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Abstract: The rhizosphere microflora are key determinants that contribute to plant health and produc-
tivity, which can support plant nutrition and resistance to biotic and abiotic stressors. However, lim-
ited research is conducted on the areca palm rhizosphere microbiota. To further study the effect of the
areca palm’s developmental stages on the rhizosphere microbiota, the rhizosphere microbiota of areca
palm (Areca catechu) grown in its main producing area were examined in Wanning, Hainan province,
at different vegetation stages by an Illumina Miseq sequence analysis of the 16S ribosomal ribonucleic
acid and internal transcribed spacer genes. Significant shifts of the taxonomic composition of the
bacteria and fungi were observed in the four stages. Burkholderia-Caballeronia-Paraburkholderia were
the most dominant group in stage T1 and T2; the genera Allorhizobium-Neorhizobium-Pararhizobium-
Rhizobium were decreased significantly from T1 to T2; and the genera Acidothermus and Bacillus were
the most dominant in stage T3 and T4, respectively. Meanwhile, Neocosmospora, Saitozyma, Penicillium,
and Trichoderma were the most dominant genera in the stage T1, T2, T3, and T4, respectively. Among
the core microbiota, the dominant bacterial genera were Burkholderia-Caballeronia-Paraburkholderia and
Bacillus, and the dominant fungal genera were Saitozyma and Trichoderma. In addition, we identified
five bacterial genera and five fungal genera that reached significant levels during development.
Finally, we constructed the OTU (top 30) interaction network of bacteria and fungi, revealed its
interaction characteristics, and found that the bacterial OTUs exhibited more extensive interactions
than the fungal OTUs. Understanding the rhizosphere soil microbial diversity characteristics of the
areca palm could provide the basis for exploring microbial association and maintaining the areca
palm’s health.

Keywords: Areca catechu; microbiome; interaction network; plant development; high-throughput
sequencing

1. Introduction

The areca palm (Areca catechu L.), an important economic and medicinal crop widely
cultivated in the tropical zone, has been utilised extensively in agriculture, industry, and
for religious purposes [1,2]. The areca palm is the second-largest tropical cash crop, and is
becoming one of the main economic pillars of Hainan, China. Most attention given to the
areca palm has been dedicated to revealing its genetic variability [3], genome assembly [4],
elucidation of its secondary metabolite pathways by transcriptome sequencing [5], and the
microbiome and metabolome analysis of its leaves [6]. Despite the economic importance of
the areca palm, little work has been done to explore its rhizosphere microbiome. Numerous
cases on the plant root microbiome have demonstrated that microbes play key roles in
supporting plant nutrition and health [7,8]. In return, the compounds released by the
plants can also affect the rhizosphere soil directly, and the rhizosphere microorganisms are
generally influenced by the soil type [7], environmental conditions [9], plant genotype [10],
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and plant developmental stage [11]. In its entirety, the rhizosphere is an environment where
a large number of microbes communicate extensively, and the plant shapes the rhizosphere
microbiome [8,12].

Results of the root exudation patterns of phytochemicals during plant development,
together with community profiling and transcriptome analysis of their associated rhizo-
sphere microbiota, indicated that the microbiota trigger certain beneficial functions of the
plants through the exudation of particular chemical compounds that vary with the chang-
ing requirements during plant development [13]. Further, a subset of soil microbes, for the
specific needs of the plants, can be recruited by the plant exudates [14]. These complex,
plant-associated microbiota are also deemed the second genome of the plant, which is
crucial for plant health [15]. Thus, plant–microbe interactions are of specific interest, not
only to reveal their role during plant growth and development, but also to investigate their
relationships to sustainable crop health.

Studies have demonstrated that the areca palm is a source of alkaloids, flavonoids,
and carotene, and its active components are used to cure leukoderma, cough, worms,
obesity, and nasal ulcers [16]. Can the root exudates affect the microbiota community of
the rhizosphere? What are the core rhizosphere microbiome characteristics of the different
growth stages of the areca palm? Taking into account the above, we aim to (i) characterize
the rhizosphere soil microbiota diversity at the four different development stages of the
areca palm, (ii) decipher the dynamic variation characteristics and the core microbial
groups of the areca palm rhizosphere, and (iii) explore the interaction networks of bacteria
and fungi. The results will give us a novel view of microbiota variation along with the
areca palm’s growth, and will lay a foundation for further studying on the rhizosphere
microorganisms keeping the areca palm healthy.

2. Materials and Methods
2.1. Soil Samples Collection and Deoxyribonucleic Acid (DNA) Extraction

Soil samples were collected (25 May 2020) from Longgun Town, Wanning County,
Hainan Province, China, with due permission from the Wanning County government. The
areca palm rhizosphere soil sampling sites were located at 18.39◦21′73′′ N, 109.55◦40′41′′ E.
The areca palm plants have been continuously planted for more than seven years at the
above sampling sites. The areca palms were chosen at different growth stages (Figure 1),
including the T1 (about eight months old, ≈1.0 m), T2 (about two years old, ≈1.8 m), T3
(about three to four years old, ≈3.0 m), and T4 stages (about seven years old, ≈5.0 m). First,
the grass that covered the sample soil surface was cleared, the root soil was dug using a
hoe, and then the roots coming in light (≈10 cm depth) were collected using scissors and
put into a sterile plastic bag. The roots at three different locations of each selected tree
were then collected and combined as one sample. At each growth stage (T1, T2, T3, T4),
the roots from three healthy trees with similar growth conditions were chosen as the three
repeats. Moreover, three soil samples of the areca palm were filled—with no areca palm
trees planted—and were defined as the bulk soil. Similarly, the three bulk soil samples (at
10 cm depth with approximately 10 g per soil sample) were collected from the different
sites. All the samples were stored in sterile plastic bags and immediately transported to
the laboratory in an icebox. In the laboratory, the larger soil particles were removed from
the roots first, then the roots were put in a sterile centrifuge tube (50 mL) with 20 mL of
PBS buffer and shocked for 5 min in the Vortex oscillator. The roots were then taken out,
and the tubes were centrifuged for 10 min at 12,000 rpm. The supernatant was removed
and the sediment was collected. The collected sediment samples were stored at −20 ◦C
until the 16S ribosomal deoxyribonucleic acid (rDNA) and internal transcribed spacer (ITS)
sequencing and analysis.
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Figure 1. Areca palm trees of four different growth stages. T1 stage was about eight months old, T2 stage was about two
years old, T3 stage was about three years old, and T4 stage was about seven years old.

Aliquots (0.25 g) of the soil samples were processed to extract the DNA using the
PowerSoil® kit (MOBIO, Carlsbad, CA, USA), which is based on bead beating, accord-
ing to the manufacturer’s instructions. The extraction blanks were processed in parallel
throughout the full procedure as negative controls to evaluate any potential DNA contami-
nation from the reagents. The extracted DNA samples were analysed using a NanoDrop
2000 UV-visible spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The DNA
quality was confirmed using 1% agarose gel electrophoresis. The extracted DNA samples
were selected and used to conduct a microbial community analysis through polymerase
chain reactions (PCR) using 16S rDNA primers 338F: 5′-ACTCCTACGGGAGGCAGCAG-
3′ and 806R: 5′-GGACTACHVGGGTWTCTAAT-3′ [17], as well as ITS primers (ITS1: 5′-
CTTGGTCATTTAGAGGAAGTAA-3′ and ITS2R: 5′-GCTGCGTTCTTCATCGATGC-3′) [18].
The PCRs were performed as described by Li et al. [19]. The PCR products were further
purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA,
USA), and the purified products were quantified using the QuantiFluor-ST (Promega, Madi-
son, WI, USA). The above purified amplicons were then pooled in equimolar concentrations
and paired-end sequenced (300 bp) using the Illumina MiSeq platform (Illumina, San Diego,
CA, USA), according to the standard protocols of Shanghai’s Majorbio Bio-pharm Technol-
ogy Co., Ltd. (Shanghai, China). Raw sequences were then trimmed for the barcode and
primer sequences, any ambiguous bases, homopolymers > 6 bases, and filtered using the
FASTX Toolkit 0.0.12 software to remove low-quality reads with Q values <20 and any bp
less than 35 [20]. The paired-end reads were merged using the “fastq_mergepairs” com-
mand. High-quality sequences were then selected and dereplicated using the “fastq_filter”
command and “derep_fulllength” command, respectively. The singletons were removed
using the USEARCH-unoise3 algorithm and the chimeric sequences were removed using
the “uchime_ref” command.

2.2. Diversity Analysis of Microbial Communities

The 16S rDNA sequences were amplified using 338F/806R primers and blasted in
the Silva database (Release138 http://www.arb-silva.de (accessed on 15 July 2020). The
ITS sequences were amplified using ITS1/ITS2 primers and blasted in the database for
fungi (Unite, Release 8.0 http://unite.ut.ee/index.php (accessed on 15 July 2020). All
sequences were analysed using the Majorbio I-Sanger online cloud platform (http://www.
i-sanger.com (accessed on 15 July 2020). The related parameters and models used in the
analysis have been listed as follows. The similarities and differences between samples were
compared using the shared and unique OTUs of a Venn diagram, and the Student’s t-test
was used to assess the significance level. Bar plot analyses were conducted at the genus
level. The principal coordinates analysis (PCoA) of β-diversity was calculated based on the
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Bray–Curtis algorithm, the model of difference test between groups was an ANOSIM, and
the number of replacements was 999. A Kruskal-Wallis H test and false discovery rate were
used with a Scheffe cutoff value of 0.95 to compare the significance testing of the microbial
community variance of soil samples at the genus level. The confidence interval (CI) method
was used to calculate CI values. A network analysis of the top 30 OTUs of bacteria and
fungi was conducted at the genus level to assess the correlation characteristics of the soil
samples and the OTUs with thresholds of r ≥ 0.5 and p < 0.05, respectively. For these
analyses, the Spearman correlation coefficient model was used with a cutoff of 0.5. The
bacterial and fungal OTUs used in this study are listed in the Supplemental Information
Tables S1 and S2, respectively.

3. Results and Discussion
3.1. Bacterial and Fungal Diversity of the Areca Palm Rhizosphere

The bacterial diversity of the soil samples collected from the four different growth
stages and the bulk soil was assessed using phylotype taxonomy. A total of 15 soil samples
were sequenced and 715,276 raw reads were obtained. The results revealed a total of
6056 OTUs, which belonged to 913 genera and 1900 species. There were 3525, 3258, 3270,
3427, and 3534 OTUs in the T1, T2, T3, T4, and bulk soil samples, respectively. The number
of core OTUs (found at all samples) was 1309, accounting for 21.62% of the total OTUs.
The T1, T2, T3, and T4 stages exhibited 311, 260, 269, and 274 unique OTUs, respectively
(Figure 2A). The result of the Student′s t-test further indicated that the Sobs index of the
OTU level between T1 and T4, T2 and bulk soil, T3 and T4, and T4 and bulk soil were
significant (Figure 2A). A total of 1579 core OTUs from 461 genera were detected in the
samples T1, T2, T3, and T4, among which the dominant genera were Burkholderia-Caballeronia-
Paraburkholderia (10.69%), Bacillus (5.33%), Acidothermus (4.65%), norank_o_Acidobacteriales
(3.99%, belongs to Order Acidobacteriales), Actinospica (3.63%), Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium (3.14%), and Xanthobacteraceae (3.08%) (Figure 3A).
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In addition, for the analysis of the fungal OTUs, 15 soil samples were sequenced and
1,025,914 raw reads were obtained. A total of 2936 fungal OTUs belonging to 596 genera
and 967 species were identified among the five sample groups. There were 774, 745, 912,
820, and 1139 fungal OTUs in the T1, T2, T3, T4, and bulk soil samples, respectively. The
Venn diagram analysis demonstrated that the core fungal OTUs were 194, accounting
for 6.61% of the total OTUs. The T1, T2, T3, and T4 stages exhibited 182, 125, 206, and
153 unique fungal OTUs, respectively (Figure 2A). Furthermore, the β-diversity analysis
indicated that the OTUs between T1 and T2, T2 and T4, and T2 and bulk soil reached a
significant level (Figure 2B). Among the samples T1, T2, T3 and T4, the 226 core fungal
OTUs belonged to 130 genera, and the main genera were Saitozyma (15.37%), Trichoderma
(10.33%), Penicillium (7.65%), Talaromyces (6.17%), Fusarium (5.32%), unclassified_k__Fungi
(4.92%), g_unclassified_c_Sordariomycetes (4%), Neocosmospora (3.95%), Mortierella (3.75%),
Chaetomium (3.65%), Aspergillus (3.12%), and Agaricaceae (2.49%) (Figure 3B).

3.2. Bacterial Composition at Different Growth Stages

The primary bacterial genera in the areca palm T1 rhizosphere samples were Burkholde-
ria-Caballeronia-Paraburkholderia (relative abundance 12.91%), Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium (8.47%), Actinospica (3.64%), Bradyrhizobium (3.15%), Acidothermus
(3.09%), norank_f_norank_o_Acidobacteriales (2.86%), Streptomyces (2.51%), and Bacillus
(2.06%); the genera Burkholderia-Caballeronia-Paraburkholderia (15.03%), Acidothermus (4.59%),
norank_f_norank_o_Acidobacteriales (4.28%), Actinospica (4.66%), Bradyrhizobium (3.25%),
norank_f_Xanthobacteraceae (3.93%), norank_f_LWQ8 (3.99%), Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium (2.96%), Acidibacter (2.32%), and norank_f_norank_o_Elsterales
(2.14%) were the dominant groups in the T2 rhizosphere samples; the genera Acidothermus
(6.05%), norank_f_norank_o_Acidobacteriales (5.94%), Burkholderia-Caballeronia-Paraburkholderia
(5.57%), norank_f_Xanthobacteraceae (3.93%), Acidibacter (3.75%), Actinospica (3.39%), no-
rank_f_norank_o_Subgroup_2 (3.45%), norank_f_norank_o_Elsterales (3.02%), and Bradyrhi-
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zobium (2.87%) were the dominant groups in the T3 rhizosphere samples; and the genera
Bacillus (21.21%), Burkholderia-Caballeronia-Paraburkholderia (7.99%), Acidothermus (4.57%),
norank_f_norank_o_Acidobacteriales (2.22%), Streptomyces (2.85%), Bradyrhizobium (2.61%),
Actinospica (2.32%), and Acidibacter (2.22%) were the dominant groups in the T4 rhizosphere
samples (Figure 4). In addition, the result of the PCoA also revealed that the bacterial
genera of the four growth stages and bulk soil samples were varied distinctly, and the PC1
axis showed 45.2% variation among them (Figure S1).
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3.3. Fungal Composition at Different Growth Stages

The fungal composition at the different growth stages and bulk soil samples were
also analysed. In the stage T1, the primary fungal genera were Neocosmospora (9.60%),
Talaromyces (9.25%), Fusarium (8.99%), Penicillium (6.57%), unclassified_f_Agaricaceae
(5.88%), unclassified_k_Fungi (5.54%), unclassified_c_Sordariomycetes (4.21%), Curvu-
laria (3.87%), and Trichoderma (3.65%); the dominant genera at stage T2 were Saitozyma
(45.09%), Trichoderma (12.73%), Mycoleptodiscus (5.93%), unclassified_k_Fungi (5.79%), Glio-
cladiopsis (3.73%), Talaromyces (2.97%), and Fusarium (2.57%); at stage T3, the main groups
were Penicillium (18.67%), Aspergillus (10.18%), Trichoderma (8.79%), Mortierella (8.77%),
Talaromyces (6.08%), Saitozyma (5.76%), Nigrospora (4.70%), Fusarium (3.74%), unclassi-
fied_c_Sordariomycetes (3.07%), unclassified_k_Fungi (2.24%), and Neocosmospora (2.19%);
and at stage T4, the dominant genera were Trichoderma (16.43%), Chaetomium (13.56%),
unclassified_c_Sordariomycetes (7.70%), unclassified_k_Fungi (5.52%), Talaromyces (5.25%),
Fusarium (5.08%), Saitozyma (4.87%), Mortierella (3.23%), Penicillium (2.41%), and Neocos-
mospora (2.29%) (Figure 5). The result of the PCoA analysis indicated that the fungal
communities of the four growth stages and bulk soil samples were also dynamic, and the
PC1 axis showed 21.87% variation among them (Figure S2).
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3.4. Microbial Genera with Significant Differences among the Samples

For bacteria, the relative abundance of the genera Burkholderia-Caballeronia-Paraburkholderia,
unclassified_g_Acidothermus, Rhizobium phaseoli, norank_f_Xanthobacteraceae, and un-
classified_g_Chujaibacter reached significance (95% CI, p < 0.05) (Figure 6). For fungi,
the relative abundance of the genera Saitozyma, Penicillium, Chaetomium, Aspergillus, and
unclassified_f_Microascaceae were significant (95% CI, p < 0.05; Figure 7).

3.5. Bacterial and Fungal Network Analyses

We conducted a network analysis to reveal the symbiotic relationships of species in the
areca palm soil samples. The network analysis of these abundant OTUs revealed the inter-
action between the rhizosphere soil bacteria and fungi. In the bacterial network, the results
indicated extensive interactions among the identified genera. These abundant OTUs were
from 17 genera, such as the main genera Burkholderia-Caballeronia-Paraburkholderia (four
OTUs), the genus Acidothermus (three OTUs), the genus norank_f_norank_o_Acidobacteriales
(two OTUs), Streptomyces (two OTUs), and norank_f_Xanthobacteraceae (two OTUs). In-
terestingly, OTU5523 (from Bacillus) only had a positive correlation with OTU3045 (from
Streptomyces) and was negatively correlated with all the other OTUs. In addition, OTU5523
showed a strong negative correlation with OTU1197, while OTU3045 revealed a strong
negative correlation with OTU2543, OTU5032 and OTU1261 (Figure 8).

In the fungal network, results indicated that the relationship of the five OTUs (OTU165,
OTU903, OTU759, OTU1453, and OTU2260) of Penicillium were positively correlated, and
a strong correlation existed between OTU336 and OTU903; OTU512 had a high relative
abundance and only showed a negative correlation with four OTUs (OTU90, OTU206,
OTU274, and OTU2860), but a strong positive correlation was found between OTU90 and
OTU274. A strong positive correlation also existed between OTU856 and OTU2260 (Figure 9).
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4. Discussion

Rhizosphere soil is considered a highly complex and dynamic ecosystem. In this study,
we compared the microbiota variation in the four typical growth stages of an areca palm
under the same planting region. The results demonstrated that the bacterial and fungal
communities changed distinctly during the development of the areca palm, for the core
bacterial and fungal OTUs only accounted for 28.4% (1579/5558) and 13.2% (226/1717),
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respectively. Thus, the composition and diversity of the rhizosphere microbiota were
dynamic during the development of the areca palm (Figures 2 and 3), which is consistent
with the study’s findings that the host genotype and age can contribute to the complexity
of the microbiome assembly in natural environments [21,22]. For the moment, except for
a report on the microbiome of the areca palm leaf [6], this study is the first report on the
rhizosphere soil microbiome related to the different growth stages.

Based on the positive and negative interactions, these key OTUs subsequently help to
construct a more stable rhizosphere soil microbiota with greater diversity, for numerous
previous results have shown that soils with greater bacterial diversity facilitate nutri-
ent cycling by the microorganisms, promote plant growth, and protect the plants from
pathogens [23,24]. Our network analysis results of the bacteria and fungi showed that
there is greater bacterial diversity and more complex interactions existed than in the fungal
network (Figures 8 and 9). In particular, the OTU3045 from Streptomyces and OTU5523
from Bacillus exhibited extensive negative interactions to other genera, but have a positive
interaction between them, which may balance or limit the other microorganisms, and
subsequently help to construct a more stable bacterial community with greater diversity.
Notably, the abundance level of the Bacillus in T4 was absolutely higher than other stages
of areca palm growth. Numerous studies have shown that Bacillus spp. are beneficial
microorganisms that produce a vast array of biologically active molecules that inhibit
pathogens [25]. For example, surfactin, iturin, and fengycin produced by Bacillus spp.
have been applied to control the diseases caused by Ralstonia solanacearum [26], Rhizoctonia
solani [27], Pythium aphanidermatum [28], and Podosphaera fusca [29]. Moreover, we also
observed that the organisms from the genus Bradyrhizobium were stable in all soil samples.
Several studies have established that Bradyrhizobium spp. play a critical role in nitrogen
fixation and soil fertility, and the organisms from this genus are also used to evaluate
the toxicity of pollutants [30]. Therefore, the genus Bradyrhizobium should also be key
organisms in the areca palm rhizosphere.

Moreover, results of the fungal interaction network analysis also indicated that the
OTU512 from Saitozyma showed a negative interaction with other genera (Figure 9). To-
gether with the fact that Saitozyma was one of the dominant fungal genera of the T2, T3,
and T4 stages—and it existed at stage T2 with a very high richness (Figure 5)—the species
of Saitozyma should be considered the key fungi that exists in the areca palm, and might
play a key role in balancing the stability of the fungal interaction network.

Based on the fungi diversity results, it was obvious that the fungal composition
changed distinctly with the development of the areca palm, but the structure of the fun-
gal nutrient types in each sample was highly similar among the four different growth
stage soil samples, with saprophytes being the absolute dominant type. In summary, the
dominant fungi in the areca palm rhizosphere sample mainly consisted of the Pathotroph-
Saprotroph-Symbiotroph and Symbiotroph types, such as the genera Fusarium, Talaromyces,
and Saitozyma, which were dominant—and found in all the soil samples. It is noteworthy
that Fusarium spp. can result in yellow leaf disease of the areca palm, and its death in
the field, which seriously affects the development of Hainan’s local agriculture and food
processing industry [6]. It is a filamentous fungal genus containing many agronomically
important plant pathogens and mycotoxin producers [31]. Although all the samples were
from healthy plants, we detected a high relative abundance of Fusarium in these samples,
which might cause yellow leaf disease once the environment is beneficial to Fusarium spp.

5. Conclusions

We profiled the structural variability of the rhizosphere microbiomes in field-grown
areca palms across the development stages, which provide new insights into the rhi-
zosphere microbiota variation and areca palm development. Importantly, our report
demonstrated that both the diversity and composition of the rhizosphere microbiota
changed significantly during plant development. Furthermore, Burkholderia-Caballeronia-
Paraburkholderia were the most dominant bacterial genera of stage T1 and T2; Acidothermus
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and Bacillus were the most dominant bacterial genera of T3 and T4, respectively; and
Neocosmospora, Saitozyma, Penicillium, Trichoderma were the most dominant genera of stage
T1, T2, T3, and T4, respectively. Finally, the bacterial and fungal interaction network further
indicated that there was more bacterial presence and more extensive interactions than were
found in the fungi. These findings could provide the basis for more detailed studies of the
identified key OTUs and gain further insight into the complex host–microbe interactions of
the areca palm.
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10.3390/plants10122706/s1. Figure S1: PCoA analysis of bacterial communities at the genus level
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samples. Table S1: Bacterial OTUs used in this study. Table S2: Fungal OTUs used in this study.
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