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Abstract: Chickpea (Cicer arietinum L.) is a major pulse crop in Israel grown on about 3000 ha spread,
from the Upper Galilee in the north to the North-Negev desert in the south. In the last few years,
there has been a gradual increase in broomrape infestation in chickpea fields in all regions of Israel.
Resistant chickpea cultivars would be simple and effective solution to control broomrape. Thus,
to develop resistant cultivars we screened an ethyl methanesulfonate (EMS) mutant population
of F01 variety (Kabuli type) for broomrape resistance. One of the mutant lines (CCD7M14) was
found to be highly resistant to both Phelipanche aegyptiaca and Orobanche crenata. The resistance
mechanism is based on the inability of the mutant to produce strigolactones (SLs)—stimulants of
broomrape seed germination. LC/MS/MS analysis revealed the SLs orobanchol, orobanchyl acetate,
and didehydroorobanchol in root exudates of the wild type, but no SLs could be detected in the root
exudates of CCD7M14. Sequence analyses revealed a point mutation (G-to-A transition at nucleotide
position 210) in the Carotenoid Cleavage Dioxygenase 7 (CCD7) gene that is responsible for the
production of key enzymes in the biosynthesis of SLs. This nonsense mutation resulted in a CCD7
stop codon at position 70 of the protein. The influences of the CCD7M14 mutation on chickpea
phenotype and chlorophyll, carotenoid, and anthocyanin content were characterized.

Keywords: chickpea; strigolactone; broomrape resistance; chickpea phenotype; chlorophyll; carotenoid;
anthocyanin

1. Introduction

Chickpea (Cicer arietinum L.) is an important legume crop grown on over 10 million
ha in at least 37 countries worldwide, including India (65%), Pakistan (10%), Iran (8%),
and Turkey (5.5%). [1]. In Israel chickpea is one of the main legume crops, grown on
about 3000 ha with an average yield of about 3.5 t/ha. In recent years, the two broomrape
species in Israel, Egyptian broomrape (Phelipanche aegyptiaca Pers.) and crenate broomrape
(Orobanche crenata Forsk.), have become a major problem in chickpea field production [2].
The only broomrape-control methods that have been successfully utilized commercially in
other crops are resistant varieties and chemical control [3–5].

Broomrapes (Phelipanche spp. and Orobanche spp.) are worldwide weedy root para-
sites of dicotyledonous crops, causing severe losses in the yield and quality of agricultural
crops [6,7]. The initial step of broomrape–plant recognition involves root-exuded strigo-
lactones (SLs), which have long been known to induce broomrape seed germination [8,9],
and have been recently recognized as plant hormones affecting plant development and
growth [10]. SLs consist of a tricyclic lactone (A, B, and C rings) connected to a butenolide
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group (D ring) via an enol ether bridge. SLs’ degree of activity, function, and specificity
depend on the various substituents on the A and B rings [11]. The SL biosynthesis path-
way in plants is derived from the carotenoid pathway [12–14], in which β-carotene is
converted into carlactone by three catalytic enzymes: D-27 (9-cis/all-trans-β-carotene
isomerase) [15], and two carotenoid cleavage dioxygenases, CCD7 and CCD8 [16,17]. Car-
lactone is converted to SLs by the cytochrome P450 monooxygenase- homolog activity
of MORE AXILLARY GROWTH1 (MAX1) in rice [18], and MAX1 and lateral branching
oxidoreductase in Arabidopsis [16,19,20]. SLs are produced mainly in roots and their active
transport to the rhizosphere by the exporter pleiotropic drug resistance 1 (PDR1), identified
in Petunia, was shown [21–23].

In a previous study, we obtained a tomato CCD7-deletion mutant showing broomrape
resistance [24,25]. SL-deficient sorghum and rice mutants also demonstrate high degrees
of resistance to Striga spp. [26,27]. Moreover, resistance to parasitic weeds based on
low SL exudation exists in pea and faba bean germplasms [28,29]. Mutants defective
in SL biosynthesis are characterized by a highly branched/tillering phenotype [30,31].
Furthermore, SLs regulate root architecture [16,32–35].

The objectives of the present study were to isolate and characterize an ethyl methane-
sulfonate (EMS)-mutagenized F01 chickpea mutant, CCD7M14, which shows considerable
resistance to broomrape, and to elucidate its resistance mechanism, characterize its pheno-
type, and determine its leaf chlorophyll, carotenoid and anthocyanin contents.

2. Results
2.1. Mutagenesis and Screening for Broomrape Resistance

EMS mutagenesis was applied to seeds of a wild-type (WT) F01 chickpea breeding
line (Kabuli type), and 3000 families of the second generation were tested for resistance
to both P. aegyptiaca and O. crenata. A chickpea mutant showing high resistance to both
broomrapes, was identified—CCD7M14 (Figure S1).

2.2. Phenotyping
2.2.1. Resistance to P. aegyptiaca and O. crenata

P. aegyptiaca shoots began to emerge aboveground 8 weeks after sowing in pots with
WT F01 plants. At this time, about 20% of the WT F01 plants were infected with one
or two shoots (Figure 1a). Both shoot number above the soil and percentage of infected
plants increased rapidly over time, and at the end of the experiment (14 weeks), all WT
F01 plants were infected with 8–10 aboveground shoots. At this time only one broomrape
shoot was observed in two pots planted with CCD7M14 (percentage of infected plants
was 20%). Throughout the course of the experiment, both percentage of infected plants
and number of aboveground shoots per plant were significantly lower for the mutant
plants. The roots were washed and broomrape number and biomass were recorded. About
16.10 ± 4.23 broomrape shoots were counted per WT F01 plant with average biomass of
82.11 ± 6.69 g, whereas only 1.60 ± 1.78 shoots with total biomass of 7.93 ± 5.15 g were
found per mutant plant (Table 1).

O. crenata developed more slowly than P. aegyptiaca. First O. crenata shoots emerged
aboveground 12 weeks after planting in WT F01 pots (Figure 1b). At the end of the
experiment (20 weeks after sowing), 90% of WT F01 plants were infected with one or
two shoots. About 13.6 ± 3.48 broomrapes with a total biomass of about 109.74 ± 10.92 g
per WT F01 plant were observed after root washing (Table 1). CCD7M14 plants were highly
resistant to O. crenata. Only one aboveground shoot was observed in one pot at the end of
the experiment, and about 2.20 ± 1.71 broomrapes with a total biomass of 13.78 ± 6.96 g
were counted on the washed roots (Table 1).
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Figure 1. Aboveground broomrape shoots in pots planted with WT F01 or the CCD7M14 mutant. The experiments were
arranged in a completely randomized design with 10 replications (pots) per treatment. Lines show the percentages of
infected plants, bars indicate the average numbers of aboveground shoots attached to the infected plants. (a) Infestation
with P. aegyptiaca. (b) Infestation with O. crenata. Vertical lines indicate standard error of the mean (SEM). Lowercase
letters indicate least-significant differences (LSD), based on the Tukey–Kramer honestly significant difference test (α = 0.05)
between the chickpea lines.

Table 1. Statistical analysis of the chickpea resistance experiments. The results were subjected to ANOVA. The experiments
were conducted with ten replications. SEM—standard error of the mean, dF—Degrees of Freedom; F—F ratio, Prob > F—
F probability.

Parameter Chickpea Line Average Mean SEM dF F Prob > F

P. aegyptiaca

Broomrape number
WT F01 16.1 4.23 1 99.96 <0.0001

CCD7M14 1.6 1.78

Broomrape biomass (g)
WT F01 82.11 6.69 1 77.17 <0.0001

CCD7M14 7.93 5.15

O. crenata

Broomrape number
WT F01 13.6 3.48 1 9.6 0.0062

CCD7M14 2.2 1.71

Broomrape biomass (g)
WT F01 109.74 10.92 1 54.92 <0.0001

CCD7M14 13.78 6.96
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2.2.2. Resistance Mechanism

To determine whether the resistance mechanism of CCD7M14 was based on its inabil-
ity to synthesize SLs or secrete them into the rhizosphere, we tested its ability to stimulate
broomrape seed germination. P. aegyptiaca seed germination near the WT F01 root system
was high (76.84 ± 6.28%), whereas in the pots with CCD7M14 plants, only 0.72 ± 0.45% of
the seeds germinated. Germination of O. crenata seeds was about 42.12 ± 2.57% in the pots
with the WT, whereas in the mutant pots, no O. crenata seed germination was observed
(Table 2).

Table 2. Statistical analysis of the broomrape seed germination closed to chickpea roots. The results were subjected to
ANOVA. The experiments were conducted with five replications. SEM—standard error of the mean, dF—Degrees of
Freedom; F—F ratio, Prob > F—F probability.

Broomrape Chickpea Line Average Mean SEM dF F Prob > F

P. aegyptiaca
WT F01 76.84 6.28 1 146.00 <0.0001

CCD7M14 0.72 0.45

O. crenata
WT F01 42.21 2.57 1 270.07 <0.0001

CCD7M14 0 0

The ability of WT and CCDM14 root exudates to stimulate P. aegyptiaca seed germi-
nation was tested in vitro in Petri dishes. Root exudate of the WT applied to the seeds
at concentrations of 0.1, 1 and 10 µL/mL caused P. aegyptiaca germination at rates of
28.1 ± 5.78, 77.38 ± 3.13, and 84.84 ± 4.28%, respectively (compared to 79.19 ± 1.7%
following application of 10−6 M GR24, a synthetic SL, as a positive control) (Table 3). A
low percentage of seed germination was induced by the mutant root exudates (9.02 ± 0.77,
15.94 ± 1.19, and 34.95 ± 2.52% at concentrations of 0.1, 1 and 10 µL/mL, respectively),
but only short radicals developed, which did not continue to elongate normally and were
dead after 1 week.

Analysis of SLs in root exudates of WT F01 and CCD7M14 plants revealed the presence
of orobanchol, orobanchyl acetate, and putative didehydroorobanchol in WT F01 root
exudates, but no SLs in the mutant root exudates (Figure S2).

Table 3. Statistical analysis of the broomrape seed germination caused by root exudates. The results were subjected to
ANOVA. The experiments were conducted with five replications. SEM—standard error of the mean, dF—Degrees of
Freedom; F—F ratio, Prob > F—F probability.

Root Exudates Concentration (µL/mL) Chickpea Line Average Mean SEM dF F Prob > F

1
WT F01 28.10 5.78 1 10.71 0.0307

CCD7M14 9.02 0.77

10
WT F01 77.38 3.13 1 336.71 <0.0001

CCD7M14 15.94 1.19

100
WT F01 84.84 4.28 1 100.95 0.0006

CCD7M14 34.95 2.52

2.2.3. Plant Morphology and Pigment Contents

CCD7M14 plants had a SL-deficiency phenotype, with a high number of short
branches compared to WT F01 plants. No significant differences in foliage or root biomass
were found between the lines (Table 4). The CCD7M14 plants had 83% more primary
branches than the WT F01 plants, and the mutant’s primary branch length was only 66%
of that of the WT F01 plant. These morphological changes in CCD7M14 were observed
both in the net house and under field conditions (Figure 2a–d), leading to a bushy shape at
plant maturity.
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Table 4. Morphological characteristics of CCD7M14 compared to WT F01 chickpea.

Parameters
Chickpea Line

WT F01 CCD7M14

Foliage biomass (g) 242.8 ± 14.5 a 210.2 ± 12.5 a

Root biomass (g) 112.3 ± 8.3 a 113.8 ± 37.2 a

Primary branch number 7.0 ± 0.8 b 12.0 ± 1.4 a

Primary branch length (cm) 62.6 ± 2.0 a 40.3 ± 4.0 b
Data are presented as average mean of 5 replications with standard error of the mean (SEM). Lowercase letters
indicate significant differences between the WT F01 and CCD7M14 according to LS means contrast test (α = 0.05).
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Figure 2. Morphological differences between WT F01 and CCD7M14. (a) One-month-old WT F01
(right) and CCD7M14 (left) plants grown in a net house. (b1,b2) Stem distribution on the lower section
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WT F01 (left) and CCD7M14 (right) plants in the field.

Analysis of carotenoid, chlorophyll, and anthocyanin contents in the first, third, and
fifth leaves revealed significant decreases in carotenoids and chlorophylls, and an increase
in anthocyanins in the mutant as compared to its parental line (Table 5).

Table 5. Contents of carotenoids, chlorophyll, and anthocyanins (µg per 1 g of fresh leaf biomass) in the leaves of WT F01
and CCD7M14.

Pigment
Leaf 1 Leaf 3 Leaf 5

WT F01 CCD7M14 WT F01 CCD7M14 WT F01 CCD7M14

Chlorophyll a 214.5 ± 9.2 a 120.3 ± 15.1 b 230.0 ± 30.0 a 157.2 ± 9.5 b 281.5 ± 48.9 a 151.1 ± 30.6 b

Chlorophyll b 183.9 ± 7.4 a 56.0 ± 11.7 b 184.3 ± 47.9 a 74.5 ± 5.0 b 200.0 ± 35.3 a 65.2 ± 17.2 b

Total chlorophyll 402.2 ± 11.5 a 176.3 ± 26.5 b 414.43 ± 80.5 a 231.7 ± 6.1 b 481.6 ± 56.7 a 216.3 ± 53.2 b

Carotenoids 62.1 ± 5.3 a 35.1 ± 4.0 b 66.5 ± 12.1 a 35.8 ± 2.8 b 61.3 ± 8.1 a 27.2 ± 4.5 b

Anthocyanin 9.7 ± 0.9 b 33.2 ± 5.1 a 15.2 ± 2.1 b 32.6 ± 7.3 a 11.9 ± 1.2 b 29.3 ± 4.2 a

Results are presented as average mean of 3 replications with standard error of the mean (SEM). Lowercase letters indicate significant
differences between the WT F01 and CCD7M14 according to LS means contrast test (α = 0.05).
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2.3. DNA Analysis

Blast analyses of the chickpea genome based on the tomato CCD7 sequence revealed a
single CCD7 gene with 64.9% protein sequence identity to the tomato protein (Figure 3).
DNA sequence analysis of the CCD7 gene in CCD7M14 compared to the WT F01 line
revealed a single G-to-A nucleotide transition at position 210 (Figure 4). This mutation
led to stop-codon formation (*) instead of tryptophan (W) at amino acid position 70 (84 in
tomato) (Figure 5). No other mutations were found in the chickpea CCD7 gene.
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3. Discussion

Chickpea mutant CCD7M14 was produced by EMS mutagenesis. The mutant showed
high resistance to both P. aegyptiaca and O. crenata (Figure S1). Only one mutant plant was
infected with a single P. aegyptiaca, and one with a single O. crenata shoots in all experi-
ments, compared to 90–100% infection in WT F01 plants with more than 8–10 aboveground
broomrape shoots (Figure 1a,b). However, once an attachment formed on the mutant roots,
parasite development progressed normally. Since no P. aegyptiaca or O. crenata seed germi-
nation was observed near CCD7M14 roots, and its root exudates did not stimulate their
seed germination in Petri dishes, it is suggested that the CCD7M14 resistance mechanism
is based on its inability to synthesize SLs or to secrete them into the rhizosphere. Indeed,
DNA sequence analysis of the CCD7M14 CCD7 gene revealed stop-codon formation due
to a single G-to-A nucleotide transition at position 210 (Figures 4 and 5). This resulted in
the absence of the SLs orobanchol, orobanchyl acetate, and didehydroorobanchol in the
root exudates (Figure S2), rendering the mutant plant resistant to the parasite because no
seed germination could occur near its roots. This resistance mechanism has been reported
in tomato [25,36–38], pea [39] and faba bean [30,40]. Previously, this type of resistance had
been obtained by fast-neutron mutagenesis [24,25] and targeted mutagenesis [37,38]. It had
also been found in wild tomato species (Solanum pennellii [36]), and recognized in resistant
cultivars of faba bean and pea [30,39,40]. In our case, the resistance was obtained by EMS
mutagenesis, where one point mutation in the CCD7 gene resulted in the formation of a stop
codon, leading to the same results as CCD7 deletion by fast-neutron mutagenesis [25,26] or
silencing of CCD8 using CRISPR/Cas9-mediated mutagenesis [37,38]. It is important to
note that to date, all identified CCD7 genes have been single copies, in contrast to two, four
and six copies of CCD8 identified in maize, rice and sorghum, respectively [41].

It has been shown that plants exude mixtures of several SLs, and every plant species
is characterized by a specific SL profile [42]. In the current study, we first identified the SLs
produced by chickpea roots. LC/MS/MS analysis revealed that the WT F01 chickpea culti-
var produces three SLs: orobanchol, orobanchyl acetate, and putative didehydroorobanchol
isomer(s). All three belong to the orobanchol type, which only differs from the strigol-type
SLs in the stereochemistry of the C-ring [43], and are derived from 4-deoxyorobanchol
in rice [18]. Some other species, such as Populus, pea, petunia, and tomato, have been
reported to have only orobanchol-type SLs [44]. Orobanchol, first isolated from red clover
(Trifolium pratense L.) root exudates [9], is probably the most abundant hydroxy-SL in the
plant kingdom [42]. This SL assumes to be a central intermediate in SL biosynthesis, and
it has been suggested as a precursor of other SL molecules, such as: fabacol, orobanchyl
acetate, solanacol, and so on [43]. Putative didehydroorobanchol has been detected in root
exudates of tomato [26], tobacco [42], and Medicago truncatula [45]; and orobanchyl acetate
in red clover [46], rice and tobacco [47]. The didehydroorobanchol isomer in M. truncatula
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was named medicaol [45]. Both orobanchol and orobanchyl acetate have been reported to
be produced by Asteraceae plants and by faba bean [48,49].

CCD7M14 was characterized by a typical SL-deficient phenotype—increased branch-
ing and reduced plant height. These results are in agreement with Vogel et al. [50], where
transgenic tomato plants expressing their endogenous CCD7 gene in the antisense form
also displayed increased branching and reduced plant height. Similar observations have
also been reported for pea [51], petunia [52], poplar [53], and Arabidopsis [54]. According
to Boyer et al. [11], orobanchyl acetate and 5- deoxystrigol are more active at inhibiting
shoot branching than strigol and orobanchol. Furthermore, blockage of orobanchol biosyn-
thesis from carlactonoic acid in tomato did not rescue the branching phenotype [55]. The
absence of orobanchyl acetate in CCD7M14 plants likely explains its bushy shape at matu-
rity (Figure 5). Orobanchol and putative didehydroorobanchol may be involved in other
biological processes, such as regulation of photosynthesis and pigment accumulation. We
found significant decreases in chlorophyll and carotenoid contents and an increase in an-
thocyanins in the leaves of CCD7M14 as compared to the WT F01 line (Table 2). Exogenous
application of the synthetic SL GR24 under stress conditions has been shown to control
chlorophyll degradation and maintain the photosynthetic rate [56–59]. On the other hand,
chlorophyll content in sunflower leaves was not influenced by GR24 treatment of achene
pre-sowing, but carotenoid content increased [60]. GR24 has been found to affect ABA-
induced activation of anthocyanin biosynthesis in grapevine berries [61]. In transgenic
tobacco lines impaired in SL biosynthesis, overaccumulation of anthocyanins in the mature
stems likely results from antagonism between the SL and jasmonic acid pathways [62]. SL
regulation of anthocyanin accumulation has been shown in Arabidopsis [63,64].

4. Materials and Methods
4.1. Plant Material

All experiments were carried out with: (a) a WT F01 chickpea breeding line (Kabuli
type) that is erect, produces high yields, and is resistant to both Fusarium wilt and Ascochyta
blight and (b) CCD7M14, a chickpea EMS mutant line derived from WT F01. Broomrape
seeds were collected from P. aegyptiaca and O. crenata inflorescences parasitizing tomato
plants grown in Kibbutz Bet Ha’shita (32◦33′15′′ N 35◦26′15′′ E) and chickpea plants grown
in Kibbutz Kfar H’horesh (32◦42′7.56′′ N 35◦16′27.47′′ E), respectively. The inflorescences
were dried at 23–35 ◦C for 2 months and then the seeds were separated with a 300-mesh size
sieve (50 µm) and stored in the dark at 4 ◦C until use.

4.2. Mutagenesis

WT F01 chickpea breeding line seeds were used for mutagenesis. Approximately
6000 WT F01 seeds were allowed to swell in water for 10 h and then exposed to the mutation
inducer EMS at a concentration of 4% (vol/vol) which, according to the dose-response
curve, decreased seed germination by 50%. After shaking at 50 rpm for 10 h, the EMS
was removed, and the seeds were washed under running tap water for 14 h. The seeds
were dried under airflow for 48 h and delivered to Shorashim Nursery Ltd., Israel, to
produce seedlings. The seedlings were planted and grown in a field at the Western Galilee
experimental farm, Israel (32◦55′ N 35◦04′ E), to produce M2 seeds.

4.3. Screening for Broomrape Resistance

An EMS-mutated population of about 3000 families (each derived from a single M1
plant) was used to screen for broomrape resistance. Eight M2 generation seeds from each
family were seeded separately in soil containing seeds of P. aegyptiaca and O. crenata at a
concentration of 20 mg seeds per kg of soil (~3000 seeds/kg). After 3 months, plant roots
were evaluated for broomrape infection. Families of plants that were free of broomrape
were selected for the next screening, leading to identification of the broomrape-resistant
mutant CCD7M14.
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4.4. Phenotype Determination
4.4.1. Evaluation of Broomrape Resistance

Broomrape-resistance tests were conducted in 2 L pots, each filled with soil mixed
with the seeds of P. aegyptiaca and O. crenata at a concentration of 20 mg seeds per kg soil.
Control pots did not contain broomrape seeds. Each pot was planted with one chickpea
plant. Organic medium-heavy clay–loam soil collected in Newe Ya’ar Research Center
(32◦42′9” N, 35◦10′9” E) was used in all experiments. The plants were grown in nethouse
and irrigated and fertilized as needed. The experiments were arranged in a completely
randomized design with 10 replications (pots) per treatment. Once a week, the number of
broomrape shoots per pot was evaluated. At the end of the experiments, the roots were
gently washed out of the pots under tap water and broomrape number and fresh biomass
were determined.

4.4.2. Resistance Mechanism Determination

The ability of WT and mutant plants to induce germination of P. aegyptiaca and
O. crenata seeds was tested in GF/A glass microfiber filter paper envelopes [25]. Briefly,
P. aegyptiaca or O. crenata seeds inside the paper envelopes were placed close to the chickpea
roots at planting. Seed germination percentage was recorded four weeks after planting
using a stereoscopic microscope. Control pots (without plants) were used for spontaneous
seed germination determination.

To analyze SLs in root exudates, WT F01 and CCD7M14 plants were grown under
hydroponic conditions with feeding solution circulated through activated charcoal [25].
Once a week, the charcoal was washed with water and extracted with acetone. The acetone
solutions were combined and evaporated under reduced pressure at 35 ◦C (Rotavapor,
Büchi, Switzerland) from all samples. The residue was dissolved in 200 mL water and the
solution was extracted three times with equal volumes of ethyl acetate. The ethyl acetate
fractions were combined, washed with 0.2 M K2HPO4 (pH 8.3), dried over anhydrous
Na2SO4, and concentrated under reduced pressure at 35 ◦C. Dry extracts were stored at
4 ◦C.

Samples of root exudates were tested for the ability to germinate preconditioned
P. aegyptiaca seeds according to Yoneyama et al. (2007) [65]. Briefly, dried root exudates
were dissolved in methanol up to concentration of 0.2, 2 and 20 µg/mL of which 100 µL
was applied to filter paper inside 45-mm diameter Petri dishes. After drying under air
flour, 0.2 mL of sterile water was added to the disks to get final concentrations of 0.1, 1,
and 10 µg/mL. Disinfected P. aegyptiaca seeds were distributed on a 45 mm filter paper
disk and kept moistened for 1 week. Then the disks with seeds on them were dried gently
on sterile filter paper and transferred to the Petri dishes upon the disks containing root
exudates. For the positive control, stimulation with GR24 at a concentration of 10−6 M was
used. The plates were kept at 25 ◦C for 10 days, and the P. aegyptiaca seed germination was
evaluated utilizing of a stereoscopic microscope.

LC-MS/MS analysis of proton adduct ions of SLs was performed with a triple
quadrupole/linear ion trap instrument (LIT) (QTRAP5500; AB Sciex) with an electrospray
source according to Yoneyama et al., 2007 [65]. All peaks corresponding to strigolactones
were confirmed by P. aegyptiaca seed-germination assay [25].

4.4.3. Plant Morphology and Pigment Contents

The plants of WT F01 and CCD7M14 were grown in 4 L pots in Newe Ya’ar organic soil.
After 14 weeks, the plants were harvested by cutting the stems at the pot’s soil surface. First,
third and fifth leaves were sampled for determination of total carotenoid, anthocyanin, and
chlorophyll a and b contents. The number of primary branches, the number of secondary
branches per primary branch, and foliage and root fresh biomass were determined.

Contents of carotenoids and anthocyanin were measured according to Segev et al. [66],
and chlorophyll were was measured according to Lichtenthaler [67]. Briefly, chlorophyll
and anthocyanin were extracted using methanol and acidic methanol (99% methanol and
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1% hydrochloric acid), respectively. The test tubes were incubated at room temperature for
two days in the dark. After two days, the solutions were tested in a spectrophotometer at
665, 652, 530, and 470 nm wavelengths. From the data we calculated the relative amounts
of total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, and total anthocyanins
according to the following formulas:

Chlorophyll A (µg/mL) = 16.72 × A665 − 9.16 × A652;
Chlorophyll B (µg/mL) = 34.09 × A652 − 15.28 × A665;

Total chlorophyll (a + b) (µg/mL) = 1.44 × A665 + 24.93 × A652;
Total carotenoids (µg/mL) = (1000 × A470 − 1.63 × Chlorophyll A − 104.96 × Chlorophyll B)/221;

Total anthocyanins (µg/mL) = (449.1 × A530 + 24.93 × 2000)/24,500.

The final results were calculated in µg per 1 g of fresh leaf biomass.

4.5. DNA Extraction and PCR Amplification

Total genomic DNA was extracted from young leaves of 2-week-old M3 plants ho-
mozygous for broomrape resistance. Primer design, PCR amplification, electrophoresis
in a 1.0% agarose gel, and sequence analysis of the CCD7 gene were performed as de-
scribed by Schreiber et al. [68], with several modifications: annealing was performed at
55 ◦C for 30 s and synthesis at 72 ◦C for 60 s. Eight pairs of primers, purchased from
Syntezza Bioscience Ltd. (Jerusalem, Israel), were used (Table 6).

Table 6. Primer sets used in this study.

Primer
Set Exon Forward Primer Reverse Primer Product

Size (bp)
Sequenced

Region (cDNA)
1 1 AGCACATTTTGTTGCCAAGC TCCTGCTTACATGAAATGCAAACT 1090 1–529

2 1 GAGTACGATCGAAAGACTGACTCG TCCTGCTTACATGAAATGCAAACT 551 522–776

3 2 TACAAGGTGTACAACATTGAGT ACTGCCAATTTGTTGGCATTTC 599 777–908

4 3 GAAATGCCAACAAATTGGCAGT GCATGCTTAAATTTCATTTTGGA 621 909–1043

5 4 TCATGAGGGAGTAAATAATCAACA TTTAATTCACGTTTTATGTCGGT 623 1044–1316

6 5 AGGGACAAAAATTATCGGCTT CTTAGGATAAACCACACATAGATAG 361 1317–1404

7 6 CCAATTAAGATGTTCGAGAGCT ACATGGACAAATCTATAACGACA 747 1405–1710

8 7 AGTAATAGCTAATCAAAACGGGT TTGGATTTCCAAGAGTCCAAT 686 1711–1872

4.6. Statistical Analysis

All experimental results were subjected to ANOVA utilizing JMP software, version
5.0 (SAS Institute Inc., Cary, NC, USA). Data on seed germination were separated by
standard error of the mean (SEM). To meet the assumption of ANOVA, percentage data
were arcsine-transformed before analysis. The results on the number of aboveground
broomrape shoots were compared by SEM and by least-significant differences (LSD), based
on Tukey–Kramer honestly significant difference test (α = 0.05). Data on the number
and biomass of P. aegyptiaca and O. crenata attached to chickpea roots after root washing
were separated by SEM. The experiments on chickpea lines sensitivity to P. aegyptiaca and
O. crenata were repeated twice. The repeated experiments were compared using Fisher’s
t-test, which showed homogeneity of variances; therefore, the data were combined. The test
of the differences in morphology between WT F01 and CCD7M14 and the data of pigment
concentration in chickpea leaves was conducted with 5 and 3 replicates, respectively and
separated by SEM. The results were analyzed by LS means contrast test (α = 0.05).

5. Conclusions

Using EMS mutagenesis, chickpea line CCD7M14 showing high resistance to both
O. crenata and P. aegyptiaca was developed. The resistance mechanism was based on
blockage of SL synthesis, probably caused by stop codon formation due to the point
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mutation in the CCD7 gene. Root exudates of the mutant did not contain SLs. The mutant
plants displayed increased branching and reduced plant height; decreased chlorophyll and
carotenoid contents; and increased accumulation of anthocyanin in the leaves compared
with the WT.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10122552/s1, Figure S1: WT F01 (right) and CCD7M14 (left) plants growing in soil
mixed with seeds of P. aegyptiaca at a concentration of 20 mg seeds per kg soil. Figure S2: Selected
reaction monitoring (SRM) chromatograms of WT F01 (a) and CCD7M14 (b) root exudates. Determi-
nation of SLs was based on the retention time and transition of m/z 345 > 97 for didehydroorobanchol
and 347 > 233 for orobanchol and orobanchyl acetate.
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