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Abstract: In many animal species, the body axis is determined by the relocalization of maternal 

determinants, organelles, or unique cell populations in a cytoskeleton-dependent manner. In the 

ascidian first cell cycle, the myoplasm, including mitochondria, endoplasmic reticulum (ER), and 

maternal mRNAs, move to the future posterior side concomitantly (called ooplasmic segregation or 

cytoplasmic and cortical reorganization). This translocation consists of first and second phases de-

pending on the actin and microtubule, respectively. However, the transition from first to second 

phase, that is, translocation of myoplasmic components from microfilaments to microtubules, has 

been poorly investigated. In this study, we analyzed the relationship between these cytoskeletons 

and myoplasmic components during the first cell cycle and their role in morphogenesis by inhibitor 

experiments. Owing to our improved visualization techniques, there was unexpected F-actin accu-

mulation at the vegetal pole during this transition period. When this F-actin was depolymerized, 

the microtubule structure was strongly affected, the myoplasmic components, including maternal 

mRNA, were mislocalized, and the anteroposterior axis formation was disordered. These results 

suggested the importance of F-actin during the first cell cycle and the existence of interactions be-

tween microfilaments and microtubules, implying the enigmatic mechanism of ooplasmic segrega-

tion. Solving this mystery leads us to an improved understanding of ascidian early development. 
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1. Introduction 

Maternal mRNA, which is produced from the maternal genome during oogenesis, is 

indispensable for body planning in many animal species. The localization and translation 

of maternal mRNA is strictly regulated during early embryogenesis. For the correct local-

ization of maternal mRNA, cytoskeletons play a crucial role in the transport and anchor-

ing of some animal eggs such as flog (cortical rotation) [1,2], teleost fish (cortical rotation) 

[3], and nematodes (cytoplasmic flow) [4,5]. 

Ascidian (Chordata) unfertilized eggs have a unique cytoplasm, designated as myo-

plasm, which consists of mitochondria-rich cytoplasm (MRC), cortical endoplasmic retic-

ulum (cER), and maternal mRNAs called postplasmic/PEM RNAs [6,7]. In the first cell 

cycle, the myoplasm shows dynamic movement toward the future posterior side (called 
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ooplasmic segregation or cytoplasmic and cortical reorganization) [8], and is important 

for anteroposterior axis formation [7]. 

This ooplasmic segregation consists of two phases. In the first phase, fertilization trig-

gers the contraction of cortical actin filaments to the vegetal pole and the concentration of 

the myoplasm at the vegetal pole [9–11]. This first phase is completed within 5 min post-

fertilization (mpf). During the second phase, growing sperm aster migrates from the veg-

etal pole to the posterior side along the egg cortex, and finally, the sperm nucleus enters 

the center of the egg to fuse with the female nucleus [8]. The myoplasm moves toward the 

posterior pole following this sperm-aster movement and depends on the microtubules [9–

11]. We recently reported the cortical array of microtubules in the posterior–vegetal region 

(CAMP) during the second phase, suggesting the importance of myoplasm translocation 

[12,13]. This second phase of ooplasmic segregation occurs roughly from 30 to 45 mpf. 

Although these two phases of ooplasmic segregations are well-described, the mechanisms 

of transition between the first and second phases are poorly understood. One of the con-

cerns is how the myoplasm switches its chariot from F-actin to the microtubule. 

Previously, cER and postplasmic/PEM mRNAs were thought to move posteriorly to-

gether during the second phase [7,8]. However, our recent observations showed that be-

fore the second phase, some postplasmic/PEM mRNAs dissociated from dense ER, which 

corresponds to the cER with a more deeply expanded ER mass [14]. Moreover, they reas-

sembled by the four-cell stage and subsequently inherited in the centrosome attracting 

body (CAB) [14]. CAB is responsible for unequal cleavage and determines the anteropos-

terior axis [15,16]. These results strongly suggest the existence of unexpected mechanisms 

between the first and second phases of ooplasmic segregations and their importance for 

the anteroposterior axis formation. 

In this study, owing to the improvement and refinement of the entire process of vis-

ualization techniques, we succeeded in revealing the prolonged F-actin accumulation at 

the vegetal pole up to 30 mpf. We analyzed the role of actin filaments during the first cell 

cycle on the segregation of myoplasm, including CAMP formation, translocation of 

macho-1, dense ER, and mitochondria and axis determination. The importance of the re-

lationship between actin filaments and microtubules will be discussed. 

2. Materials and Methods 

2.1. Animal Experiments 

Ascidian (Ciona intestinalis type A; also called Ciona robusta) adults were obtained 

from the National BioResource Project (NBRP), Tokyo, Japan. Methods for egg and sperm 
handling, fertilization, and dechorionation were performed as described previously 

[17,18]. The embryos were reared in filtered seawater at 18 °C. At this temperature, the 

first and second phase of ooplasmic segregations start immediately after fertilization and 

from approximately 30 min postfertilization (mpf), respectively. The first cleavage occurs 

at approximately 60 mpf. In the inhibitor experiments, eggs were treated with 2 µg/mL 

cytochalasin B (CytB; Sigma-Aldrich, St. Louis, MO, USA), 2.5 µg/mL nocodazole (Noco; 

Sigma-Aldrich), or the same dilution of solvent (0.1% DMSO) as a control during the de-

sired periods. The eggs were exposed to these inhibitors with 3 mL seawater. Then, eggs 

were replaced to 10 mL seawater and washed 5 times with fresh seawater. It has been 

reported that cortical F-actin in CytB-treated culture cells could be recovered within 5 min 

after washout with this protocol [19]. 

2.2. Whole-Mount Immunofluorescent Staining 

For microtubule staining, dechorionated Ciona eggs/embryos were fixed with 100% 

methanol at room temperature (approximately 25 °C) for 1 h. The fixed specimens were 

treated with ethanol up series (35%, 70%, and 100%) and stored at −30°C until further use. 

After washing with phosphate-buffered saline containing 0.05% Tween 20 (PBST), the 
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specimens were treated with G1T0 (4 mol/L urea (MP Biomedicals, Santa Ana, CA, USA), 

and 1% glycerol in distilled water) for 90 min at 4 °C [12]. 

For double staining of the ER and microtubules, dechorionated Ciona eggs and em-

bryos were fixed with Cold-Fix solution (3.2% formaldehyde in 80% methanol) at −30 °C 

for 1 h, followed by continued fixation at room temperature for 1 h with gentle shaking 

every 20 min. Both types of fixed specimens were treated with ethanol up series (35%, 

70%, and 100%) and stored at −30 °C until further use. After washing with PBST, the spec-

imens were treated with G1T0 for 90 min at 4 °C and then treated with antigen retrieval 

solution (modified from Hayashi et al., 2011; 6 M urea and 0.1 M Tris-HCl, pH 9.5) [20] 

for 30 min at 80 °C. The specimens were immunostained with the following antibodies: 

anti-α-tubulin mouse monoclonal antibody (anti-microtubule antibody; clone DM1A; 

Sigma-Aldrich; 1:100 dilution), anti-glucose-regulated protein 78 (GRP78; also known as 

Bip) rabbit polyclonal antibody (anti-ER antibody; StressMarq Biosciences, Victoria, BC, 

Canada; 1:100 dilution), Alexa Fluor 488-conjugated goat anti-mouse IgG antibody 

(Thermo Fisher Scientific ; 1:1000 dilution), and Alexa Fluor Plus 555-conjugated goat anti-

rabbit IgG antibody (Thermo Fisher Scientific; 1:1000 dilution). Nuclei were stained with 

5 µg/mL 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI). The stained specimens 

were then mounted with methyl salicylate (Nacalai Tesque, Kyoto, Japan). 

2.3. Phalloidin Staining 

For F-actin staining, dechorionated Ciona eggs/embryos were fixed with a 1:1 mixed 

solution of extraction buffer (2% Triton-X 100, 50 mM MgCl2, 10 mM KCl, 10 mM EGTA, 

20% glycerol, 25 mM imidazole) and fixation buffer (0.25% glutaraldehyde (Nacalai 

Tesque), 3.7% formaldehyde, 100 mM HEPES (pH = 7.0), 50 mM EGTA, 10 mM MgSO4, 

and 525 mM sucrose) [21] for 15 min at room temperature. This was followed by continued 

fixation in fixation buffer for 2 h at room temperature. The fixed specimens were washed 

with PBST and treated with 10 unit/mL Alexa Fluor 488-labeled phalloidin (Molecular 

Probes, Eugene, OR, USA) for 30 min at room temperature. For clearing without dehydra-

tion, stained specimens were treated with 40% fructose (Fujifilm-Wako, Tokyo, Japan) for 

30 min at room temperature and then mounted in SeeDB (80.2% wt/wt fructose, 0.5% α-

thioglycerol) [22]. 

2.4. Whole-Mount RNA In Situ Hybridization 

Dechorionated Ciona eggs/embryos were fixed with a Cold-Fix solution. Fixed spec-

imens were treated with 0.2% Triton-X 100 for 10 min at room temperature and then fixed 

with paraformaldehyde for 1 h at room temperature. The postfixed specimens were 

treated with 0.1 M 2,2′,2′-nitrilotriethanol (Fujifilm-Wako) and 0.27% acetic anhydride 

(Nacalai Tesque) for 10 min at room temperature. Then, specimens were treated with 

G1T0 followed by the mixture of antigen retrieval solution and prehybridization solution 

containing 3.78 M urea, 0.063 M Tris-HCl (pH = 9.5), 50 µg/mL heparin, 100 µg/mL yeast 

tRNA, and 1% Tween 20. Sense and antisense RNA probes of macho-1 were transcribed 

from a Ciona cDNA clone (cieg016n12: Ghost) [23], using T7 and T3 RNA polymerases 

(Sigma-Aldrich), respectively, with DIG RNA Labeling Mix (Sigma-Aldrich). The speci-

mens were hybridized with an RNA probe in prehybridization buffer (50% formamide, 

50 µg/mL heparin, 100 µg/mL yeast tRNA, and 1% Tween 20) for 16 h at 50 °C. After 

hybridization, the specimens were washed with SSC (5×, 2×, and 0.2×). For observation of 

macho-1, DIG probe was detected using an alkaline phosphatase-conjugated anti-DIG Fab 

fragment (Sigma-Aldrich; 1:1000 dilution). In contrast, when combined with immunoflu-

orescence, specimens were immunostained with the following antibodies: anti-Bip rabbit 

polyclonal antibody, anti-NN18 mouse monoclonal antibody (antineurofilament anti-

body; Sigma-Aldrich; 1:100 dilution), horseradish peroxidase-conjugated anti-DIG Fab 

fragment (Sigma-Aldrich; 1:100 dilution), Alexa Fluor Plus 555-conjugated goat anti-rab-

bit IgG antibody, and Alexa Fluor 405-conjugated goat anti-mouse IgG antibody (Thermo 

Fisher Scientific; 1:200 dilution). The NN18 antibody is a good marker of mitochondria 
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that recognizes the F1-ATP synthase α-subunit in Ciona [24]. After immunostaining, the 

in situ hybridization signals were enhanced using FITC-Tyramide (Akoya Biosciences, 

Marlborough, MA, USA). 

2.5. Image Acquisition and Data Analysis 

Specimens were observed under LSM700 (Carl Zeiss, Jene, Germany) or A1RHD25 

(Nikon, Tokyo, Japan) confocal microscopes using ZEN (Carl Zeiss) or NIS element imag-

ing software (Nikon). Z-projections and the midplane optical sections are displayed with 

animal pole upward. The animal pole was defined based on the position of the meiotic 

apparatus, myoplasm configuration, or parallel direction of the CAMP [12]. All analyses 

were performed using the ImageJ software [25]. Z-projections were displayed as a side 

view wherein the animal pole was up and posterior side was right, or as a posterior view 

wherein the animal pole was up. These Z-projections showed the maximum intensity pro-

jection of z-stack. To analyze the expansion of the signal area of macho-1 mRNA, the an-

gles between the horizontal and vertical edges of the mRNA signal and the center of the 

eggs were measured. For the measurement of angles, the side and top views of the Z-

projections were used. To analyze the colocalization between the ER and mRNA signals, 

Z-projections were rendered from five optical sections around the midplane. Then, the 

dense ER region was extracted using denoising, contrast adjustment, and binarization, 

followed by a restriction of the object size. The maternal mRNA-positive region was ex-

tracted by binarization of the mRNA signals. The ratio of the mRNA-positive regions in 

the dense ER to the total area of mRNA-positive regions was calculated. The parameters 

for the extraction of each dense ER or mRNA were fixed for all specimens. 

3. Results 

3.1. Prolonged F-actin Accumulation at the Vegetal Cortex 

It has been well-described that the actin cytoskeleton is necessary for the first phase 

of ooplasmic segregation and results in strong F-actin accumulation in the vegetal cortex 

[9–11]. However, no report has described how long this accumulation lingered in the veg-

etal pole. Thus, we improved the phalloidin staining method for detecting F-actin in 

whole-mount specimens. The main points of this improvement were fixation with perme-

abilization and treatment with the fructose-based hydrophilic clearing reagent SeeDB [22]. 

Our methods revealed that vegetal accumulation of F-actin decreased gradually, though 

it was detected up to at least 30 mpf (Figure 1). The mitotic apparatus was faintly stained 

at 45 mpf (Figure 1b). As the meiotic spindles beneath the animal cap were not stained, 

this phalloidin staining of the microtubule structure suggests that the colocalization of 

actin and tubulin during the second phase of ooplasmic segregation is plausible. 

 

Figure 1. Duration of vegetally localized F-actin after fertilization. (a) The embryos during first cell 

cycle were stained for DNA (blue) and F-actin (green) by using 4′,6-diamidino-2-phenylindole di-

hydrochloride (DAPI) and phalloidin. The optical sections of the midplane are shown except for 60 

mpf. At 60 mpf, the frontal view wherein the animal pole is up and right side is right was shown, 
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because the cleavage furrow can be easily observed in this plane. The timings of fixation are indi-

cated on top. The F-actin significantly localized to the vegetal pole at least until 30 mpf. Closed 

arrowheads in 5 and 20 mpf indicate actin caps of polar body I and II, respectively, suggesting the 

existence of meiotic spindle beneath them [26]. These observations were repeated four times in each 

time point using approximately 50 eggs in each experiment. (b) Z-projection models were rendered 

from single channel of F-actin and represented in fire gradient. The range indicator is shown at the 

right corner. Arrowheads and dotted arrowheads indicate the strong and weak signals of F-actin at 

the vegetal pole, respectively. The staining of the other cortical region including 45 mpf was not 

obvious nor consistent. Mitotic apparatus was slightly stained in 45 mpf (dotted arrow) and con-

tractile ring of cleavage furrow was brightly stained in 60 mpf (arrow). Animal pole (A) is up. Scale 

bar: 50 µm. 

3.2. Actin Depolymerization Induced Malformation of CAMP 

To reveal the functions of prolonged F-actin accumulation at the vegetal cortex dur-

ing the following events, eggs were treated with CytB at various periods during the first 

cell cycle; CytB_01 (0 to 10 mpf), CytB_02 (0 to 30 mpf), CytB_03 (10 to 30 mpf), and 

CytB_04 (30 to 45 mpf), as shown in Figure 2a. To investigate the effect of CytB treatment 

on axis formation, we analyzed the second phase of ooplasmic segregation extensively. 

The effect of CytB treatment was confirmed by phalloidin staining of normal eggs fixed at 

10 mpf. In those eggs, no F-actin staining in the vegetal pole could be found (Figure 2b,b’). 

First, microtubule structures in the eggs of 45 mpf were observed. In the control egg, the 

CAMP was normally formed, representing a kind of convergence to the midline; thus, 

microtubule bundles were dense around the midline (Figure 2c). The CAMP formed by 

CytB_01 and CytB_03 treatments were relatively normal, though expanded broadly, and 

did not show midline accumulation of microtubule bundles (Figure 2d,f). The CytB_02 

treatment gave rise to a widely and randomly distributed microtubule network in the 

vegetal hemisphere (Figure 2e). In the CytB_04 treatment, although the microtubule bun-

dles were arrayed in a similar direction and accumulated around the postulated posterior 

pole, this CAMP-like structure was missing a large portion (Figure 2g). We supposed that 

the treatment with CytB before the second phase of ooplasmic segregation broadened the 

CAMP-forming area and made the anteroposterior axis ambiguous, whereas the treat-

ment during the second phase of movement caused a defective CAMP with the postulated 

anteroposterior axis. Moreover, although several chromosomes detached from spindle 

microtubules in CytB_02 (Figure 2j), mitotic apparatus for the first cleavage had bipolar 

spindles and asters in all CytB-treated eggs (Figure 2h–l). Thus, the effect of CytB treat-

ment mainly affected the microtubules beneath the egg cortex, suggesting a relationship 

between microfilaments and microtubules beneath the egg cortex. 
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Figure 2. The effect of CytB treatment on CAMP formation during first cell cycle. (a) Schematic 

drawing of sample preparation. The white and black blocks indicate incubation periods with DMSO 

and 2 µg/mL CytB, respectively. The egg was treated with DMSO as the normal control. (b,b’) Nor-

mal (b) and CytB-treated eggs (b’) were fixed at 10 mpf and stained with phalloidin. CytB-treated 

eggs did not show F-actin staining in the vegetal pole. The Z-projections of the side view are shown. 

Animal pole (A) is up. Arrows indicate strong signal at the vegetal pole. Scale bar: 50 µm. (c–g) Eggs 

were fixed at 45 mpf and immunostained for tubulin. Preparation name of each egg is indicated on 

the top. Animal pole (A) is up. Posterior views of rendered Z-projection representing various mal-

formations of CAMP. Normal CAMP emerges as a parallel array of microtubules on the posterior-

vegetal cortex. Microtubule bundles are relatively dense around the midline (c). Arrowhead indi-

cates mitotic apparatus of first cleavage, representing the midplane is situated in between two cen-

trosomes. It should be noted that, although the progression of the cell cycle was slightly affected (d). 

The number of embryos represented by the image over the number of embryos examined is indi-

cated at the right corner. Scale bar: 50 µm. (h–l) Enlarged Z-projections rendered from 30 optical 

sections around the mitotic apparatus in c–g are represented. Green and blue indicate microtubule 

and DNA, respectively. Scale bar: 10 µm. 

3.3. The Prolonged F-actin Localization Contributed to the Midline Accumulation of Myoplasm 

and Maternal mRNA 

As the effect of CytB on CAMP formation was different, we first focused on the effect 

before the second phase of ooplasmic segregation (0 to 30 mpf). The CytB-treated eggs 

were fixed at 45 mpf and triple-stained for macho-1 mRNA, ER, and mitochondria (Figure 

3). In DMSO-treated control embryos, dense ER, MRC, and macho-1 were clearly localized 

and concentrated at the posterior pole, and both mitochondria and macho-1 were ex-

cluded from the dense ER region, as reported in our previous paper (Figure 3a,a’,h). When 

eggs were treated with CytB, the distribution of macho-1 broadly expanded with various 

phenotypes (Figure 3b–d,b’–d’,b“–d“). In CytB_01, although a large part of macho-1 was 

localized to the posterior side, some macho-1 were left in anterior side (Figure 3b,b’). 

Moreover, the localized area of macho-1 was broadened along a left–right axis (Figure 

3b”). This result might be due to the retention of macho-1 on almost the entire egg cortex 

caused by the inhibition of the first phase of ooplasmic segregation. In CytB_02, macho-1 
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was broadly localized in the cortical regions of the vegetal hemisphere (Figure 3c,c’,c“). 

This severe phenotype was thought to be the additive effect of CytB_01 and CytB_03. In 

most cases of CytB_03, macho-1 moved and localized to the posterior pole, similar to those of the 

normal control (Figure 3d,d’), however, it showed wider distribution along the left–right axis  

(Figure 3d“). Notably, CytB_01 and 02 treatments showed scattered distributions of macho-1 sig-

nals, while CytB_03 treatment showed a single lump of macho-1 signal (Figure 3b”–d”). In the 

quantitative analyses of these results, it was clearly demonstrated that CytB treatments had differ-

ent effects for the macho-1 distributions along the anteroposterior and left–right axes (Figure 3e–

g). To summarize these results, depolymerization of F-actin during the first segregation movement 

resulted in the scattered and broadened localization of macho-1 along both anteroposterior and left–

right axes, while the depolymerization of F-actin during the period between the first and second 

segregation only broadened the macho-1 localization along the left–right axis. Thus, it was sug-

gested that the actin filaments during the first phase of segregation had the role of lumping macho-

1 mRNAs into a single mass in addition to the constriction of the egg cortex into the vegetal pole, 

and prolonged localization of actin filaments beneath the vegetal pole had the role of the convergence 

of macho-1 mRNAs to the midline. The MRC resided adjacent to the inner side of dense ER, and 

macho-1 extruded from dense ER and into the MRC and deeper cytoplasm in all treatments (Figure 

3h–k). Although, the macho-1 mRNA was distributed abnormally by CytB treatments, dense ER 

and MRC were situated close to macho-1, and MRC was always situated next to the dense 

ER. 

 

Figure 3. The role of prolonged F-actin localization to the vegetal cortex for translocations of orga-

nelles and maternal mRNA. (a–d, a’–d’, a“–d“) The CytB-treated eggs were fixed at 45 mpf. Prepa-

ration of each egg is indicated on the top. The double-immunostaining of ER (red) and mitochondria 
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(blue) and in situ hybridization of macho-1 (green) were carried out. Merged images of midplane 

optical sections (a–d: optical section) and Z-projections of single channel of macho-1 are shown (a’–

d’: side view, a”–d“: posterior view). Yellow dotted lines indicate the outline of eggs. Animal pole 

(A) is up, vegetal pole (V) is down, and posterior pole (Pos) is on the right. Arrowheads indicate 

mRNA localized region. Scale bar: 50 µm. (e) The angles, θ1 and θ2, were measured between vertical 

and horizontal edges of mRNA signal area, respectively, and the center of eggs using Z-projection 

as shown in the schema. In CytB_01, macho-1 signals were left in the anterior side, and thus, θ1 

became relatively large in most cases. (f,g) The central angle of the macho-1-localized region was 

measured on Z-projection and represented using box plots. Numbers of specimens were 7, 7, 6, and 

11 in DMSO, CytB_01, _02, and _03, respectively. These angles represent expansion of macho-1 lo-

calization with CytB treatments. Statistical significance was calculated by one-way ANOVA fol-

lowed by the Dunnett’s test (SD in f: DMSO = 9.6, CytB_01 = 50.2, CytB_02 = 69.7, CytB_03 = 58.4; 

SD in g: DMSO = 3.8, CytB_01 = 30.9, CytB_02 = 64.9, CytB_03 = 43.7). Significant differences versus 

DMSO are represented by asterisks (p < 0.01). (h–k) Enlarged images of white rectangles of a–d are 

represented. In DMSO and CytB_01, MRC (blue) was adjacent to the inner side of dense ER (red), 

while in CytB_02 and _03, MRC and dense ER were mingled but represented discrete distribution 

(blue and red signals do not overlapped). Scale bar: 10 µm. 

3.4. The role of F-actin during the Second Phase of Ooplasmic Segregation 

Eggs treated with CytB_04 were fixed at 45 mpf and triple-stained for ER, mitochon-

dria, and macho-1 (Figure 4). In normal eggs, dense ER thickened its localized area at the 

posterior pole region and tended to intrude into the inner cytoplasm by following the 

movement of sperm aster, and macho-1 was excluded from the ER and intruded into the 

MRC or even deeper cytoplasm of the posterior pole (Figure 4a,a’,c,c’). In the CytB_04-

treated egg, both macho-1 and dense ER were situated on the posterior vegetal cortex  

(Figure 4b,b’). However, they formed a thin localized area sticking to the cortex, and most 

of the macho-1 signal colocalized with dense ER (Figure 4d,d’). To examine the role of 

microtubules in the macho-1 translocation during the second phase of ooplasmic segrega-

tion, eggs were treated with 2.5 µg/mL Noco from 30 to 45 mpf (Figure 4e–e“,f–f’’’). Noco 

treatment inhibited the second phase of ooplasmic segregation. Thus, the myoplasm re-

mained in the vegetal pole, and the anteroposterior axis was abolished. Although no mi-

crotubule staining was observed in Noco-treated eggs, there was a faint tubulin staining 

at the vegetal pole (Figure 4e,e’). Dense ER colocalized with this tubulin-staining region, 

suggesting a close relationship between the ER and microtubules (Figure 4e“). According 

to the triple-staining result, mutual positioning of the vegetally stained ER and MRC was 

basically the same as the normal positioning of 30 mpf (Figure 4f,f’) and of the CytB_04 

treatment. The MRC resided adjacent to the inner side of dense ER (Figure 4f’’’). Although 

dense ER showed a thin layer beneath the posterior cortex and did not move into the egg 

cytoplasm in CytB_04 treatment, Noco treatment did not change dense ER and MRC dis-

tribution (Figure 4d,d’,f,f’,f’’’). On the other hand, in Noco treatment, most of the macho-

1 signals colocalized with dense ER, similarly to CytB_04 (Figure 4d,d’,f,f’,f“). Quantita-

tive analysis of this abnormality in the translocation of macho-1 revealed a similar effect 

of both actin and tubulin depolymerizations (Figure 4g,h). As macho-1 dissociated from 

dense ER by 30 mpf in the normal condition [14], macho-1 went back to dense ER under 

the condition with each inhibitor. Although, there is a possibility that the depolymeriza-

tion of microtubules indirectly affects the macho-1 translocation by aborting the move-

ment of the second phase, both F-actin and microtubules were suggested to have some 

roles in preventing macho-1 being reassociated with dense ER during the second phase of 

movement. 
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Figure 4. The role of F-actin during second phase of movement for the translocation of organelles 

and maternal mRNA. (a–d,a’–d’) The CytB-treated eggs were fixed at 45 mpf and double-im-

munostaining of ER (red) and mitochondria (blue) and in situ hybridization of macho-1 (green) were 

carried out. Preparation of each egg is indicated on the top. Merged images of midplane optical 

sections (a,b: optical section) and rendered Z-projections of single channel of macho-1 signal (a’,b’: 

Z-projection) are indicated. (c,d) Enlarged merged images of the posterior pole regions of a and b 

are shown (Merge). (c’,d’) The outline of dense ER region (red line) was superimposed on single 

channel of macho-1 signal of c and d (white). Animal pole (A) is up, vegetal pole (V) is down, and 

posterior pole (Pos) is on the right. Arrowhead indicates macho-1-localized region. (e–e“, f–f“) Noco 

treatment was carried out during 30–45 mpf and fixed at 45 mpf. Single optical section of the plane 

including animal–vegetal axis are shown. Regions between two red arrowheads represent dense ER 

region. Noco-treated eggs were double stained for ER (red) and tubulin (MT: green). Merged images 

(e: Merge) and single channel of each signal (e’; MT, e“; ER) are represented. Microtubule staining 

was not present, while faint staining was observed in vegetal pole region, presumably due to the 

tubulin monomer staining (e’). This tubulin staining was colocalized with dense ER (e,e“). Noco-

dazole-treated eggs were triple stained for ER (red)/mitochondria-rich cytoplasm (MRC; 

blue)/macho-1 (green). Merged images (f: Merge) and enlarged image of vegetal pole region of f (f’; 

Merge) are shown. Outlines of the dense ER region (red lines) were superimposed on in situ hybrid-

ization signals (f’’; ER/macho-1) and MRC signals (f’’’; ER/MRC). Note that the background ER 

staining of entire cortex of the egg became blotchy. Scale bars: 50 µm (a, e, and f) and 10 µm (c and 

f’). (g) Colocalization between macho-1 and dense ER was quantitatively evaluated by calculating 

the ratio of the signal area of the macho-1 within the dense ER region to the total area of mRNAs, as 

shown in the schema. (h) The results of ratio of the macho-1 signal area are represented using box 

plots. Dissociation of macho-1 from dense ER was inhibited by both CytB_04 and Noco treatments. 

The number of specimens was 6 in all treatments. Statistical significance was calculated by one-way 

ANOVA followed by the Dunnett’s test (SD: DMSO = 0.07, CytB_04 = 0.15, Noco = 0.11). Significant 

differences versus DMSO are represented by asterisks (p < 0.01). 

3.5. F-actin Contributed to the Cleavage Patterning during the First Cell Cycle 

The effect of CytB treatment during the first cell cycle to the later cleavage was inves-

tigated, focusing on the establishment of the anteroposterior axis. The eggs treated with 

CytB were fixed at the 32-cell stage and stained for macho-1 (Figure 5). In normal 32-cell 

stage embryos, macho-1 was localized to the CAB region, which resides equally in the 

posterior-most vegetal small blastomere pair (B6.3 and B6.3; micromere), and defined the 

posterior pole (Figure 5a). When the eggs were treated with CytB at various periods of the 
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one-cell stage, they showed various abnormal phenotypes. Two-thirds of the embryos of 

CytB_01 treatment gave rise to the embryo with two macho-1-localized spots in the adja-

cent micromeres, predicting the establishment of the anteroposterior axis, but the sizes of 

the signal areas and micromeres were unequal (Figure 5b). On the other hand, one-third 

of CytB_01-treated embryos had two macho-1 localized spots in two discontinuous blas-

tomeres, which could not define their posterior pole (Figure 5b’). CytB_02-treated em-

bryos showed the most severe phenotype. Most of the embryos showed delayed and ab-

normal cleavage with no symmetrical pattern, even in the embryo with two macho-1 sig-

nals in neighboring blastomeres (Figure 5c,c’). Three-fourths of them had a single elon-

gated signal situated unevenly in two blastomeres (Figure 5c’). The majority of the 

CytB_03-treated embryos had two or three macho-1-localized spots in the equivalent-size 

blastomeres, and thus could not show the anteroposterior axis (Figure 5d, d’). However, 

half of the CytB_04-treated embryos had two macho-1-localized spots with weak left–

right symmetry. The other half had only one macho-1-localized spot with no left–right 

symmetry (Figure 5e,e’). 

 

Figure 5. The effect of CytB treatment during 1-cell stage on the macho-1 mRNA localization. Prep-

aration name of each egg is indicated on the top. Embryos were fixed at the 32-cell stage (about 3 h 

after fertilization) and stained for macho-1 by in situ hybridization. (a) The embryo treated with 

DMSO during 1-cell stage as a normal control exhibited two spots of macho-1 localization, which 

correspond to the CAB. The CAB is formed bilaterally in the posterior-most blastomeres of vegetal 

hemisphere, indicating the posterior pole. (b–e,b’–e’) The CytB-treated embryos represented cell-

cycle retardation and various abnormal phenotypes. They were categorized into two types. In one 

phenotype, two CABs were formed in two neighboring blastomeres, suggesting the establishment 

of anteroposterior axis (b–e). The other type included the following phenotypes showing no obvious 

anteroposterior axis: two CABs were formed in separated blastomeres (b’), elongated CAB was 

asymmetrically inherited in two blastomeres (c’), three or more CABs were formed in separated 

blastomeres (d’), and a single CAB was formed in a random position of single blastomere (e’). Ar-

rowheads indicate CABs. The number of embryos represented by the image over the number of 

embryos examined is indicated in the right corner. Scale bars: 50 µm. 

These embryos were then stained for macho-1 mRNA, ER, and mitochondria to ob-

serve their relative locations (Figure 6). In normal 32-cell stage embryos, macho-1 mRNA 

colocalized with ER in the micromeres corresponding to CAB formation (Figure 6a,a’). 

Although CytB-treated embryos showed an abnormal distribution pattern of macho-1 af-

ter the second phase of ooplasmic segregation, localized spots of macho-1 in all the treat-

ments were colocalized with ER, suggesting that CAB formation normally occurred (Fig-

ure 6b–g,b’–g’). As shown in Figure 5, some of the CABs did not lead to unequal cleavage 

and posterior pole formation. These CABs suggested a lack of some factors, which is 
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inevitable for exerting the complete function of CAB. Our results suggested that depoly-

merization of F-actin during the first cell cycle affects the formation of normal CAB. 

 

Figure 6. Colocalization of macho-1 with ER on the CAB at 32-cell stage. Embryos treated with CytB 

were fixed at 32-cell stage. The double-immunostaining of ER (red) and mitochondria (blue) and in 

situ hybridization of macho-1 (green) were performed. (a–h) Single optical section of merged images 

of CAB region. (a’–h’) Single channel of macho-1 in (a–h). Preparation name of each egg is indicated 

on the top. macho-1 and ER were colocalized at all the CAB regions (arrowheads) despite the CytB 

treatment. Only the CytB_04-treated embryo represented small debris of ER, which did not contain 

macho-1 (arrow). Scale bar: 10 µm. 

3.6. The Disordered Morphogenesis Induced by Cytb Treatment during First-Cell Cycle 

Finally, to examine the effect of CytB treatment during the first cell cycle on normal 

CAB formation, the larval phenotype was examined (Figure 7). Normal larva represented 

a tadpole shape with a trunk and long tail representing obvious anteroposterior axis (Fig-

ure 7a). All of the CytB treatments led to abnormal development and gave rise to two 

phenotypes (Figure 7b–e,b’–e’). In one phenotype, irregular trunk and abnormal short tail 

could be identified, suggesting anteroposterior axis formation. In some cases, a pigment 

granule (thought to be an otolith according to its round shape) was developed (Figure 

7b,e). This type of larvae developed approximately 60%, 25%, 45%, and 55% in CytB_01, 

CytB_02, CytB_03, and CytB_04, respectively (Figure 7b’–e’). These proportions were 

close to those of the 32-cell stage embryo with left–right symmetry, as shown in Figure 5. 

In the other phenotype, although the secretion of tunic suggesting epidermal develop-

ment and faint rotation symmetry could be observed, it was a type of cell aggregate and 

we could not define the anteroposterior axis (Figure 7b’–e’). These embryos were thought 

to be develop from the 32-cell-stage embryo with no anteroposterior axis (Figure 5). This 

result implied that some CABs could not exert complete functions nor define the antero-

posterior axis, suggesting that some important factors were missing from CAB by CytB 

treatment. 

 

Figure 7. The effect of CytB treatment during the 1-cell stage on the larval morphogenesis. Prepara-

tion name of each egg is indicated on the top. Embryos were fixed at 20 h postfertilization. (a) The 

embryo treated with DMSO during 1-cell stage as a normal control exhibited tadpole shape, which 

has trunk and tail representing anterior (Ant)–posterior (Pos) axis. In addition, two pigment spots 

(otolith and ocellus) were developed. (b–e,b’–e’) The CytB-treated embryos represented various ab-

normal morphologies. They were categorized into two types. In one type, trunk and tail could be 
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distinguished, suggesting the establishment of anterior–posterior axis. In some cases, otolith-like 

pigment granules could be observed (b,e). In the other type, embryos became cell aggregates and 

had no anteroposterior axis. Although they seemed to have tunic on their surface, no other obvious 

tissue differentiation could be observed (b’–e’). The number of embryos represented by the image 

over the number of embryos examined is indicated at the right corner. Scale bars: 50 µm. 

4. Discussion 

Owing to the methods using unique fixation and hydrophilic clearing reagents, we 

found prolonged actin localization to the vegetal pole until the start of the second phase. 

Moreover, we analyzed the role of F-actin during the first cell cycle by describing the col-

ocalization of ER, mitochondria, and mRNA. 

When F-actin was depolymerized by CytB at various periods, the cortical microtu-

bule structure, CAMP, showed abnormal shapes according to the period of CytB treat-

ment. The common phenotype of the depolymerization of prolonged vegetal F-actin was 

the laterally broadened CAMP area, suggesting the inhibition of the convergence of mi-

crotubule bundles to the midline. The function and localization of F-actin during the first 

cell cycle of ascidian early development were reported mainly on the first phase of oo-

plasmic segregation [9–11], except for a few reports on the existence of cortical F-actin in 

the posterior–vegetal cortex during the second phase [27], which we could not confirm in 

our experiment. Thus, this is the first report that F-actin has some roles, in addition to the 

first phase of ooplasmic segregation. Specifically, in this report, we found three different 

roles for maternal mRNA translocation in three different periods, during the first phase 

of movement, the period between first and second phase, and the second phase of move-

ment. During the first phase, a cortically distributed actin network was suggested to have 

a role for lumping maternal mRNA in addition to generating contracting force of the first 

segregation movement. During the period between first and second segregation, pro-

longed vegetal cortex F-actin was closely located to the vegetally accumulated microtu-

bule fragment [13] and had a role in the convergence of mRNA, mitochondria, and ER to 

the midline. During the second phase, although we could not detect cortical actin network, 

depolymerization of F-actin affected the CAMP formation and relocalization of maternal 

mRNA to the dense ER region. The role for keeping maternal mRNAs dissociated from 

ER was shared by microtubules. These close relationships between microfilaments and 

microtubules strongly suggest their collaborative mechanisms. 

The collaborative role of actin and tubulin in CAMP formation is not an inconceivable 

event, as it has been reported that actin filaments in somatic cells have various functions 

in microtubule organization, such as anchoring to the cortex and directional elongation 

[28]. Moreover, CAMP is suggested to be an acentrosomal microtubule structure. It has 

been reported that the acentrosomal microtubule structure could be regulated by actin 

through the spectraplakin (ACF7; crosslinking cytoskeletal protein by binding to both mi-

crotubules and F-actin) and the microtubule end-binding proteins (CAMSAP3: calmodu-

lin-regulated spectrin-associated protein 3) [29]. Thus, to reveal the interaction between 

actin and microtubule in the ascidian egg, analyses of these cytoskeletal-associated mole-

cules are necessary. 

The macho-1 dissociation from dense ER during the second phase of ooplasmic seg-

regation was another collaborative mechanism of actin and tubulin. It is well-known that 

both microtubules and microfilaments have a role in trafficking mRNP granules, com-

plexes of mRNA and ribonucleoproteins (e.g., [30]). In budding yeast, it has been reported 

that the localization of polysome-interacting protein on the ER is regulated by microtu-

bules [31]. In Ciona eggs, one of the RNA binding proteins, Y-box binding protein (YB-1), 

interacts with pem-1 mRNA, suggesting the existence of mRNP granule [32]. Type I post-

plasmic/PEM RNAs associate with ribosomes, which are localized to the cER [33]. From 

the viewpoint of the collaborative role of different cytoskeletal filaments, an intangible 

molecular mechanism emerges by combining these reports. In this mechanism, transloca-

tion of organelles and mRNA are closely related to translational control. In our results, the 
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importance of excluding mRNA from dense ER is cryptic, whereas the collaborative par-

ticipation of two different cytoskeletal filaments is a promising mechanism for under-

standing the translocation of maternal determinants. 

On the other hand, the malformation of microtubule structure and the mislocaliza-

tion of mRNA caused by the depolymerization of microfilaments during the first cell cycle 

largely affected early development by spoiling the anteroposterior axis. Although most of 

these damaged embryos had CABs, they could not exert their complete functions, such as 

determination of the posterior pole and unequal cleavage. This suggested that the com-

ponents of CABs formed in damaged embryos were insufficient. A considerable number 

of molecules have been revealed, such as about 40 postplasmic/PEM RNAs and their 

translational products, Kinesin, β-catenin, YB-1, and regulators of translation initiation 

[7,16,32,34–37]. Thus, more detailed analyses including these CAB components are re-

quired for understanding the relationship between dysfunction of CAB and incomplete 

translocation of myoplasm. It is well-known that the correct transport of myoplasm and 

the appropriate distribution of the myoplasmic components through the ooplasmic seg-

regation are important for ascidian development. According to our results, we believe that 

the precise mechanisms of ooplasmic segregation are more complicated than ever 

thought. The collaborative role of microfilaments and microtubules is one of these com-

plexities. More extensive analyses of the mechanisms underlying ooplasmic segregation 

will contribute to the understanding of the molecular mechanisms of ascidian embryo-

genesis. 
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