Sterols and Triterpenes from *Dobera glabra* Growing in Saudi Arabia and their Cytotoxic Activity

Wael M. Abdel-Mageed ^{1,2}, Ali A. El-Gamal ^{1,3,*}, Shaza M. Al-Massarani ¹, Omer. A. Basudan ¹, Farid A. Badria ³, Maged S. Abdel-Kader ^{4,5}, Adnan J. Al-Rehaily ¹ and Hanan Y. Al-Ati ¹

- ¹ Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; wabdelmageed@ksu.edu.sa (W.M.A.-M.); salmassarani@ksu.edu.sa (S.M.A.-M.); basudan@ksu.edu.sa (O.A.B.); ajhmkl@hotmail.com (A.J.A.-R.); hati@ksu.edu.sa (H.Y.A.-A.)
- ² Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- ³ Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, El-Mansoura 35516, Egypt; faridbadria@gmail.com
- ⁴ Pharmacognosy Department, College of Pharmacy, Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; mpharm101@hotmail.com
- ⁵ Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
- * Correspondence: aelgamel@ksu.edu.sa; Tel: +00-9665-6978-0176 *E-mail address*: aelgamel@ksu.edu.sa (A. A. El-Gamal).

Abstract: A new lupane caffeoyl ester, lup-20(29)-ene 3β -caffeate-30-al (7), and a new oleanane-type triterpene, 3β -hydroxyolean-13(18)-en-12-one (17), were isolated from the aerial parts of *Dobera glabra* (Forssk), along with ten known triterpenes, including seven lupane-type lupeol (1), 30-nor-lup-3 β -ol-20-one (2), Δ^1 -lupenone (3), lup-20(29)-en-3 β , 30-diol (4), lupeol caffeate (5), 30-hydroxy lup-20(29)-ene 3β -caffeate (6), and betunaldehyde (8); three oleananetype compounds were also identified, comprising δ -amyrone (15), δ -amyrin (16), and 11-oxo- β amyrin (18); together with six sterols, comprising β -sitosterol (9), stigmasterol (10), 7α hydroxy- β -sitosterol (11), 7 α -hydroxy-stigmasterol (12), 7-keto- β -sitosterol (13), and 7-ketostigmasterol (14). Their structures were elucidated using a variety of spectroscopic techniques, including 1D (¹H, ¹³C, and DEPT-135 ¹³C) and 2D (¹H-¹H COSY, ¹H-¹³C HSQC, and ¹H-¹³C HMBC) nuclear magnetic resonance (NMR) and accurate mass spectroscopy. Subsequently, the different plant extracts and some of the isolated compounds (1-9, 11 and 13) were investigated for their possible cytotoxic activity in comparison to cisplatin against a wide array of aggressive cancer cell lines, such as colorectal cancer (HCT-116), hepatocellular carcinoma (HepG-2), and prostate cancer (PC-3) cell lines. Compound 11 displayed broad cytotoxicity against all of the tested cell lines (IC₅₀ \cong 8 µg/mL in all cases), and a high safety margin against normal Vero cells (IC₅₀ = 70 μ g/mL), suggesting that 11 may be a highly selective and effective anticancer agent candidate. Notably, the evidence indicated that the mode of action of compound 11 could possibly consist of the inhibition of phosphodiesterase I (80.2% enzyme inhibition observed at 2 µM compound concentration).

Keywords: *Dobera glabra*; Salvadoraceae; Triterpenes; Steroids, Cytotoxic activity, Phosphodiesterase inhibition.

Content

Content

Р	aş	ge
---	----	----

Figure 1S. Structures of compounds (1–18) isolated from <i>D. glabra</i> .	04
Figure 2S. ¹ H NMR spectrum of compound (1) (500 MHz, CDCl ₃)	05
Figure 3S. ¹³ C NMR spectrum of compound (1) (125 MHz, CDCl ₃)	05
Figure 4S. DEPT ¹³ C NMR spectrum of compound (1) (125 MHz, CDCl ₃)	06
Figure 5S. ¹ H NMR spectrum of compound (2) (500 MHz, CDCl ₃)	07
Figure 6S. ¹³ C NMR spectrum of compound (2) (125 MHz, CDCl ₃)	07
Figure 7S. DEPT ¹³ C NMR spectrum of compound (2) (125 MHz, CDCl ₃)	08
Figure 8S. ¹ H NMR spectrum of compound (3) (500 MHz, CDCl ₃)	09
Figure 9S. ¹³ C NMR spectrum of compound (3) (125 MHz, CDCl ₃)	09
Figure 10S. DEPT ¹³ C NMR spectrum of compound (3) (125 MHz, CDCl ₃)	10
Figure 11S. ¹ H NMR spectrum of compound (4) (500 MHz, CDCl ₃)	11
Figure 12S. ¹³ C NMR spectrum of compound (4) (125 MHz, CDCl ₃)	11
Figure 13S. ¹ H NMR spectrum of compound (5) (500 MHz, CDCl ₃)	12
Figure 14S. ¹³ C NMR spectrum of compound (5) (125 MHz, CDCl ₃)	12
Figure 15S. DEPT ¹³ C NMR spectrum of compound (5) (125 MHz, CDCl ₃)	13
Figure 16S: ¹ H NMR spectrum of compound (6) (500 MHz, CDCl ₃)	14
Figure 178. ¹³ C NMR spectrum of compound (6) (125 MHz, CDCl ₃)	14
Figure 188. DEPT ¹³ C NMR spectrum of compound (6) (125 MHz, CDCl ₃)	15
Figure 195. H NMR spectrum of compound (7) (500 MHZ, $CDCl_3$)	16
Figure 205. "C NMR spectrum of compound (7) (125 MHZ, CDCl ₃) Figure 215. DEPT 13 C NMR spectrum of compound (7) (125 MHz, CDCl ₃)	10
Figure 215. DEPT \sim NMR spectrum of compound (7) (125 MHZ, CDCl ₃) Figure 225 1 H 13 C HSOC spectrum of compound (7) (500 MHz, CDCl)	l / 17
Figure 225. II- C HSQC spectrum of compound (7) (500 MHz, CDCI3) Figure 238 ¹ H ¹ H COSV spectrum of compound (7) (500 MHz, CDCIa)	1/
Figure 235. II- II COST spectrum of compound (7) (500 MHz, CDCI ₃) Figure 248: 11 H 13 C HMPC spectrum of compound (7) (500 MHz, CDCI ₃)	10
Figure 24.5. II- C HIVIDC spectrum of compound (7) (500 MHZ, CDCI3) Figure 258: HRESIMS spectrum of compound (7) (A) negative mode (B) positive mode	10
Figure 26S: ¹ H NMR spectrum of compound (8) (500 MHz DMSO ₄)	20
Figure 27S ⁻¹³ C NMR spectrum of compound (8) (125 MHz, DMSO ₆)	20
Figure 28S, DEPT ¹³ C NMR spectrum of compound (8) (125 MHz, DMSO ₆)	20
Figure 29S. ¹ H NMR spectrum of compound (13) (500 MHz, CDCl ₃)	22
Figure 30S. ¹³ C NMR spectrum of compound (13) (125 MHz, CDCl ₃)	22
Figure 31S. DEPT ¹³ C NMR spectrum of compound (13) (125 MHz, CDCl ₃)	23
Figure 32S. ¹ H NMR spectrum of compound (14) (500 MHz, CDCl ₃)	24
Figure 33S. ¹³ C NMR spectrum of compound (14) (125 MHz, CDCl ₃)	24
Figure 34S. DEPT ¹³ C NMR spectrum of compound (14) (125 MHz, CDCl ₃)	25
Figure 35S. ¹ H NMR spectrum of compound (15) (500 MHz, CDCl ₃)	26
Figure 36S. ¹³ C NMR spectrum of compound (15) (125 MHz, CDCl ₃)	26
Figure 37S. ¹ H NMR spectrum of compound (16) (500 MHz, CDCl ₃)	27
Figure 38S. ¹³ C NMR spectrum of compound (16) (125 MHz, CDCl ₃)	27
Figure 398. ¹ H NMR spectrum of compound (17) (500 MHz, CD ₃ OD)	28
Figure 40S. ¹³ C NMR spectrum of compound (17) (125 MHz, CD ₃ O)	28
Figure 41S. DEPT ¹³ C NMR spectrum of compound (17) (125 MHz, CD ₃ OD)	29
Figure 42S. ¹ H- ¹³ C HSQC spectrum of compound (17) (500 MHz, CD ₃ OD)	29
Figure 438. ¹ H- ¹ H COSY spectrum of compound (17) (500 MHz, CD ₃ OD)	30
Figure 44S. ¹ H- ¹³ C HMBC spectrum of compound (17) (500 MHz, CD3OD)	30
Figure 45S: HRESIMS spectrum of compound (17) positive mode.	31
Figure 46S. ¹ H NMR spectrum of compound (18) (500 MHz, CDCl ₃)	32
Figure 478. ¹³ C NMR spectrum of compound (18) (125 MHz, CDCl ₃)	32
Figure 488, DEPT ¹³ C NMR spectrum of compound (18) (125 MHz, CDCl ₂)	33
- Bure ross 2 21 1 Contract of compound (10) (120 mill, CDCh)	20

15 $R_1 = O, R_2 = H_2$ **16** $R_1 = \alpha$ -H, β -OH, $R_2 = H_2$ **17** $R_1 = \alpha$ -H, β -OH, $R_2 = O$

Fig. 1S. Structures of compounds (1-18) isolated from D. glabra.

Figure 2S. ¹H NMR spectrum of compound (1) (500 MHz, CDCl₃)

Figure 4S. DEPT ¹³C NMR spectrum of compound (1) (125 MHz, CDCl₃)

Figure 5S. ¹H NMR spectrum of compound (2) (500 MHz, CDCl₃)

Figure 68. ¹³C NMR spectrum of compound (2) (125 MHz, CDCl₃)

Figure 7S. DEPT ¹³C NMR spectrum of compound (2) (125 MHz, CDCl₃)

Figure 9S. ¹³C NMR spectrum of compound (3) (125 MHz, CDCl₃)

Figure 10S. DEPT ¹³C NMR spectrum of compound (3) (125 MHz, CDCl₃)

Figure 12S. ¹³C NMR spectrum of compound (4) (125 MHz, CDCl₃)

Figure 13S. ¹H NMR spectrum of compound (5) (500 MHz, CDCl₃)

Figure 14S. ¹³C NMR spectrum of compound (5) (125 MHz, CDCl₃)

Figure 158. DEPT ¹³C NMR spectrum of compound (5) (125 MHz, CDCl₃)

Figure 16S. ¹H NMR spectrum of compound (6) (500 MHz, CDCl₃)

Figure 17S. ¹³C NMR spectrum of compound (6) (125 MHz, CDCl₃)

Figure 18S. DEPT ¹³C NMR spectrum of compound (6) (125 MHz, CDCl₃)

Figure 19S. ¹H NMR spectrum of compound (7) (500 MHz, CDCl₃)

Figure 20S. ¹³C NMR spectrum of compound (7) (125 MHz, CDCl₃)

Figure 24S. ¹H-¹³C HMBC spectrum of compound (7) (500 MHz, CDCl₃)

Figure 25S: HRESIMS spectrum of compound (7) (A) negative mode, (B) positive mode.

Figure 26S. ¹H NMR spectrum of compound (8) (500 MHz, DMSO₆)

Figure 27S. ¹³C NMR spectrum of compound (8) (125 MHz, DMSO₆)

Figure 28S. DEPT ¹³C NMR spectrum of compound (8) (125 MHz, DMSO₆)

Figure 29S. ¹H NMR spectrum of compound (13) (500 MHz, CDCl₃)

22

Figure 31S. DEPT ¹³C NMR spectrum of compound (13) (125 MHz, CDCl₃)

Figure 34S. DEPT ¹³C NMR spectrum of compound (14) (125 MHz, CDCl₃)

Figure 35S. ¹H NMR spectrum of compound (15) (500 MHz, CDCl₃)

Figure 36S. ¹³C NMR spectrum of compound (15) (125 MHz, CDCl₃)

Figure 408. ¹³C NMR spectrum of compound (17) (125 MHz, CD₃O)

Figure 428. ¹H-¹³C HSQC spectrum of compound (17) (500 MHz, CD₃OD)

Figure 44S. ¹H-¹³C HMBC spectrum of compound (17) (500 MHz, CD₃OD)

Figure 45S: HRESIMS spectrum of compound (17) positive mode.

Figure 47S. ¹³C NMR spectrum of compound (18) (125 MHz, CDCl₃)

Figure 48S. DEPT ¹³C NMR spectrum of compound (18) (125 MHz, CDCl₃)