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Abstract: Integration of temperature cues is crucial for plant survival and adaptation. Global warm-
ing is a prevalent issue, especially in modern agriculture, since the global rise in average temperature
is expected to impact crop productivity worldwide. Hence, better understanding of the mechanisms
by which plants respond to warmer temperatures is very important. This review focuses on the
epigenetic mechanisms implicated in plant responses to high temperature and distinguishes the dif-
ferent epigenetic events that occur at warmer average temperatures, leading to thermomorphogenic
responses, or subjected to extreme warm temperatures, leading to heat stress.
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1. Introduction

Climate change combined with a constant increase in global temperature levels are
current phenomena that intensify annually (NASA Earth Observatory). An increase in the
average levels of global temperature is expected to have a considerable impact on food
security by limiting crop yield and productivity [1,2]. Thus, it is important to understand
and better decipher the molecular and physiological mechanisms that plants employ
to adapt in response to warmer temperatures. Studies on the model plant Arabidopsis
thaliana have been key for exploring warm temperature and heat response mechanisms.
The potential applications of novel findings can be translated as a means of increasing
crop yield via precision agriculture and gene editing technologies. Arabidopsis thaliana is
universally used as a model plant organism, due to its many advantages (well characterized
small genome, quick growth, production of many generations and seeds, very efficient
transformation methods). Additionally, genes that are isolated from Arabidopsis thaliana
can be used to identify homologs in many commercial crops, thus establishing research in
Arabidopsis thaliana is pivotal for further understanding plant crop improvement.

High temperature response mechanisms in plants can be categorized in two classes:
(a) heat stress responses or (b) thermomorphogenic responses, depending on the tempera-
ture range to which plants are subjected. Thermomorphogenesis is defined as a collection
of physiological and architectural changes such as stem extension of both the hypocotyls
and petioles of the plant, early flowering initiation and leaf hyponasty, leading to heat
dissipation [3,4]. Thermomorphogenesis can be categorized into three different groups [3].
The first two groups include responses initiated by prolonged periods of cold temperature
(vernalization process) [5] or fluctuating temperatures [6,7]. The third group includes the
general responses and effects of prolonged mildly warmer average temperature (22-32 °C),
on the overall development and growth of the plant [3], and, will be discussed in this review
along with heat stress responses. To date there are a number of thermo-sensing proteins
and mechanisms which have been identified in Arabidopsis, such as the red /far-red light
receptor and thermosensor phytochrome B (phyB) [8,9], the evening complex components
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EARLY FLOWERING 3 (ELF3) [10], alternative splicing of the PHYTOCHROME INTER-
ACTING FACTOR 7 (PIF7) [11], and the exclusion of the histone variant H2A.Z [12], all of
which regulate major developmental and architectural responses to warmer temperature.

Heat stress responses in plants occur under extreme warm temperature conditions
(exceeding 40 °C) [13]. Heat stress responses are orchestrated by the HSF (Heat Shock
Transcription Factor) protein family, which induce the expression of heat stress proteins
(HSPs), to promote protein homeostasis [14-16]. HSFs have crucial roles during the
initial response to high temperature, the recovery stage and memory acquisition [17].
HSFA2 (HEAT SHOCK TRANSCRIPTION FACTOR A2) for example, is the most important
component in the regulation of transcriptional memory after heat stress [17].

Thermomorphogenesis and heat stress responses are regulated by changes in the
epigenetic status of histones and DNA, which leads to the control of gene expression.
This occurs through the regulation of DNA transcription at the post-translational level,
initiated by chemical modifications to histone proteins [18]. Epigenetic modifications in-
clude DNA and histone methylation [19], histone acetylation [20], phosphorylation [21,22],
ubiquitination [23] and SUMOylation [24]. Additional modifications may also include
regulation of non-coding RNAs (ncRNAs), as well as RNA-mediated DNA methylation
(RdDM) and transcriptional gene silencing [25].

Acetylation is probably the most established and best-studied histone modification
that has an effect on transcriptional regulation [20]. Most commonly the role of acetylation
is to assign a negative charge to lysine residues on the N-terminal histone tails found at
the periphery of the nucleosome [20]. Histone acetylation predominantly results in a more
relaxed chromatin structure, which enhances binding of the transcriptional machinery and
consequently leads to an upregulation of gene expression [20]. Acetylation is controlled by
histone acetyltransferases (HAT) and histone deacetylases (HDAC) [20].

Histone methylation refers to the addition of methyl groups to the lysine or arginine
residues of histones H3 and H4 [19]. Histone methylation, especially on lysine residues,
can either promote or repress transcriptional activation depending on the nature of the
modification [19]. On top of that, the possibility of di- or tri- methylation further adds to
the functional diversity of this modification [19]. For example H3K27me3 is a common
repressive signal at promoter regions of genes that control developmental processes [19].

Histone phosphorylation facilitates the deposition and interaction with other histone
modifications and leads to the initiation of a variety of downstream responses including
DNA damage repair and the regulation of chromatin architecture [21,22]. Histone ubiqui-
tination is also involved in DNA damage responses [23], whereas chromatin-associated
SUMOylation in plants plays a role in regulating development and various stress re-
sponses [24]. There are many potential applications of modulating chromatin-associated
SUMOylation as a tool for crop improvement under stress-inducing conditions, thus mak-
ing the study of molecular mechanisms involved in SUMO-dependent stress response
regulation an important research topic [24,26].

All of the above epigenetic mechanisms play important roles in plant heat stress re-
sponses and /or thermomorphogenesis. The current review discusses recent studies depicting
novel findings on the epigenetic regulation of high temperature-mediated plant responses.

2. Epigenetic Regulation of Thermo-Regulated Responses in Arabidopsis
2.1. Chromatin Regulation in Response to Warm Ambient Temperature
2.1.1. Chromatin Remodeling and Histone Modifications

Chromatin remodeling and/or re-organization constitutes an important factor of
warm temperature sensing and subsequent signaling [27]. Some important events which
occur upon exposure of plants to warmer temperatures, include the exclusion of the histone
variant H2A.Z from +1 position nucleosomes on the promoter of the growth-promoting
PHYTOCHROME INTERACTING FACTOR 4 (PIF4) [12], as well as the auxin biosyn-
thesis regulator and hypocotyl elongation promoter YUCCAS [4,28]. Exclusion of H2A.Z
enhances chromatin accessibility and permits PIF4 to bind the G-box promoter element
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and induce the expression of auxin-responsive and hypocotyl elongation genes, such as
TAA29 (INDOLE ACETIC ACID-INDUCED PROTEIN 29) [29] (Figure 1). The upregulation
of the expression of genes such as PIF4 and YUCCAS that promote hypocotyl elongation in
response to elevated temperature is also facilitated by POWERDRESS (PWR), HISTONE
DEACETYLASE 9 (HDA9) (Figure 1) and HEAT SHOCK PROTEIN A1 [12,27,30,31]. A re-
cent study has reported that HDA9, which is accumulated under warmer temperatures,
is also needed for the induction of YUCCAS expression [2] (Figure 1). More specifically,
both YUCCAS8 expression and auxin accumulation are triggered by H3K9K14 histone
deacetylation mediated by HDA9 [2]. When HDAJY is not active, thermomorphogenesis is
subsequently attenuated [2].
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Figure 1. The epigenetic events underlying warmer average temperature responses. Under mild warmer average tem-
peratures hypocotyl elongation is induced through the action of different factors. POWERDRESS (PWR) and HISTONE
DEACETYLASE 9 (HDAY) physically interact, resulting in histone deacetylation of specific loci. This event is important
for the subsequent exclusion of H2A.Z from +1 nucleosomes of PIF4 and YUCCAS. PWR acts upstream of the hypocotyl
elongation factor PIF4 as a chromatin remodeler facilitating this process. The above events result in the ability of PIF4 to
bind the YUCCAS promoter. YUCCAS protein synthesis in turn leads to the expression of further auxin-regulating genes
such as JAA29, which further leads to IAA29 protein synthesis and subsequent hypocotyl elongation. Proteins are depicted
in squares and genes in circles. The figure was created in BioRender.

PWR is also involved in the initiation of thermomorphogenesis and the transcriptional
regulation of PIF4 and YUCCAS, via the facilitation of histone H3K9K14 deacetylation [12,32].
PWR physically interacts with HDA9 leading to histone deacetylation of certain loci genome-
wide [27] (Figure 1). Specifically, PWR acts upstream of PIF4 as a chromatin remodeler
(Figure 1), and, it has been shown that the absence of PWR results in excess acetylation of
the PIF4 locus with a subsequent reduction in PIF4 gene expression [27]. Therefore, histone
H3K9K14 deacetylation, appears to be required for the nucleosome eviction of H2A.Z at
the +1 nucleosome of locus PIF4 [27]. Moreover, transcriptome analysis and statistical
association studies, indicated a link between H2A.Z nucleosome dynamics and histone
deacetylation mediated by PWR [27]. However, further analysis is required to examine the
exact relationship between H2A.Z exclusion and H3K9K14 deacetylation.

In addition to a constant or prolonged increase in temperature, a common phe-
nomenon to which plants are subjected to when growing under natural conditions is
recurring temperature fluctuations [3,33,34]. A very recent study revealed that a family of
demethylases called JUMONIJI (JM]), is involved in mediating the epigenetic memory in
response to high temperature in Arabidopsis [35]. In particular, J]M] proteins are necessary
for removing H3K27me3 marks from genes responsible for maintaining warm temperature
and heat memory [35]. Epigenetic memory or epi-priming can lead to a rapid and efficient
response to a particular environmental stimulus, such as elevated temperature compared
to the initial exposure [36].
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2.1.2. RNA Editing and Regulation in Response to High Temperature

Regulatory RNA thermo-switches in plants are a novel field of research. A recent study
has revealed that PIF7 plays a role in the activation of thermomorphogenic responses [11].
Specifically, this activation occurs through the formation of an RNA hairpin at the 5
end untranslated region of PIF7, which leads to an increase in protein synthesis and
accumulation of PIF7 under warm day temperatures [11]. Warmer day temperatures
lead to the relaxation of secondary structure of the RNA hairpin that becomes partially
unfolded [11]. The more relaxed and unfolded conformation of the hairpin facilitates
translation and leads to higher PIF7 protein levels [11]. PIF7 protein then induces the
transcription of YUCCAS and IAA genes (IAA19 and IAA29), resulting in an upregulation
of the protein levels synthesized by these genes [11].

2.2. Heat Stress Mediated Chromatin Events
2.2.1. Heat-Mediated Chromatin Remodeling

Chromatin dynamics play a pivotal role in the regulation of global- and locus-specific
gene expression during heat stress responses. FGT1 (FORGETTER 1), which encodes for a
PHD (plant homeodomain) finger protein, physically interacts with chromatin remodelers
around the region which surrounds the transcription start sites (TSS) of heat-responsive
genes to promote heat-induced memory [37]. In particular, FGT1 functions in synergy
with BRAHMA (BRM), CHROMATIN-REMODELLING PROTEINS 11 and 17 (CHR11 and
CHR17) to modulate nucleosome dynamics at the gene loci of HSP22, HSP18.2, HSP21 and
HSA32 (HEAT-STRESS-ASSOCIATED 32), and induce their expression after the initial heat
stress [37] (Figure 2). Furthermore, when Arabidopsis plants were subjected to heat stress,
chromatin-associated SUMO signals increased around TSS regions that are enriched in ac-
tive histone marks [26]. Intriguingly, chromatin SUMOylation facilitates the transcriptional
reprogramming from plant growth to stress responses, as indicated by the overexpression
of SUMO-associated heat-responsive genes and the downregulation of growth-promoting
genes during heat stress [26] (Figure 2).

2.2.2. Nuclear Re-Organization

Heat stress (HS) has been reported to influence the architecture of the plant nucleus.
Dense fibrillar component (DFC) diffusion is a nuclear process which was observed in
the nucleolus under HS treatment and has been shown to be reversible during HS re-
covery [38,39]. Heat-regulated DFC diffusion has been associated with potential changes
in liquid-liquid phase separation (LLPS) of intrinsically disordered regions (IDRs) in
Arabidopsis FIBRILLARIN 2 (FIB2) and NUCLEOLIN LIKE 1 (NUC1) proteins [38]. Oppo-
sitely, the nucleolus-associated domains (NADs) are stable and not influenced by HS and
cell senescence [38].

Prolonged exposure to high temperatures also causes chromocenter de-condensation
and dispersion of heterochromatin, which is directly linked to TE (Transposable Element)
activation [40-43]. HIT4 (HEAT-INTOLERANT 4), a pivotal regulator of chromatin re-
organization in response to heat stress, facilitates nucleosome dispersion leading to the
release of transcriptional gene silencing (TGS) [42]. A recent study demonstrated that
in Arabidopsis, heat stress markedly affects chromatin dynamics by triggering global
re-organization. In addition, local chromatin interactions are enhanced whilst distant
intrachromosomal interactions diminish, with the latter being associated with reduced
chromatin compartmentalization and TE activation [41].
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Figure 2. Epigenetic events controlling temperature responses to heat stress. Plants utilize epigenetic mechanisms such as
histone modifications, chromatin remodeling and DNA methylation to cope with heat stress and acquire heat stress memory.
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Epigenetic marks contributing to thermotolerance include H3K9, H3K14 and H3K56 acetylation, H3K4 hypomethylation,

de novo DNA methylation mediated through the RADM pathway and chromatin SUMOylation. DNA hypomethylation of
heat inducible genes is an essential step in HS recovery, while chromatin remodeling, HSFs and H3K4 hypermethylation

contribute to the acquisition of HS memory. Dotted lines symbolize unknown factors involved in the pathway illustrated
Heat Stress (HS), Heat Shock Factors (HSF), RNA-directed DNA Methylation (RADM). The figure was created in BioRender.

2.2.3. Histone Modifications

Histone modifications, such as histone methylation and acetylation govern transcrip-

tional regulation and epigenetic memory in response to heat stress. Interestingly, chromatin
immunoprecipitation analysis demonstrated a significant depletion in global deposition of

H3K9me2 and H3K4me3 repressing marks in Arabidopsis plants subjected to prolonged heat
stress treatments [40]. As mentioned in the introduction, an important HSF factor, HSFA?2,
forms heterodimers with HSFA3 and interacts with additional HSFs to recruit H3K4 histone
methyltransferases and mediate histone H3K4 hypermethylation to maintain transcrip-
tional memory during HS recovery [44,45] (Figure 2). In recent years, a lot of effort has been
made to elucidate the role of histone acetylation in mediating heat stress-induced responses.
More specifically, under high temperatures Arabidopsis HISTONE DEACETYLASE 3 (HD2C)
transcript increase leads to the suppression of heat-inducible genes, a molecular event
that is facilitated through the physical interaction of HD2C with the chromatin remod-
eler BRM [46]. An additional interactor of HD2C, HDA6 (HISTONE DEACETYLASE 6),
promotes thermotolerance through the RADM pathway as well as independently of the
latter [47,48] (Figure 2). In particular, hda6 mutants demonstrate hypersensitivity and a
significantly disorganized transcriptome during heat stress treatment [48]. Furthermore,
the Arabidopsis histone chaperones ANTI- SILENCING FUNCTION 1A and 1B (ASF1A
and ASF1B) mediate the transcriptional activation of the heat-responsive genes HSFA2
and HSA32 through nucleosome dissociation and H3K56 acetylation of these loci [49]
(Figure 2). GCN5 (GENERAL CONTROL NONDEREPRESSIBLE 5) is a HAT that also

activates the expression of the thermotolerance-conferring Arabidopsis genes HSFA3 and
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UVH6 (ULTRA-VIOLET HYPERSENSITIVE 6) by promoting H3K9 and H3K14 acetylation
at their promoter regions [50] (Figure 2).

2.2.4. DNA Methylation

As a pivotal epigenetic mark, DNA methylation is involved in gene regulation during
plant HS responses [45,51]. It has been shown that HS results in a global increase in
the DNA methylation levels in Arabidopsis [52]. A global increase in the level of DNA
methylation, is in turn linked to the function of the RdADM pathway, which contributes to
the acquisition of thermotolerance in plants [48]. In particular, HS triggers the upregulation
of components involved in the RADM, such as the DNA methyltransferase DOMAINS
REARRANGED METHYLTRANSFERASE 2 (DRM2) and the RNA polymerase IV (PollV)
and PolV subunits, NUCLEAR RNA POLYMERASE D1 (NRPD1) and NUCLEAR RNA
POLYMERASE E1 (NRPE1) [53] (Figure 2).

HS tends to activate certain TEs which enhance plant thermotolerance [51,54]. The HS-
induced temporary activation of the TE ONSEN helps strengthen heat-tolerance [55,56],
while DNA methylation represses ONSEN activation together with histone H1 and other
factors in mature plants [51] (Figure 2). Overall DNA methylation, in response to heat
stress, acts as a ‘buffer’, helping maintain a balance between the heat stimulus and the
acute activation of TEs [51].

Epigenetic changes also take place during the recovery period from HS, to facilitate
a plant to develop a HS memory. Differentially methylated cytosine (DMC) analysis in
Arabidopsis under HS, HS recovery, and control temperature conditions, depicted that
DNA methylation increased during HS and decreased during the recovery period [57].
Additionally, histone H3K4 methylation negatively affects the RdDM pathway and results
in hypomethylation [58]. Recently, two Trithorax (TrxG) protein family members, histone
H3K4 methyltransferases ARABIDOPSIS TRITHORAX-RELATED 7 (ATXR7) and ARA-
BIDOPSIS TRITHORAX 1 (ATX1) which are significantly upregulated in response to heat
stress, were demonstrated to be implicated in the downregulation of histone and DNA
methylation at certain HS-associated gene loci during both heat stress and recovery [45]
(Figure 2). The activation of HS genes and heritable TEs contributes to the establishment
and maintenance of plant HS memory, helping improve the plant thermotolerance in future
HS conditions [45].

2.2.5. Non-Coding RNA (ncRNA) Regulation of Heat Stress Responses

Non-coding RNAs, including microRNAs (miRNAs), small interfering RNAs (siR-
NAs), circular RNAs (circRNAs) and long non-coding RNAs (IncRNAs), are actively
involved in the plant HS response and memory [59]. Plant miRNAs repress the expression
of their targeted genes [60]. In particular, miR398 contributes to the down-regulation of sev-
eral HS-related genes such as COPPER/ZINC SUPEROXIDE DISMUTASE 1/2 (CSD1/2) and
COPPER CHAPERONE FOR SUPEROXIDE DISMUTASE (CCS) [61]. SQUAMOSA PRO-
MOTER BINDING PROTEIN-LIKE (SPL), target of miR156, is downregulated under HS,
and further contributes to the expression of flowering time promoters FLOWERINGLOCUS
T (FT) and FRUITFULL (FUL) [60]. The GIBBERELLIC ACID MYB (GAMY B) transcription
factor loci are targets of miR159 and these transcription factors contribute to the improve-
ment of the plant HS tolerance [61]. Plant siRNAs are involved in the RADM-based de novo
methylation [62].

The siRNA biogenesis is involved in the regulation of ONSEN. Plants deficient in
siRNAs exhibit constitutive HS memory phenotypes and the activation of ONSEN is
heritable in this case [63]. Another category of ncRNAs, circRNAs, are involved in tran-
scriptional or post-transcriptional regulation, and are significantly upregulated under
HS [64]. More than 1500 heat-specific circRNAs have been identified so far [64,65]. These
circRNAs potentially regulate plant heat responses by acting as miRNA-binding competi-
tors [65]. The former research identified three miR9748-targeted hormone signaling-related
genes (CsalM690240.1, Csa7M405830.1, Csa6M091930.1) which were upregulated by com-
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petitive interactions among miR9748 and two newly-found circRNAs (novel_circ_001543,
novel_circ_000876) [63]. MiR9748 has been shown to have an effect on HEAT-SHOCK PRO-
TEIN 90 (HSP90) that is involved in protein processing at the endoplasmic reticulum [65].

3. Conclusions and Future Perspectives

Increases in environmental temperature have a great effect on plant growth and devel-
opment. Considering how important agriculture and crop production sustainability is for
the global population, better understanding and deciphering the mechanisms plants use to
perceive and respond to different levels of warmer temperature, is a priority. Warm tem-
perature responses of plants can be categorized as either thermomorphogenic or heat stress
responses, depending on the temperature levels.

Epigenetic mechanisms such as chromatin regulation and remodeling are essential
for shaping warmer average temperature responses [2,27]. Therefore, it is essential that
additional studies are performed to contribute to further analysis and mapping of the
epigenetic mechanisms involved in warm temperature responses. Established techniques
such as Chromatin Immunoprecipitation as well as novel technologies such as Chromatin
Conformation Capture (Hi-C) performed on plants grown under specific temperature
conditions, followed by parallel next generation sequencing of lines overexpressing or
lacking components involved in temperature perception and signaling could provide in-
sight on the regulation of global chromatin remodeling levels and possibly identify new
interactions. Furthermore, chromatin remodeling complexes can be further investigated
through studies involving mass spectrometry analysis, performed on plants exposed to
specific temperature conditions. Additionally, further investigation focusing on poten-
tial overlapping of specific epigenetic mechanisms involved in heat stress response and
warm temperature thermomorphogenesis (ex. SUMOylation) would be very informative.
The aforementioned experiments could provide even further insights into the epigenetic
mechanisms involved in warmer temperature integration and signaling responses in plants,
which could subsequently offer means of sustaining global crop yield and productivity.

Plant adaptation to heat stress also relies on a number of epigenetic mechanisms,
including chromatin remodeling, chromatin-associated SUMOylation [26], histone modi-
fications [40,44-50] and ncRNA regulation [60]. Although a lot of effort has been put on
elucidating the epigenetic adaptation to heat acclimation, the current literature is still lack-
ing evidence on how different factors such as transcription factors, ncRNAs and chromatin
modifications cooperate to configure heat stress responses. Another interesting topic that
has yet to be fully investigated, is the role of histone modifications in the acquisition of
transcriptional memory to heat stress. Furthermore, the contribution of chromatin remod-
eling complexes to plant thermotolerance is quite limited and further research is required
to identify additional molecular complexes and factors that could potentially be involved.

In the last decade the global interest in understanding plant heat stress responses
has increased, due to the unprecedented effects of global warming and overpopulation.
The rise of average global temperatures poses a detrimental threat to global crop produc-
tivity affecting nutrient absorption and availability in plants, as well as impacting normal
growth and physiological responses. Hence, better understanding and uncovering how
warm temperature alters chromatin dynamics and nuclear organization, will contribute
to the efforts to develop precision agriculture practices and promote global food security.
Developing molecular and epigenetic strategies to improve crop resilience to increased
temperatures would provide breeders the tools to maximize production in response to
climate change. For instance, utilizing current and future knowledge of epigenetic marks
could contribute to the discovery of new epialleles and/or enrichment of phenotypic varia-
tion. In conclusion, epi-breeding is a valuable tool which can be used to manipulate plant
transcriptomes to enhance thermotolerance and priming that could prevent and manage
crop losses.
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