the area of spatio-temporal and moving object databases due to the work by Pfoser and
Jensen [36]. In this field, it was further studied by Egenhofer and Hornsby [37,38].

Classical space–time prisms, as introduced by Hägerstrand, assume a local, albeit uniform travel
velocity in an isotropic space such as the two-dimensional plane. This assumption ignores the fact
that the travel possibilities of an individual are often confined to some type of transportation network
which has link-dependent travel velocities. This insight has lead to the study of space–time prisms on
transportation networks [4,8,35,39].

Many analytical and computational tools for describing prisms in planar space and on
transportation networks have been developed [4,6,12,35,40]. Combined with a strong theoretical
foundation [9,41], these tools have led to a wide range of applications that use space–time prisms
on their vast amounts of trajectory (sample) data. These applications include transportation
planning [42], social research and crime analysis [7,43] and also epidemiological and environmental
risk assessment [44–46].
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In many contexts, prisms are both used to measure an individual’s accessibility to a certain
environment, as well as to model the uncertainty about the location of moving objects between
known locations. Intersections between prisms express the potential for human contact [47] and their
disjointness can be used as an alibi, for instance, in a criminal investigation [20,37].

Concerning the topic of assigning probabilities to space–time points in a prism, we mention the
following works. An approach is to model the probable movement space using various methods
to available empirical data, such as the “surface generation methods”. Xie and Yan [22] describe
the application of the “kernel density estimation” method to model estimation of traffic accidents
in networked space. Downs [25] extends the approach to introduce kernel density estimation to
time-geography by adding the space–time prism constraints to the model, which she named the
“time-geographic density estimation” method. All sampled events for a kernel density estimation are
selected randomly or periodically from a set of sequenced control points in between the origin and the
destination. The maximum velocity and time required for travel are used to calculate the bandwidth of
the kernel density estimation, while the potential path area as defined by the origin and the destination
replaces the kernel function. The method can be used to derive a probability metric for the moving
objects spatial locations at various times in planar space–time prisms. Downs et al. [32] further propose
the “Inverse Distance Weighting” to realize the interior of prisms. They introduce the “Voxel-based”
probabilistic space–time prisms for animal movement and habitat use analysis in their work.

Long et al. [48] use skew-normal distributions as a heuristic to model movement probabilities
within space–time prisms, applying their method to analyze wildlife, cyclist and athlete movement
data. Later on, Long [49] compares methods for kinematic interpolation of movement data based
on Bézier and Catmull–Rom curves with classic interpolation methods for correlated random walks,
caribou, cyclist, hurricane, and athlete tracking data. These authors conclude that kinematic methods
are superior for fast-moving objects. More recently, studies on the internal structure of space–time
prisms have considered behavioral or contextual information [15]. Loraamm further expands on this
by considering behavioral observations as the primary parameter for the study of movement in her
work on “Agent-Based Simulation” [50].

In broad terms, these approaches to introduce probability in prisms can be classified into two
categories: the “quantitative” approach and the “model” approach. The quantitative approach is
data-driven and uses empirical or historical data to build a visiting likelihood, often using some
machine learning or data mining techniques. In this paper, we follow the model approach in which a
mathematical framework or model is built, based on some model of or approach to movement.

3. Definitions and Preliminaries

We denote the underlying space in which we consider the movement of objects to take place by
S. In this paper, S is taken to be the real line R or the real plane R2. The spatio-temporal space in
which movement takes place is then denoted by S× R, in which R is the temporal component. We
use p, q, r, . . . to refer to spatial points (in S) and t to refer to the time coordinate (always, with or
without indices). We use x, y, . . . to refer to spatial coordinates of spatial points. For example, for a
space–time point (p, t) ∈ R2 × R, we have (p, t) = (x, y, t) if (x, y) are the spatial coordinates of p in
R2. We assume that a distance function d is defined on S, which we take to be the standard Euclidean
distance function for R and R2. A natural extension of movement on the line R is movement on a
transportation (or road) networks in R2, in which case, the distance function can be derived from the
shortest-path distance on road networks [8]. We are now ready to define the notion of space–time
prism for movement in the space S.

Definition 1. Let (p0, t0), (p1, t1) ∈ S× R be two space–time points with t0 < t1 and let vmax ∈ R with
vmax ≥ 0 be a bound on the speed of a moving object. The space–time prism P(p0, t0, p1, t1, vmax) is defined
to be the set of all space–time points (p, t) that are in the intersection of the future cone (or bottom cone)
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C−(p0, t0, vmax) := {(p, t) ∈ S× R | d(p0, p) ≤ (t− t0) · vmax ∧ t0 ≤ t} and the past cone (or top cone)
C+(p1, t1, vmax) := {(p, t) ∈ S× R | d(p1, p) ≤ (t1 − t) · vmax ∧ t ≤ t1}.

The space–time points (p0, t0) and (p1, t1) are called the anchor points of the space–time prism
P(p0, t0, p1, t1, vmax).

For example, for movement in the plane R2, the prism P(p0, t0, p1, t1, vmax) with anchor points
(p0, t0) = (x0, y0, t0) and (p1, t1) = (x1, y1, t1) consists of the points (x, y, t) ∈ R2 × R that satisfy the
inequality constraints (x− x0)

2 + (y− y0)
2 ≤ (t− t0)

2 · v2
max and (x− x1)

2 + (y− y1)
2 ≤ (t1 − t)2 ·

v2
max, together with the temporal constraint t0 ≤ t ≤ t1. Space–time points that satisfy the first of these

inequalities are within the future cone since they are closer than the elapsed time times the maximal
velocity the to the first anchor point, meaning that they can be reached within the available time.
Similarly, the space–time points satisfying the second inequality are such that the remaining time is
enough to reach the second anchor point. They are therefore in the past cone. In this paper, we assume
that a space–time prism is non-empty, which corresponds to the condition d(p0, p1) ≤ (t1 − t0) · vmax,
expressing that the second anchor points can be reached from the first within the available time
(given the speed limitation).

For a description of many basic properties of prisms, we refer to [9,41]. Here, we only mention
that the topological border of the C−(p0, t0, vmax) intersects with the topological border of the cone
C+(p1, t1, vmax) in what we call the rim of the prism P(p0, t0, p1, t1, vmax). Figure 1 gives illustrations
of one- and two dimensional prisms and their rims. For the one-dimensional case, the rim points
(x`, t`) = ( (x1+x0)−vmax(t1−t0)

2 , vmax(t1+t0)−(x1−x0)
2v ) and (xr, tr) = ( (x1+x0)+vmax(t1−t0)

2 , vmax(t1+t0)−(x0−x1)
2v )

are easily determined.

t

(x0, y0, t0)

x

y

(x1, y1, t1)

(x0, y0, t0)

(x1, y1, t1)

x1x0

t0

t1
t

x

(a) (b)

(xr, tr)

(x`, t`)

(x0, y0)
(x1, y1)

Figure 1. On the left (a), a one-dimensional prism P(x0, t0, x1, t1, vmax) with its rim points in green
is shown. On the right (b), a space–time prism P(x0, y0, t0, x1, y1, t1, vmax) (in green) is shown for
movement in R2. This prism is the intersection of the past cone C+(x1, y1, t1, vmax) (in red) and the
future cone C−(x0, y0, t0, vmax) (in blue). The rim ρP(x0, y0, t0, x1, y1, t1, vmax) is the tilted green ellipse.

4. Random Walk-Based Visit Probability in a One-Dimensional Space–Time Prism

In this section, we describe random walks in a fine-grid network in a one-dimensional space–time
prism and the visit probability they induce on the prism. It is convenient to describe such a random
walk in a local coordinate system that fits the grid in the prism in which the random walk takes
place. In the treatment of the one-dimensional case, we assume that x0 ≤ x1. The case x0 ≥ x1 is
completely analogous.

4.1. Random Walks in the Future Cone and Their Local Coordinate System

Given a one-dimensional prims P(x0, t0, x1, t1, vmax), we first describe, for any non-zero natural
number `, a finite process which generates a random walk that starts at the anchor point (x0, t0) and
arrives, after ` steps, at the time level t1 of the second anchor point, while remaining within the bottom
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cone C−(x0, t0, vmax) of the prism. For a non-zero natural number `, which denotes the number of steps
of the random walk, we call h` =

t1−t0
` the corresponding step size (or time granularity) of this walk.

The random walk process of ` steps starts at level 0 in the anchor point (x0, t0). The i-th step of
its ` steps brings the moving object, performing the random walk, from level i− 1 to level i. At each
level of the process, the moving object starts at some previously reached space–time location (x, t)
and makes, randomly (with equal probability 1

2 ), one of the following two moves in the future cone
C−(x0, t0, vmax) of the prims P(x0, t0, x1, t1, vmax):

(1) from (x, t) to (x− h` · vmax, t + h`) ; or
(2) from (x, t) to (x + h` · vmax, t + h`).

The two possible steps of the random walk process are illustrated in Figure 2 and they correspond,
after the toss of a coin, to moving from x to the left, respectively to the right, at maximal speed vmax for
a time duration h`. In between levels, we assume these random walk steps to follow linear paths at a
maximal speed between these points.

(x, t)

(x � h` · vmax, t + h`) (x + h` · vmax, t + h`)

(a, b)

(a � 1, b + 1) (a + 1, b + 1)

Figure 2. The two possible moves in a random walk. The coordinates in the local coordinate system
are shown in red, while the Cartesian coordinates are shown in black.

The above-described process arrives, after ` steps, at the time level t1 but it is not guaranteed
that it can reach the spatial location x1 of the second anchor point at that moment. For example,
if (x0, t0) = (0, 0), (x1, t1) = (2, 8) and vmax = 1 (Figure 3 can be used as an illustration), then there
is no random walk of ` = 5 steps from the first to the second anchor point. Indeed, a random walk
would take steps of size 8

5 in time and in distance. If it would take l steps to the left and r steps to
the right to reach the second anchor point, we would have l + r = ` = 5 and 8

5 r− 8
5 l = 2. However,

these equations do not have a solution for l and r in the natural numbers. Furthermore, the right rim
point of this prism has coordinates (5, 5) and is also not reachable in five stes or fewer from the first
anchor point. On the other hand, if we would take ` = 8 steps, then the second anchor point can be
reached by taking 5 steps to the right (arriving in the right rim point), followed by 3 steps to the left,
for example.

The ability of a random walk process to reach the second anchor point and, to a lesser extent,
the two rim points, is a desirable property, however. The following proposition shows how an
appropriate number of levels (and corresponding step size) can be chosen to achieve this. This property
only depends on the assumption that vmax and the coordinates of the anchor points are rational
numbers. Since the anchor points (x0, t0) and (x1, t1) are the result of measurements (by GPS,
for example), this is not unreasonable to assume. For practical purposes, vmax can also be assumed to
be a rational number. The proof of this property contains a method to determine a “minimal” number
of levels.

Proposition 1. For rational vmax and anchor points (x0, t0) and (x1, t1) with rational coordinates, we can
determine, from these rational numbers, a “minimal” number of levels ¯̀ such that a random walk in the bottom
cone C−(x0, t0, vmax) of the prism P(x0, t0, x1, t1, vmax) can reach the second anchor point after ¯̀ steps and
such that also the two rim points can be visited by random walks of at most ¯̀ steps.

Proof. We assume that vmax and the coordinates of the anchor points (x0, t0) and (x1, t1) are rational
numbers. We would like the random walk process, starting in the first anchor point, to be able to reach
the second anchor point and the two rim points of the prism P(x0, t0, x1, t1, vmax). Let ¯̀ be a number of
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levels (with corresponding step size h¯̀) that we are looking for. Let dr and dl be the number of steps
needed to reach the right rim point and the left rim point in a straight motion, respectively. Let d̄ be
the “displacement” of the second anchor point, as given by (1), below.

Being able to reach the second anchor point and the two rim points after a finite number of steps
in some random walk process corresponds to the existence of natural numbers ¯̀, dr and dl and an
integer d̄ such that the following six equalities hold:

x1 − x0 = d̄ · h¯̀ · vmax (1)
t1 − t0 = ¯̀ · h¯̀ (2)

x0 − x1+x0
2 − vmax ·(t1−t0)

2 = dl · h¯̀ · vmax (3)
(t1+t0)

2 − x1−x0
2·vmax

− t0 = dl · h¯̀ (4)
x1+x0

2 + vmax ·(t1−t0)
2 − x0 = dr · h¯̀ · vmax (5)

(t1+t0)
2 + x1−x0

2·vmax
− t0 = dr · h¯̀ (6)

Lines (1–2) concern the second anchor point (and (2) is trivially satisfied); lines (3–4) concern
the left rim point; and lines (5–6) concern the right rim point. For the left and right rim point, it is
important to remark that they can only be reached in one way, namely by moving at maximal speed to
the left or the right, respectively, away from x0.

From (1), we obtain x1−x0
vmax ·(t1−t0)

= d̄
¯̀ . We remark that we assume that x1 − x0 ≤ vmax · (t1 − t0),

which corresponds to the prism P(x0, t0, x1, t1, vmax) being non-empty. We write the positive rational
number x1−x0

vmax ·(t1−t0)
as a division free fraction A

B and take ¯̀ = 2 · B and d̄ = 2 · A. Therefore, we have
A ≤ B or d̄ ≤ ¯̀.

From (3–4), it easily follows that we can take dl = B− A, which is a natural number. From (5–6),
it easily follows that we can take dr = B + A, which is also a natural number.

So, it follows that by writing x1−x0
vmax ·(t1−t0)

as a division free fraction A
B we can find the minimal

number of levels ¯̀ = 2 · B that a random walk can take to fit the prism boundaries.

The proof of the above proposition gives a “minimum” number of levels ¯̀ and an associated
“displacement”d̄ = x1−x0

h¯̀·vmax
of the second anchor point (corresponding to a shift in the spatial dimension).

Obviously, any multiple of the values ¯̀ and d̄ can also be used for a suitable random walk in the prism.
From now on we will work with a number of levels ` and a displacement d that are multiples of
¯̀ and d̄, that is, ` = n · ¯̀ and d = n · d̄ for some n ∈ N0. Thus, Proposition 1 gives rise to a family
(parameterized by `) of fine-grid networks (in the terminology of Burns [30]), on which the the random
walk can take place.

Based on the above observations, we can define a local (discrete) grid network and corresponding
coordinate system on the bottom cone C−(x0, t0, vmax) (and thus on the prism P(x0, t0, x1, t1, vmax)),
which determine the space–time points in which steps in a random walk from (x0, t0) to (x1, t1) start
or end. The local coordinate system assigns the local coordinates (0, 0) to the first anchor point (x0, t0)

and the numbering of further space–time points in a random walk follows the rules: if a grid point
with Cartesian coordinates (x, t) has local coordinates (a, b), then (x− h` · vmax, t + h`) and (x + h` ·
vmax, t + h`) have local coorinates (a− 1, b + 1) and (a + 1, b + 1), respectively. Local coordinates are
illustrated in Figure 2, in red. If the second anchor point (x1, t1) has local coordinates (d, `), we speak
about a (d, `)-grid (or `-grid, since d can be derived from `) on the prism, when we limit the grid in the
future cone to the prism P(x0, t0, x1, t1, vmax).

This means that, given some local coordinates (a, b) in a (d, `)-grid, the corresponding Cartesian
coordinates are (x0 + a · h` · vmax, t0 + b · h`). We refer to the first coordinate of the local coordinate
system (a, b) as the displacement a and to the second coordinate as the level b. It is important to remark
that in a (d, `)-grid the local coordinates (a, b) are always such that a + b is even. The value a varies
from −b to b in steps of 2 at level b in the bottom cone of the prism. If we call the value rb(a) = a+b

2
the rank of a (at level b), for grid points (a, b), we can equivalently say that the rank varies from 0 to b
in steps of 1 at level b.



ISPRS Int. J. Geo-Inf. 2020, 9, 555 8 of 23

The grid and local coordinate system are illustrated in Figure 3 with an example in which the
number of levels ` = 8, d = 2, dl = 3 and dr = 5. The anchor points (x0, t0) and (x1, t1) have
local coordinates (0, 0) and (d, `) = (2, 8), respectively. The rim points (x`, t`) and (xr, tr) have
local coordinates (dl ,−dl) = (− `−d

2 , `−d
2 ) = (−3, 3) and (dr, dr) = ( `+d

2 , `+d
2 ) = (5, 5), respectively.

Figure 3 also shows an example of a random walk path from the first to the second anchor point where
the coin tosses produced the path given by the sequence right-left-left-right-right-right-left-right.

x1x0

t0

t1

t

x

(dl,�dl)

(0, 0)

(d, `)

(dr, dr)

(a, b)

Figure 3. The random walk grid network on the bottom cone with the one-dimensional prism in green.
Random walks move from level to level between the black points following the grey line segments.
The coordinates in red are in the local coordinate system. The blue arrows give an example random
walk path from the first to the second anchor point.

We conclude this section by remarking that a random walk from the first to the second anchor
point of the prism P(x0, t0, x1, t1, vmax) can be finitely represented, in the local coordinate system, as a
sequence 〈(0, 0), (a1, 1), (a2, 2), . . . , (d, `)〉 of grid points, with ai+1 = ai ± 1. When a random walk,
after ` steps, arrives at the second anchor point (x1, t1), we can then observe that the space–time path
resulting from such a random walk (after linear interpolation between the consecutive visited grid
points) respects the maximal velocity constraint vmax and is therefore a trajectory within the prism
P(x0, t0, x1, t1, vmax) that connects the anchor points. For a precise definition of trajectories in a prism
and their velocity, we refer to [51] (with speed bound vmax).

4.2. Random Walk Visit Probability in Points of a Fine-Grid Network

In this section, the goal is to establish the visit probability in a grid point with local coordinates
(a, b) in a (d, `)-grid on a one-dimensional prism P(x0, t0, x1, t1, vmax). The visit probability of such a
grid point is the number of random walks (following the principles, described in Section 4.1) that start
at the first anchor point of the prism P(x0, t0, x1, t1, vmax), that pass through the grid point (a, b),
and finish in the second anchor point divided by the total number of random walks from the first to
the second anchor point.

We denote the number of random walks that start in the first anchor point and arrive at the grid
point with local coordinates (a, b) by # ↑paths (a, b). At level 0, we agree that there is one random walk
(of length 0) that arrives at the first anchor point. At level 1, each of the two grid points has one path
arriving there. These correspond to the two choices (left or right) that can be made in the first anchor
point. This means that we have # ↑paths (0, 0) = 1 and # ↑paths (−1, 1) = # ↑paths (1, 1) = 1.

For each point, with local coordinates (a, b), at a higher level, a random walk arriving there
arrives either from (a− 1, b− 1) or from (a + 1, b− 1), provided that the latter points are in the bottom
cone. Therefore, we have

# ↑paths (a, b) = # ↑paths (a− 1, b− 1) + # ↑paths (a + 1, b− 1),
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if we consider the terms in this sum that correspond to points outside the bottom cone to be 0. Following
the above observations, we recognise that the values # ↑paths (a, b) can be read from the well-known
binomial triangle (or Pascal’s triangle), since ( b

rb(a)) = ( b
rb−1(a−1)) + ( b

rb−1(a+1)) and we obtain

# ↑paths (a, b) =
(

b
rb(a)

)
=

(
b

a+b
2

)
,

for a, b integers with 0 ≤ b, −b ≤ a ≤ b and a + b even. In terms of generating functions, we can
say that # ↑paths (a, b) is the coefficient of xrb(a) in the expansion of the (rational) polynomial (x + 1

x )
b

(the proof is straightforward). In this polynomial, x expresses a move to the right and 1
x corresponds

to a move to the left. Figure 4 gives an illustration of the values # ↑paths (a, b) for level 0 to level 6 on a
random walk grid.

1

1

1

1

1

1

1

1

1

1

1

1

1

2

4

33

4

6

5

6

6

510 10

1515

0

1

2

3

4

5

6
20

level (b)

displacement (a) 0 21 3 4 5 6123456 ������

Figure 4. The local grid on the bottom cone with the numbers # ↑paths (a, b) in red.

After having established the number # ↑paths (a, b) of random walks that arrive at (a, b), we need
to establish the number of continuations of such walks from (a, b) to the second anchor point (d, `).
Hereto, it is sufficient to determine the number of “time-reversed” random walks in the future cone
that start from the second anchor point and that, moving back in time, arrive in (a, b). We denote
the number of such downward random walks by # ↓paths (a, b). Each such downward random walk,
when time-reversed is an upward random walk from the point (a, b) to the second anchor point (d, `).

More formally, we can use the mapping (x, t) 7→ (x1 + x0− x, t1 + t0− t) (in Cartesian coordinates)
or the mapping (a, b) 7→ (d − a, ` − b) (in local coordinates) to map the top cone of the prism
P(x0, t0, x1, t1, vmax) onto its bottom cone. When we then apply the earlier method for the bottom cone,
we easily verify that # ↓paths (a, b) = # ↑paths (d − a, `− b). The number of paths that come down from
the second anchor point and that pass through (a, b) in the top cone therefore is

# ↓paths (a, b) = # ↑paths (d − a, `− b) =
(

`− b
r`−b(d− a)

)
=

(
`− b

`+d
2 − a+b

2

)
.

Each random walk in the bottom cone from the first anchor point that arrives at (a, b) can then
be combined with such a time-reversed random walk from (a, b) to the second anchor point to form
a random walk going from the first to the second anchor point of the prism, passing through (a, b).
The total number of random walks in the prism from the first anchor point to the second anchor point,
passing through (a, b), therefore is the product of # ↑paths (a, b) and # ↓paths (a, b) and we denote this
product by # lpaths (a, b). Therefore, we have

# lpaths (a, b) = # ↑paths (a, b) · # ↓paths (a, b) =
(

b
a+b

2

)
·
(

`− b
`+d

2 − a+b
2

)
The values of # ↑paths (a, b), # ↓paths (a, b) and # lpaths (a, b) are illustrated in Figure 5.
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Figure 5. The values # ↑paths (a, b) in red, # ↓paths (a, b) in blue and # lpaths (a, b) in purple for the prism
of Figure 3.

We remark that the total number of random walk paths in the prism P(x0, t0, x1, t1, vmax)

can be read at one of the anchor points, meaning that it is # lpaths (0, 0) = # lpaths (d, `).
In the example of Figure 5, the total number of random walks between the anchor points is
# lpaths (0, 0) = # lpaths (2, 8) = 56.

Now, we are ready to give a definition of “visit probability”, relative to a chosen number of grid
levels `. This definition says that the visit probability of a grid point is the fraction of random walk
paths in the prism passing through it.

Definition 2. Let P(x0, t0, x1, t1, vmax) be a prism and let ` be a suitable number of levels for this prism.
Let (a, b) be a point in the `-grid on the prism, given in local coordinates. We define the (one-dimensional) visit
probability of (a, b) (relative to the number of levels `), denoted vp1[`](a, b), to be #lpaths(a ,b)

#lpaths(d,`) .

From this definition and the above observations, we immediately obtain the following result.

Theorem 1. For a grid point (a, b) of a (d, `)-grid on a prism P(x0, t0, x1, t1, vmax), we have

vp1[`](a, b) =
( b

rb(a)) · (
`−b

`+d
2 −rb(a))

( `
`+d

2
)

=
( b

a+b
2
) · ( `−b

`+d
2 − a+b

2
)

( `
`+d

2
)

. (7)

Using basic properties of binomial coefficients, we can rewrite this in another useful form as

vp1[`](a, b) =
(
`+d

2
a+b

2
) · (

`−d
2

b−a
2
)

(`b)
.

When we fix a level b and sum the visit probability over all a values at level b, we expect to
obtain 1. This reflects the fact that any random walk from anchor to anchor passes the time slice
corresponding to level b with absolute certainty. The following property verifies this fact.

Proposition 2. For any level b, we have ∑(a,b)at level b vp1[`](a, b) = 1.

Proof. The rank of a at level b varies from 0 to b. Some of these ranks correspond to points (a, b)
outside the prism, in which case vp1[`](a, b) = 0. From (7), we obtain

∑
(a,b)at level b

vp1[`](a, b) =
b

∑
r=0

(b
r) · (

`−b
`+d

2 −r)

( `
`+d

2
)

,
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where r represents the rank. This sum equals 1, since ∑b
r=0 (

b
r) · (

`−b
`+d

2 −r) = ( `
`+d

2
) by the

well-known Vandermonde’s identity, which can be easliy derived by looking at the coefficient of
x

`+d
2 in the expansions of both sides in the equality (1 + x)b · (1 + x)`−b = (1 + x)`, using the

binomial theorem.

4.3. Random Walk Visit Probability on the Complete Prism

The visit probability, based on the random walk model, as defined in Definition 2, is specified on
the grid points of a (d, `)-grid only. In this section, we discuss how it can be defined on the complete
prism. We first discuss the type of distribution associated with this visit probability and the effect of
increasing the number of levels of the grid.

4.3.1. The Distribution Corresponding to the Visit Probability

Here, we discuss the type of probability distribution that the visit probability, described by
Theorem 1, gives rise to. The first fraction in (7) in Theorem 1, shows that, for each level b, the expression
for vp1[`](a, b) corresponds to a hypergeometric distribution in the rank rb(a) = a+b

2 [52,53]. In fact,
if we consider the cumulative density function CDF(a0 | b, `) for our situation, we get

a0

∑
r=0

(b
r) · (

`−b
`+d

2 −r)

( `
`+d

2
)

=

(
`− b
`+d

2

)
2F1

[
−b;− `+d

2
1− b + `−d

2
| 1

]

−
(

`− b
`+d

2 − a0 − 1

)
3F2

[
1; 1 + a0 − b; 1 + a0 − `+d

2
2 + a0; 2 + a0 − b + `−d

2
| 1

]
.

The functions 2F1 and 3F2 are so-called hypergeometric functions and we may conclude that we
have a hypergeometric distribution [54].

Distributions and also hypergeometric distributions are typically characterized by a number of
quantities, such as the mean; the variance; the skewness; and the excess kurtosis [52,53].

In our setting the mean is `+d
2 · b

l = r`(d) · b
l . It is easily verified that the point (a, b) at level b,

that represents the mean, has a rank rb(a) that places it on the diagonal of the prism (given by b = `
d · a,

in the local (a, b)-coordinates).
The variance is `2−d2

4`2(`−1) · b · (`− b). This variance is tending towards zero towards the anchor

points of the prism and reaches its maximum at the level b = `
2 (remark that according to Proposition 1

a suitable ` is always even).

The skewness is −2(`−2b)
√
`−1

(`−2)
√

(`2−d2)b(`−b)
. The skewness is negative for 0 < b < `

2 , which means that

the distribution has a tail (or is stretched) to the left. This is explained by the fact that the left side
of the prism, for x0 ≤ x1, is further away from the diagonal that its right side. It is zero for b = `

2 ,
which means we have a normal distribution at that level. The skewness is positive for `

2 < b < `,
which means that the distribution has a tail to the right. At the levels b = 0 and b = ` the skewness is
infinite, which indicates the peak at the unique value at these levels. The the excess kurtosis describes
how flat or peaky the distribution curve is. In our case, it is a long and complicated expression that we
omit here. We only mention that it is negative, which indicates a rather “flat” distribution curve.

4.3.2. The Effect of Refining the Fine-Grid Network

One way to move from a visit probability that is only defined on grid points to one that is defined
on the whole prism is to increase the number of levels `, thus approximating each point in the prism
eventually by a grid point. In this paragraph, we investigate how the expression for the visit probability
vp1[`](a, b) in Definition 2 depends on the number of levels `. As an increase in the number of levels,
we consider doubling the number of levels and we investigate the effect thereof.
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We start with an (d̄, ¯̀)-grid, as described in Section 4.1, and than refine this grid, by for instance
iteratively doubling the number of levels, resulting in a (2i ·d̄, 2i · ¯̀)-grid, with i a non-zero natural
number. This way, we obtain finer and finer grids and an arbitrary point (x, t) in the prism
P(x0, t0, x1, t1, vmax) can be approximated arbitrarily close. A downside of doubling the number
of levels is that the visit probability decreases (and ultimately goes to zero), as the following property
shows. This is due to the fact that, when doubling the number of levels, the number of possible paths
roughly squares. First, we remark that when the number of levels is doubled, a spatio-temporal point
with local coordinates (a, b) in a (d, `)-grid, will have (2a, 2b) as local coordinatesa in a (2d, 2`)-grid.
In particular, the second anchor point which has local coordinates (d, `) in the original grid will have
local coordinates (2d, 2`) after doubling the number of levels.

Proposition 3. For `, a and b as before, we have vp1[2`](2a, 2b) ≤ vp1[`](a, b).

The proof of this property is a direct consequence of the well-known estimate(
2n
2k

)
∼
(

n
k

)2√
π

√
(n− k)k

n
,

from which it follows that vp1[2`](2a, 2b) ∼ vp1[`](a, b)2, and thus vp1[2`](2a, 2b) < vp1[`](a, b),
provided that 0 < vp1[`](a, b) < 1. For non-extreme visit probabilities, we thus obtain that the sequence

vp1[¯̀](a, b) > vp1[2¯̀](2a, 2b) > vp1[4¯̀](4a, 4b) > · · · vp1[2k ¯̀](2
ia, 2ib) > · · · ≥ 0

converges (by the Weierstrass–Bolzano theorem) to 0, expressing that individual points in finer and
finer grids have a visit probability that tends to 0.

This last observation is not surprising. In an infinite set of space–time points, as a prism is, it is to
be expected that individual elements have a probability 0. The usual approach to deal with this is to use
probability density functions and cumulative density functions, which would allow us to determine
the visit probability of a small area around an arbitrary point (x, t) in a prism P(x0, t0, x1, t1, vmax),
for instance. Such an area is usually an ε-box of type [x− ε, x + ε]× [t− ε, t + ε]. To obtain an exact
solution for our case, we can turn to Pearson distributions [55,56], which are the continuous analog
of hypergeometric distributions. In our case, we observe that, since the excess kurtosis is negative,
the Pearson distribution would be of type 2. Due to the complexity of these Pearson distributions,
we present a more practically usable approach in Section 4.3.3.

4.3.3. A Definition of Visit Probability on a One-Dimensional Prism

In this section, we give a practically usable definition of visit probability for all points in a
one-dimensional prism. For our definition, we assume that a number of levels ` in a grid have been
chosen. This number of levels ` and the corresponding step size h` may depend on the application at
hand. When the application concerns moving objects that are pedestrians we may want to set h` to
one meter, whereas in the context of moving cars, it may be taken to be larger.

When a number of levels ` is fixed, Definition 2 gives us values for the visit probability in grid
points on the `-grid on the prism. To determine a value for the visit probability in non-grid points,
we use linear interpolation, based on barycentric coordinates in which we use the three closest grid
points. This approach gives a more continuous result, as opposed to the voxel-based approach of,
for example, References [31,32] and of the random-walk part of [24,26]. Hereto, we partition the grid
points into triangles by adding horizontal lines to the grid lines that are already shown in Figure 3.
This partition is illustrated in the left part of Figure 6, where also the two types of triangles occurring
herein are shown (indicated as 1© and 2©). We develop the definition of the visit probability of a
point with Cartesian coordinates (x, t) in a type 1© in full and remark that for type 2© triangles the
development is completely analogous. A type 1© triangle has corner points with local coordinates
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(a, b), (a + 2, b) and (a + 1, b + 1). If we give these corner points barycentric coordinates (1, 0, 0),
(0, 1, 0) and (0, 0, 1), respectively, then, taking into account that the Cartesian coordinates of a grid
point with local coordinates (a, b) is (x0 + a · h` · vmax, t0 + b · h`) (see Section 4.1), we have barycentric
coordinates (λ1, λ2, λ3) for the point (x, t) if

(x, t) = λ1 · (x0 + a · h` · vmax, t0 + b · h`) + λ2 · (x0 + (a + 2) · h` · vmax, t0 + b · h`)
+ λ3 · (x0 + (a + 1) · h` · vmax, t0 + (b + 1) · h`),

with 0 ≤ λ1, λ2, λ3 ≤ 1 and λ1 + λ2 + λ3 = 1.
We can easily derive that λ2 = 1

2·h` ·vmax
· ((x − x0) + h` · vmax · (b − a) − (t − t0) · vmax),

λ3 = t−t0
h`
− b and λ1 = 1− λ2 − λ3 = 1

2·h` ·vmax
· (h` · vmax · (b + a + 2)− (x− x0) + (t− t0) · vmax).

Similarly, in a type 2© triangle, when we give the grid points with local coordinates (a + 1, b + 1),
(a+ 3, b+ 1) and (a+ 2, b) barycentric coordinates (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively, we obtain
barycentric coordinates (λ′1, λ′2, λ′3) for a point (x, t) with the values λ′2 = 1

2·h` ·vmax
· ((x − x0)− h` ·

vmax · (b + a + 2) + (t− t0) · vmax), λ′3 = b + 1− t−t0
h`

and λ′1 = 1− λ′2 − λ′3.

(a + 3, b + 1)

(a + 2, b)

(a + 1, b + 1)

(a, b)
(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(x, t)

1� 2�

Figure 6. The division of a prism in triangles, on the left and the two types of triangles ( 1© and 2©) in a
prism and their barycentric coordinates, on the right.

Based on these barycentric weights λ1, λ2, λ3 (respectively λ′1, λ′2, λ′3 )of a point (x, t) we give the
following definition of the visit probability in (x, t).

Definition 3. Let P(x0, t0, x1, t1, vmax) be a prism and let ` be a suitable number of levels for this prism.
If (x, y) is a point in a type 1© triangle, as shown in Figure 6, then we define vp1[`](x, y) to be λ1 · vp1[`](a, b) +
λ2 · vp1[`](a + 2, b) + λ3 · vp1[`](a + 1, b + 1). Let (x, y) be a point in a type 2© triangle, as shown in Figure 6.
Then we define vp1[`](x, y) to be λ′1 · vp1[`](a + 1, b + 1) + λ′2 · vp1[`](a + 3, b + 1) + λ′3 · vp1[`](a + 2, b). 2

Figure 7 shows the barycentric-based visit probability for the prism of Figure 3, where we take
the number of levels ` to be respectively 8, 16, 32 and 64. These illustrations show that the areas
around the anchor points have a high probability of being visited, while the areas around the rim
points are assigned a very low probability. In general, the diagonal of the prism shows the highest
visit probability.
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Figure 7. The barycentric-based visit probability for the prism of Figure 3 for ` values of 8, 16, 32 and 64.

5. Random Walk-Based Visit Probability in a Two-Dimensional Space–Time Prism

In this section, we develop the random-walk based visit probability for prisms that describe
movement in a two-dimensional space. The main difference with the one-dimensional case is that
the fine-grid network does not fill the complete prism, whereas in the one-dimensional case it does.
The fine-grid network takes the form of a pyramidal prism in this case.

5.1. Random Walks in the Future Cone and Their Local Coordinate System

To facilitate the description of the two-dimensional case, we assume that the prism
P(x0, y0, t0, x1, y1, t1, vmax) has its first anchor point at the origin and the second anchor point above
the (positive) spatial diagonal given by the equations y = x and x ≥ 0, that is, (x0, y0, t0) = (0, 0, 0)
and (x1, y1, t1) = (x1, x1, t1), with x1 ≥ 0. This assumption is without loss of generality since any
prism can be transformed to this particular prism by an isometric transformation of the (x, y, t)-space
(with the appropriate choice of t1).

When we intersect the prism P(0, 0, 0, x1, x1, t1, vmax), with the plane in the (x, y, t)-space given
by the equation y = x, we obtain a one-dimensional prism and we can use Proposition 1 to obtain a
suitable minimum number of levels ¯̀ (of which we can use any multiple) to be able to reach the second
anchor from the first in ¯̀ steps.

We start by describing a finite process that generates, in ` steps, a random walk within the future
cone of the prism. Let h` =

t1−t0
` be the corresponding step size of this process. A random walk of `

steps starts at the origin when we are at level 0. The i-th of these ` steps brings the moving object from
level i− 1 to level i in the random walk process. At each level of the process, the moving object, that
performs the random walk, starts at some previously reached space–time location (x, y, t) and tosses
two independent coins: the first will decide whether to move in the positive or negative x-direction
(North or South) and the second coin does the same for the y-direction (East or West). The steps in
the x and y-direction are of spatial size 1√

2
· h` · vmax, such that when they are combined (added), the

resulting step size is h` · vmax. Starting from (x, y, t), the following four possible space–time locations
are equally likely outcomes of a step: (1) (x + 1√

2
· h` · vmax, y + 1√

2
· h` · vmax, t + h`); (2) (x + 1√

2
·
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h` · vmax, y− 1√
2
· h` · vmax, t + h`); (3) (x − 1√

2
· h` · vmax, y + 1√

2
· h` · vmax, t + h`); and (4) (x − 1√

2
·

h` · vmax, y− 1√
2
· h` · vmax, t + h`). These four possible moves are in the NE, SE, SW or NW directions

(in terms of a compass) and are illustrated in Figure 8. Since we have located the second anchor point
above the positive diagonal, initially at least, option (1) is a move towards the second anchor point.

(x, y, t)

(x + 1p
2

· h` · vmax, y + 1p
2

· h` · vmax, t + h`)

(x + 1p
2

· h` · vmax, y � 1p
2

· h` · vmax, t + h`)

(x � 1p
2

· h` · vmax, y + 1p
2

· h` · vmax, t + h`)

(x � 1p
2

· h` · vmax, y � 1p
2

· h` · vmax, t + h`)

t

x

y (a1, a2, b)

(a1 � 1, a2 + 1, b + 1) (a1 + 1, a2 + 1, b + 1)

(a1 � 1, a2 � 1, b + 1)
(a1 + 1, a2 � 1, b + 1)

Figure 8. The four possible moves in a two-dimensional random walk. The local coordinates are shown
in red.

In the two-dimensional case, we want to introduce a fine-grid network, or grid, for short,
on which the random walk takes place together with a local coordinate system. When we have
chosen, in accordance with Proposition 1, a number of levels `, we give the first anchor point the local
(a1, a2, b)-coordinates (0, 0, 0). Further points in the random walk grid get assigned local coordinates
as shown in Figure 8 in red. Proceeding this way, the second anchor point will have local coordinates
(d1, d2, `) and we speak of a (d1, d2, `)-grid on the prism (or `-grid, for short). It is easily verified that
on such a grid with local coordinates (a1, a2, b) we have that a1 + a2, a1 + b and a2 + b are all even.

5.2. Random Walk Visit Probability in Grid Points

The following lemma gives an expression for the count of the number of random walk paths
that start from the first anchor point and arrive in a point in the bottom cone of the prism with local
coordinates (a1, a2, b).We call this number # ↑paths (a1, a2, b), in analogy with the one-dimensional case.

Lemma 1. For a grid point (a1, a2, b) of a (d1, d2, `)-grid on a prism P(x0, y0, t0, x1, y1, t1, vmax), we have
# ↑paths (a1, a2, b) = (

b
a1+b

2
) · ( b

a2+b
2
).

Proof. A random walk that reaches (a1, a2, b) comes from (a1 − 1, a2 − 1, b− 1), (a1 − 1, a2 + 1, b− 1),
(a1 + 1, a2− 1, b− 1) or (a1 + 1, a2 + 1, b− 1). We therefore have # ↑paths (a1, a2, b) = # ↑paths (a1− 1, a2−
1, b− 1) + # ↑paths (a1 − 1, a2 + 1, b− 1) + # ↑paths (a1 + 1, a2 − 1, b− 1) + # ↑paths (a1 + 1, a2 + 1, b− 1),
if we consider the terms in this sum that correspond to points outside the prism to be 0. It is clear
that for each level b, # ↑paths (b, b, b) = # ↑paths (b,−b, b) = # ↑paths (−b, b, b) = # ↑paths (−b,−b, b) = 1,
since there are unique paths of maximal speed to these extremal points.

We claim that # ↑paths (a1, a2, b) is the coefficient of xa1 · ya2 in the expansion of the polynomial
(x + 1

x )
b · (y + 1

y )
b. We prove this by induction on b. For the level b = 0, we have one path of length 0

and thus # ↑paths (0, 0, 0) = 1. Clearly, also the coefficient of x0 · y0 in the expansion (x + 1
x )

0 · (y + 1
y )

0

is 1. We assume that the claim is true for level b− 1 and prove it for level b. Since (x + 1
x )

b · (y + 1
y )

b =

(x + 1
x )

b−1 · (y + 1
y )

b−1 · (x + 1
x ) · (y + 1

y ), we obtain from the indunction hypothesis that

(x +
1
x
)b · (y +

1
y
)b =

(
∑ # ↑paths (a1, a2, b− 1)xa1 · ya2

)
· (x +

1
x
) · (y +

1
y
),

where the sum ranges over all a1, a2 with−b + 1 ≤ a1, a2 ≤ b− 1, and a1 + a2, a1 + b− 1 and a2 + b− 1
all even. When we look for the coefficient of xa1 · ya2 in (x + 1

x )
b · (y + 1

y )
b and we consider that
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xa1 · ya2 = x · xa1−1 · ya2 = 1
x · xa1+1 · ya2 = y · xa1 · ya2−1 = 1

y · xa1 · ya2+1, we obtain that the coefficient
of xa1 · ya2 is # ↑paths (a1− 1, a2− 1, b− 1) + # ↑paths (a1− 1, a2 + 1, b− 1) + # ↑paths (a1 + 1, a2− 1, b− 1) +
# ↑paths (a1 + 1, a2 + 1, b− 1), which is # ↑paths (a1, a2, b), as we have observed before. This completes the
proof of the claim.

Next, we see that (x + 1
x )

b · (y + 1
y )

b =
(

∑b
i=0 (

b
i)xi · ( 1

x )
b−i
)
·
(

∑b
j=0 (

b
j)y

j · ( 1
y )

b−j
)

=(
∑b

i=0 (
b
i)x2i−b

)
·
(

∑b
j=0 (

b
j)y

2j−b
)

. The coefficient of xa1 · ya2 therefore is ( b
a1+b

2
) · ( b

a2+b
2
) and we obtain

# ↑paths (a1, a2, b) = (
b

a1+b
2
) · ( b

a2+b
2
) This completes the proof.

The above lemma shows that # ↑paths (a1, a2, b) = ( b
rb(a1)

) · ( b
rb(a2)

) = # ↑paths (a1, b) · # ↑paths (a2, b),
thus linking the one- and two-dimensional cases.

Similar to the one-dimensional case, we use the notation # ↓paths (a1, a2, b) to count the number
of (time-reversed) random walk paths from the second anchor point downward to the grid point
with local coordinates (a1, a2, b). Using the mapping (a1, a2, b) 7→ (d1 − a1, d2 − a2, ` − b), we can
see that # ↓paths (a1, a2, b) = # ↑paths (d1 − a1, d2 − a2, `− b). Finally, we denote by # lpaths (a1, a2, b) the
total number of random walk paths from the first to the second anchor, passing through (a1, a2, b)
and this number is # ↑paths (a1, a2, b) · # ↓paths (a1, a2, b). Again, like in the one-dimensional case,
# lpaths (0, 0, 0) = # lpaths (d1, d2, `) is the total number of random walk paths in the prism from the first
to the second anchor.

In analogy with Definition 2, we define the visit probability for grid points in the
two-dimensional case.

Definition 4. Let P(x0, , y0, t0, x1, y1, t1, vmax) be a prism and let ` be a suitable number of levels for this
prism. Let (a1, a2, b) be a grid point given in the local coordinate system. We define the (two-dimensional) visit
probability of (a1, a2, b) (relative to the number of levels `), denoted vp2[`](a1, a2, b), to be #lpaths(a1,a2,b)

#lpaths(d1,d2,`) . 2

From Lemma 1, we immediately obtain the following an expression for the two-dimensional
random walk-based visit probability.

Theorem 2. For a grid point (a1, a2, b) of a (d1, d2, `)-grid on a prism P(x0, y0, t0, x1, y1, t1, vmax), we have

vp2[`](a1, a2, b) = vp1[`](a1, b) · vp1[`](a2, b).

Proof. Using Definition 4 and Lemma 1, we therefore obtain

vp2[`](a1, a2, b) =
(

b
a1+b

2
) · ( b

a2+b
2
) · ( `−b

d1+`
2 −

a1+b
2
) · ( `−b

d2+`
2 −

a2+b
2
)

(
`

d1+`
2
) · ( `

d2+`
2
)

,

which equals
(

b
a1+b

2
) · ( `−b

d1+`
2 −

a1+b
2
)

(
`

d1+`
2
)

·
(

b
a2+b

2
) · ( `−b

d2+`
2 −

a2+b
2
)

(
`

d2+`
2
)

or vp1[`](a1, b) · vp1[`](a2, b). This completes the proof.

This theorem exposes a link between the one- and the two-dimensional cases.

5.3. Random Walk Visit Probability on the Complete Prism

As for the one-dimensional case, we can extend the visit probability to the complete prism.
However, we should note that the fine-grid network does not cover the complete prism, but rather
a pyramidal sub prism of it. Without going in all the technical details for this case, we illustrate
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how the visit probability works in the two-dimensional setting. The pyramids between two layers,
as illustrated in Figure 8, are split into two tetrahedra. Hereto, we split the ground plane of the pyramid
into two triangles, as illustrated by the red line between the green and yellow triangles in Figure 9.
We then use barycentric interpolation within these tetrahedra to obtain a continuous version of the
visit probabilities on the fine-grid network.

(a1, a2, b)

(a1 � 1, a2 + 1, b + 1) (a1 + 1, a2 + 1, b + 1)

(a1 � 1, a2 � 1, b + 1) (a1 + 1, a2 � 1, b + 1)

Figure 9. The pyramid is split into two tetrahedra (along the red line in the ground plane of
the pyramid).

Figure 10 gives an illustration of a visit probability heat map on a pyramidal shaped prism.
The prism anchor points are (0, 0, 0) and (4, 4, 8), vmax = 1 and ` = 256 is used in this example. Again,
we see that the vicinity of the anchor points gives a high visit probability, whereas the border of the
rim plane has the lowest visit probability. According to the hypergeometric distribution, the diagonal
contains the most likely points within the prism. Obviously, the complete classical two-dimensional
prism is larger. As in [26], we can again use some interpolation method to fill the gap between the
pyramidal and the classical prism.

Figure 10. The barycentric-based visit probability for the pyramidal shaped prism with anchor points
(0, 0, 0) and (4, 4, 8), for vmax = 1 and the number of levels ` being 256.

6. Examples of Applications of the Visit Probability Measure

In this section, we give some example scenarios of how space–time prisms enriched with a visit
probability measure could be used in practical applications. Our application domains are about human
movement in on a road network and animal movement in two-dimensional space. The problems
involve questions like: “With which level of confidence has a moving object visited some location?”
and “Which is the more likely path followed by a moving object?”.

6.1. Human Movement and Interaction

Human activities are encompassed within spatio-temporal constraints, such as (physical or
law-imposed) speed limitations and the presence of obstacles [47] . The space–time prism model has
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already successfully been applied to model such situations. By overlaying a probabilistic framework
on the space–time prisms, this model can be enriched [8,24,26].

For example, if we consider the movement of people (like pedestrians) on a road network in a
city, we first remark that on a road network, we basically are in the one-dimensional case, that was
discussed extensively in this paper. The one-dimensional prisms can be “folded” over the road network,
following its possible ramifications, as is explained in depth in [8]. We assume that the location of
these people is registered (for instance, by GPS) at some regular moments in time. Then, we can use
the binomial random-walk based visit probability as we demonstrate in the following example of a
pedestrian moving in a city.

6.1.1. Movement Modelling

For this example, we collected data during a (pedestrian) walk in the city center of Hasselt,
Belgium. Five measurements, collected by Google Fitness tracker, were taken at regular time intervals
and they are shown in the first part of Figure 11 as p1, p2, p2, p4 and p5. In this map of Hasselt,
the paths that a pedestrian can follow are shown as brown dotted lines. The distance covered by
our measured walk was 550 m, and the maximal walking speed of the pedestrian was calculated at
1.185 m/s (or 4.2 km/h), based on previously recorded walks. The walk was timed at 8.21 min with
measurements taken at every two minutes interval (starting at the 0th minute).

p2

p1

p4

p5

p3 p3

p3

p4

p4

Figure 11. An illustration of the “visit probability” between two anchor points for a pedestrian on
a street network in the city of Hasselt. The left most map shows the measured data points during
the walk. The map in the middle focuses on two measured points and the spatial projection of the
one-dimensional prism between them, colored with visit probabilities. The rightmost figure shows the
paths that could be taken and how probable they are in a color gradient, with bright yellow being the
most probable and dark blue the least probable.

We focus on the data points p3 and p4 measured at the 4th and the 6th minute. The points
have longitude-latitude coordinates (5.33901, 50.92954) and (5.33768, 50.93067), respectively, given in
decimal degrees. We will consider them as the first and second anchor point of the prism to
be constructed.

The second part of Figure 11 shows the spatial projection (or PPA) of the one-dimensional prism
(“folded” over the road network, following its possible ramifications, using the algorithm of [8]),
augmented with colors that reflect the visit probability of these spatial points. The colour scale used is
the same as in Figures 7 and 10 and the visit probability is computed as the average visit probability of
all space–time points above the spatial location. This middle figure shows us that certain deviations
into side roads are unlikely and that, for example, visiting the north side of the cathedral (the building
with the cross on it) is highly likely.
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In the rightmost part of Figure 11, we consider the possible direct paths between p3 and p4

(without excursions into side roads) and we assign the average visit probability (taken over all their
spatial points) as colors to them. This figure shows that the dark blue path (on the right side) is the
least likely, whereas the yellow path that almost diagonally connects p3 and p4 is there more likely.
The yellow path has an average probability of 0.8418, the orange path meanwhile has an average
probability of 0.63, the red path has an average probability of 0.4807, while the final possible path,
colored dark blue has a very low average probability of 0.1699. These probabilities could be used to
estimate the likelihood of this pedestrian having been at some place or event.

We remark that these data ware collected by one of the authors while on a walk. The map as
well as the measured data points were recorded with the help of OpenStreetMap [57]. The maximal
walking speed of the pedestrian was calculated from the compiled data collected by the authors’ fitness
tracking application over the course of a year.

6.1.2. Human Interaction

Let us now consider the question of when and where two moving objects A and B could have met
(while also giving a confidence level). Assuming that A and B move independently, we can use the
product of their (binomial random-walk based) visit probability as a measure of “meeting probability”.

We illustrate this situation in Figure 12, where only one prism for each of the moving object A and
B is shown (usually from a longer chain of prisms). Here, the anchor points of A are (x0, y0) = (0, 0)
and (x1, y1) = (1.75, 8) and those of B are (x′0, y′0) = (2.5, 1) and (x′1, y′1) = (4.25, 9) and vmax is
assumed to be 1. Figure 12 shows on the left, outside the intersection of the prisms of A and B,
the binomial random-walk probability (based on 256 levels) that we discussed in this paper. However,
inside the intersection of the prisms of A and B, the meeting probability (defined as the product of
their visit probabilities) is shown. In this example it varies between 0.0004 and 0.6427.

A

B

x x

t t

Figure 12. An illustration of the “meeting probability” of two moving objects that move on a straight
line (or a road network). The right part focusses on the intersection of the two prisms.

This information can be used to determine more likely places and moments in time where A
and B could have met. Obviously, this problem is related to the alibi query [20], which asks whether
or not two prisms are disjoint, but clearly, in the presence of visit probability richer information can
be obtained.

The previous query focusses on two moving objects, but when, for instance, historical data about
many moving objects is present, we could ask questions about the optimal location of new facilities.
For example, if we plan to open a new restaurant in a shopping area of a city, we might be interested
in locations where the cumulative visit probability is higher or highest at certain moments of the day.
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6.2. Animal Movement and Interaction

The study of the movement and the interaction of animals plays a significant role in improving
our understanding of different species and their group dynamics, which in turn is of great importance
in the preservation and conservation of their ecosystems (see, for example, References [25,32,58] and
references in the Introduction). If we consider the scenario of tracking the movement of animals
with sensors (such as Argos). Typically, to conserve battery life in the sensors, the signals are sent in
intervals of hours or days, whereas even a 15 min frequency is used nowadays. In order to provide an
analysis (real-time or not) of animal behavior and interaction the unsampled time intervals need to
be accounted for. Ideally, this should be accompanied by statistical analysis, for example, in terms of
visit probability.

For this case study, we will consider the movement of an African Buffalo Syncerus caffer.
The buffaloes in the study have been tagged with GPS tracking devices with a signal being sent
by the tag at regular intervals, in this case every 60 min. We consider one day (17 February 2005) in
the life of the buffalo “Queen” with the tag T8. The GPS tracking converted to the spatial coordinates
can be seen in the left part of Figure 13. The african buffaloes have been studied extensively and
have been determined to have a maximal speed of 13.33–15.27 m/s and an average walking speed
of 1.42 m/s [59]. Since this is a simple case study to demonstrate the binomial random walk model
proposed in this paper, we will consider the maximal speed of the buffalo to be 15 m/s. Given the
velocity bound, we can construct the two-dimensional prisms between the measured data points as
seen in the right part of Figure 13. We can see from the image all possible areas the buffalo could
have been between measured data points, given its maximal velocity. Since this example has purely
illustrative purposes, we overestimated the maximal velocity in order to show the PPAs more clearly.
This example serves to illustrate, in the right part of Figure 13, the likelihood of places this buffalo
has visited. This might have an application in studying the probability of this animal having visited
some food resources. The same model can be applied in other situations in animal ecology, such as the
determination of the risk of an animal has been in contact with other diseased animals (for instance,
an animal colony infected by influenza).

Figure 13. The above figure illustrates the application of “visit probability” in the study of animal
movement. The figure to the left indicates the movement of a GPS tagged African Buffalo in a day.
The figure to the right shows the visit probabilistic model applied to compensate for the missing
data points.

The data used in the above use case was of 17 February 2005 and was published in Movebank [60]
by Paul Cross.

7. Conclusions

We have studied a framework to augment classical space–time prisms with an internal structure
in terms of a visit probability function. This function maps space–time points within the prism to a
value in the unit interval. This value expresses their likelihood of being visited by a path connecting
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the anchor points of the prism. The proposed mathematical framework is based on a binomial
random walk within one- and two-dimensional space–time prisms. Our random walk takes place on a
fine-grid network within the prism and in studying it, we make no assumptions on the random walks,
we impose no distributions (as is done in [26]), we have no truncations and we do not introduce a bias
towards the second anchor point. By simply defining the random walk on a grid network, we arrive
at the conclusion that random walk-based visit probability in space–time prisms corresponds to a
hypergeometric distribution.

This work can be expanded and deepened in a number of directions. Firstly, our random walk has
the choice between two directions (going left or right). This could be extended, as already suggested
in [24], to include standing still. With these three options, a similar approach can be followed,
which would result in a trinomial random-walk based visit probability, which is yet to be investigated
further. Secondly, both in the one- and two-dimensional cases, there remains the problem of moving
from a discrete probability distribution (on a fine-grid network) to a probability distribution on the
complete prism. Pearson distributions [55,56] need to be further investigated in this context. Thirdly,
in the two-dimensional case, the fine-grid network corresponds to a pyramidal prism which is part
of the classical prism. It remains to be investigated how a random walk on the complete classical
prism can be defined. In our current proposal the random walk is based on two orthogonal directions.
One way to cover the complete classical prisms could be to increase the number of possible directions.
Finally, the proposed visit probability should be incorporated in (formal) query systems, such as the
one proposed in [9], to allow for queries that deal with probability-based space–time objects. The same
holds for trajectory analysis systems.
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