
plants

Review

Molecular and Physiological Perspectives of Abscisic Acid
Mediated Drought Adjustment Strategies

Abhilasha Abhilasha and Swarup Roy Choudhury *

����������
�������

Citation: Abhilasha, A.;

Roy Choudhury, S. Molecular and

Physiological Perspectives of Abscisic

Acid Mediated Drought Adjustment

Strategies. Plants 2021, 10, 2769.

https://doi.org/10.3390/

plants10122769

Academic Editor: Oscar Vicente

Received: 16 November 2021

Accepted: 11 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati,
Tirupati 517507, Andhra Pradesh, India; abhilashaphd@students.iisertirupati.ac.in
* Correspondence: srchoudhury@iisertirupati.ac.in

Abstract: Drought is the most prevalent unfavorable condition that impairs plant growth and devel-
opment by altering morphological, physiological, and biochemical functions, thereby impeding plant
biomass production. To survive the adverse effects, water limiting condition triggers a sophisticated
adjustment mechanism orchestrated mainly by hormones that directly protect plants via the stimula-
tion of several signaling cascades. Predominantly, water deficit signals cause the increase in the level
of endogenous ABA, which elicits signaling pathways involving transcription factors that enhance
resistance mechanisms to combat drought-stimulated damage in plants. These responses mainly
include stomatal closure, seed dormancy, cuticular wax deposition, leaf senescence, and alteration
of the shoot and root growth. Unraveling how plants adjust to drought could provide valuable
information, and a comprehensive understanding of the resistance mechanisms will help researchers
design ways to improve crop performance under water limiting conditions. This review deals with
the past and recent updates of ABA-mediated molecular mechanisms that plants can implement to
cope with the challenges of drought stress.
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1. Introduction

As sessile organisms, plants are exposed to an ever-changing environment during their
entire lifespan. Plants have acquired adaptive physiological and molecular mechanisms by
diverse mitigating strategies in the course of evolution to cope with unfavorable conditions.
Predominantly, plants are exposed to both abiotic and biotic stress at various stages of their
development. Biotic stress includes the attack by pests and pathogens, e.g., bacteria, viruses,
fungi, and nematodes, whereas abiotic stress includes drought, flooding, temperature,
salinity, nutrient deficiency, heavy metals, and ultraviolet radiation [1,2]. Consequently,
they adversely affect the productivity of the crop, which is a major obstacle to attaining
global food security essential for the continuously growing world population. Among
the abiotic stresses, drought has become a major plague as a result of climate-change
scenarios around the world and a certain percentage of developing countries will face
water scarcities by 2030 (FAO 2003) [3]. In the least developed countries (LDCs) and
low to middle-income countries (LMICs), over 34% of crop and livestock production was
reduced by drought from 2008-2018 (FAO 2021) [4]. Among the world’s major crops, rice
(>50% yield reduction) was more sensitive towards drought compared to maize (39.3%
yield reduction) and wheat (20.6% yield reduction) under comparable water reduction
(approximately 40%) [5,6]. Under drought severity growing from moderate to exceptional,
the yield loss risk is anticipated to increase by 9%–12%, 5.6%–6.3%, and 18.1%–19.4% in
wheat, maize, and rice, respectively [7].

Water scarcity in the soil directly constrains physiological functions in plants, such as
leaf growth, photosynthetic capacity, nutrient uptake, stomatal conductance etc. [8]. The
limited water availability initiates when the transpiration rate is higher than the amount
of water absorbed by plant roots [9]. Typically, plants need water from seedling to the
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reproductive stage to transport nutrients, for photosynthesis, and to maintain the turgid-
ity of cell walls and various cellular processes [10]. Not having adequate water poses a
severe threat to seed germination and seedling growth in plants with decreasing osmotic
potential [11–16]. Prolonged drought condition reduces uptake of nutrients by root, leaf
water potential, transpiration rate, water-use efficiency and stomatal conductance essential
for both vegetative and reproductive growth [11]. Under drought, the interruption of
water flow between xylem and adjacent cells negatively affects turgor pressure, which in
turn decreases cell elongation, consequently resulting in reduced plant height, leaf area,
and crop yield [17]. A decline in stomatal conductance is responsible for a net reduction
in photosynthesis due to inhibited CO2 assimilation [18]. These physiological changes
lead to the production of reactive oxygen species (ROS), which promotes oxidative stress
via the impairment of cell membranes, nucleic acids, and proteins to destabilize cellular
functions [19,20]. To abate the effects of drought stress, plants respond in very complex
ways, bringing morphological and physiological adaptation. Such processes include clos-
ing stomata, increased root growth, decreased stem and leaf expansion, cuticular wax
biosynthesis, and shortening life cycle [17,21]. In addition, plants have evolved efficient
antioxidant machinery, including enzymatic and non-enzymatic systems to attenuate the
effect of ROS [19]. The promoter of catalase gene Cat2 in wheat contains ARE (antioxidant
responsive element), which is induced by H2O2 during drought [22]. Besides, plants also
regulate osmotic adjustment via the accumulation of soluble sugars, free amino acid, and
proline required for normal cellular homeostasis [23]. To counter drought stress by trigger-
ing different mitigating strategies is directly controlled by a well synchronization of gene
expression, such as RD22, RD29B, RD20A, Gly (glyoxalase I family) etc., predominantly
modulated by multiple hormonal signaling [24].

Along with many fundamental processes plant hormone abscisic acid (ABA), a key
regulator of abiotic stress resistance, plays an important role in mediating drought stress
responses in coordination with other plant hormones. Drought stress enhances cellular
calcium level, which leads to a calcium-dependent phosphorylation cascade to activate
the essential genes required for ABA biosynthesis, such as zeaxanthin oxidase (ZEP), 9-cis-
epoxycarotenoid dioxygenase (NCED), ABA-aldehyde oxidase (AAO), and molybdenum
cofactor sulphurase (MCSU) [25]. Synthesized active ABA is predominantly accumulated
in the vascular tissue of leaves and transported to sites of action for stress response [26,27].
ABA is also stored in vacuole in biologically inactive form by conjugated with glucose
ester (ABA-GE) [28]. In addition to the core biosynthetic pathway, endogenous ABA
levels increase in response to drought stress through the hydrolyzation of an inactive form
of ABA, ABA-GE, to active form [29]. The enhancement of active ABA concentration
can cause both repression and increased expression of ABA-responsive genes via ABA
signaling machinery.

Forward genetics screening of pyrabactin resistant mutants has identified pyrabactin
resistance 1 (PYR1)/PYR1-Like (PYL)/regulatory component of ABA receptor (RCAR)
genes as ABA receptors [30–32]. There are two major steps to ABA signaling that include
PYR1/PYL/RCAR receptor activation by ABA to negatively regulate PP2Cs (Protein
phosphatase 2C) and concurrent activation of SNF1-related protein kinase 2 (SnRK2s) to
modulate downstream genetic circuits. PYR/PYL/RCAR receptors are homologous to the
START (steroidogenic acute regulatory) domain superfamily, which contains a conserved
helix-grip motif to generate a central hydrophobic ligand-binding pocket essential for
lipids and hormones binding [33]. After binding to the central hydrophobic ligand-binding
pocket, ABA creates conformational change in the receptor by forming a gate-latch interface
by closing the gate. This structural alteration facilitates binding ABA bound receptor to
the PP2C active site to further lock the receptor, thereby forming a receptor-ABA-PP2C
complex via gate-latch-lock mechanism [34,35].

Among the other plant phosphatase, PP2Cs, an evolutionarily conserved serine
(Ser)/threonine (Thr)-specific phosphatases (STPs) or metal-dependent protein phos-
phatases (PPMs), act as major negative regulators of ABA signal transduction path-
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ways. The genetic screen for ABA-insensitive mutants and sequence similarity identi-
fied multiple PP2Cs in Arabidopsis, such as ABA-INSENSTIVE1 (ABI1), ABI2, ABA-
HYPERSENSITIVE GERMINATION1 (AHG1), AHG3/AtPP2CA, HOMOLOGY TO ABI1
(HAB1), and HAB2 [36–40]. PP2Cs are Mg2+/Mn2+–dependent monomeric enzymes,
which predominantly inhibit activation of the ABA-responsive transcription factors (TFs)
by dephosphorylation of SnRK2s. When endogenous ABA levels are upregulated by
developmental or environmental cues, ABA bound PYR/PYL/RCAR receptors interact
with PP2Cs to inhibit its protein phosphatase activity, resulting in the release of active
SnRK2s [34,41–43].

Protein phosphorylation of Snf1-Related Kinases2 (SnRK2s) is one of the major cellular
events in ABA signaling. Among the three subclasses: I, II, and III, Subclass III SnRK2s
act as positive regulators of ABA signaling as they are rapidly activated by ABA [44]. In
Arabidopsis, three members of Subclass III SnRK2s (SRK2D/SnRK2.2, SRK2I/SnRK2.3,
and SRK2E/OST1/SnRK2.6) are activated by ABA within 30 min. Generally, SnRK2s are
plant-specific Ser/Thr protein kinases, either auto-phosphorylated or trans-phosphorylated
by other kinases when ABA receptors specifically sequester PP2Cs, thereby facilitating
SnRK2s activation. The active SnRK2s by their well-conserved kinase catalytic domain
positively regulate downstream ABA-responsive genes via the phosphorylation of TFs,
which include bZIP transcription factors like ABRE (ABA-responsive element)-binding
(AREB) proteins or ABRE-binding factors (ABFs) [45–47]. SnRK2s mediated AREB/ABFs
phosphorylation is a crucial ABA-dependent regulation. These phosphorylated AREBs
or ABFs bind to conserved ABA-responsive elements (ABRE) present on the promoter of
ABA-regulated genes to up-regulate several downstream genes, for example, RD29B [24].
In addition, several other TFs, including MYC (myelocytomatosis), MYB (myeloblastosis),
DREB2 (drought-responsive element binding), NAC (NAM, ATAF1,2, and CUC), AP2/ERF
(apetala 2/ethylene responsive factor), basic leucine zipper, and HD-ZIP (homeodomain
leucine zipper), greatly influence plant abiotic stress resistance via ABA-dependent and
ABA-independent signal transduction pathways by binding with specific cis-acting ele-
ments present in promoter regions of several stress-induced genes [48–50]. For instance,
the RD29 (response to dessication) genes are regulated by AREBs and DREBs TFs via
both ABA-dependent and independent signal transduction pathways [51]. MYC (myelo-
cytomatosis) and MYB (myeloblastosis) family’s TFs are involved in the ABA-dependent
pathway for the up-regulation of abiotic stress-responsive genes like RD22 [52,53], which
is involved in drought stress response via stomatal regulation [54]. In contrast, DREB
proteins that bind to DRE cis-elements induce an ABA-independent stress-responsive gene
expression, leading to stress resistance ability via the accumulation of osmoprotectants
like proline, sucrose [34,55,56]. For example, DREB triggers the expression of RD29A gene
during drought stress without involvement of ABA [56,57]. In addition, heterotrimeric
G-proteins regulate the ABA signaling pathway and drought resistance by manipulating
downstream signaling cascades [58–60]. For example, the two subunits of G-protein in rice,
qPE9-1 (Gγ subunit) and RGB1 (Gβ subunit), show contrast regulation of ABA dependent
stress responses acting as negative and positive regulators, respectively [61].

2. General Aspects of Plant Drought Stress

ABA is the major phytohormone that accumulates in the presence of drought stress to
modulate an array of biochemical and physiological changes for acclimatization against
stress conditions via ABA-mediated a wide variety of gene expression [62]. Various
morpho-physiological alterations were induced by ABA during short-term and prolonged
exposure of plants in drought [63]. Here, this review deals with the molecular adaptive
mechanisms that plants can implement to combat various drought stress challenges.

2.1. Stomata Closure

Stomata are specialized structures constituting a pair of guard cells enclosing a central
aperture through which CO2 gas enters the leaf interior for photosynthesis and concomi-
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tant loss of water vapor by transpiration [64]. Under water-deficit conditions, plants
can decrease the stomatal pore size to control gas exchange and transpiration rates via
reducing guard cell turgor pressure and stomatal conductance [65,66]. Predominantly,
enhanced ABA synthesis in guard cells permits stomatal closure under drought. Besides
enzymatic activation of ABA biosynthesis enzymes, an inert ABA conjugate activation by
β-glucosidase is also responsible for ABA accumulation in leaf guard cells [67,68].

Elevated ABA in guard cells under drought stress induces the level of calcium in the cy-
tosol by triggering Ca2+ influx via non-selective Ca2+ cation channels or hyperpolarization-
activated Ca2+ channels. Increased levels of cytosolic calcium activate calcium-dependent
protein kinases (CDPKs), which induces SLAC1 (Slow Anion Channel-Associated 1), a
S-type anion channel, via phosphorylation [69,70]. For example, activation of SLAC1
is attenuated in CDPK mutants (cpk3cpk6) [71]. In addition, OST1 (open stomata 1), a
calcium-independent SnRK2-type kinase, phosphorylate SLAC1 and also R-type anion
channels, like aluminium-activated malate transporter 12/quickly activating anion channel
1 (ALMT12/QUAC1) in Arabidopsis [65,72,73]. Phosphorylated anion channels efflux
anions (malate (Mal2−), Cl− and NO3−) out of the guard cells, which subsequently pro-
mote plasma membrane depolarization to drive K+ efflux through the voltage-dependent
outward K+ (K+

out) channel like GORK (guard cell outwardly rectifying K+ channel). The
constant efflux of ions from the guard cells promotes the efflux of water out of the cell
via aquaporins to reduce cell turgidity, thereby facilitating stomatal closure [28,64,65,67]
(Figure 1).
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Figure 1. ABA induces stomatal closure under drought stress. During drought, accumulated ABA
inside guard cells induces Ca2+ level, which activates CDPKs (calcium-dependent protein kinases),
thereby triggering SLAC1 (slow anion channel-associated 1) channel. Ca2+ independent kinase,
OST1 (open stomata 1), phosphorylates SLAC1 anion channel as well as R-type ALMT12 (aluminium-
activated malate transporter 12) anion channel to efflux the anions such as malate (Mal2−), Cl− and
NO3−. It promotes plasma membrane depolarization to efflux K+ ion via GORK (guard cell outwardly
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rectifying K+ channel) and water via aquaporins. ABA induces RBOHs (NADPH oxidase/respiratory
burst oxidase homolog) on guard cells membrane to generate ROS (reactive oxygen species), which
promotes Ca2+ level. A vacuolar anion channel, ALMT4 triggers Mal2− ion outside of vacuole
required for stomatal closure. Several transcription factors [MYB44, MYB15, MYB96, NFYA5 (nuclear
transcription factor Y subunit A-5), ERF7 (ethylene responsive factor), NPX1 (Nuclear Protein X1)]
either positively or negatively promote ABA induced stomatal closure to enhance drought resistance.

Apart from plasma membrane-bound anion channels, the ABA-mediated unknown
dephosphorylation mechanism activates vacuolar anion channels, subsequently inducing
stomatal closure or impeding stomatal opening [74]. Recently discovered ALMT4 (alu-
minum activated malate transporter 4), a vacuolar anion channel in Arabidopsis guard cells,
is essential for ABA-mediated stomatal closure as knockout mutants of almt4 are unable
to control stomatal movement in response to ABA or drought stress. During drought,
stress-induced ABA-mediated stomatal closure, ALMT4 is involved in malate (Mal2−)
efflux from the vacuole [75]. In addition, ABA induces two NADPH oxidases, AtrbohD and
AtrbohF, to generate reactive oxygen species (ROS), like oxygen radicals and H2O2, which
act as a positive regulator for stomatal closure by increasing influx of Ca2+ through the
Ca2+ channel [76,77]. Increased cytosolic Ca2+ governs multiple Ca2+ dependent kinases
to regulate ion channels as well as ROS producing enzymes such as RBOH (NADPH
oxidase/respiratory burst oxidase homolog) required for stomatal closure (Figure 1).

Transcriptional regulation plays an essential role in ABA-mediated stomatal closure.
Recent studies show that several R2R3 MYB TFs are involved in the modulation of guard
cells in the ABA-dependent pathway. For instance, in Arabidopsis both AtMYB44 and
AtMYB15 overexpression lines are more sensitive to ABA-induced stomatal closure com-
pared to wild-type plants. Therefore, these transgenic lines exhibit remarkably improved
resistance to drought stress [78,79]. During water deficit conditions, contrasting stomatal
aperture is observed in MYB96 overexpressing and knockout mutant plants. Overexpres-
sion of MYB96 results in increased resistance to drought stress as it triggers stomatal closure,
whereas its knockout mutants show a lesser extent of decrease in stomatal aperture under
drought, indicating that MYB96 plays a role in controlling stomatal opening [80]. Besides
MYB TFs, several other ABA inducible TFs regulate stomatal movement. For example,
AtERF7, an APETALA2/ethylene-responsive element-binding protein (AP2/EREBP) fam-
ily of TFs, acts as a negative regulator of stomatal closure. Thus, aterf7 RNAi lines show
increased ABA sensitivity and enhanced survival compared to wild-type in Arabidop-
sis [81]. NFYA5 (Nuclear transcription factor Y subunit A-5) TF belongs to the Arabidopsis
NF-YA family and is critically important in stomatal movement. Overexpression of NFYA5
significantly enhances stomatal closure and increases plant survival under drought stress
by positively regulating other drought-responsive genes via binding at CCAAT box cis-
element [82]. NPX1 (Nuclear Protein X1) TF represses genes involved in ABA synthesis
and ABA signaling; thus, npx1 null mutant shows higher ABA-induced stomatal closure
and water deficit resistance than wild-type [83] (Figure 1). In rice, ABA inducible SNAC1
(STRESS RESPONSIVE NAC1) promotes ABA-induced stomatal closure and enhanced
drought resistance [84,85]. Apart from TFs, E3 Ub ligase genes in Arabidopsis, such as
AtPUB18 and AtPUB19, are negative regulators of ABA mediated stomatal closure as dou-
ble mutants show enhanced ABA sensitivity and drought tolerance [86]. Metabolites like
trehalose also affect stomatal movement. For example, the overexpression of AtTRE1 gene
encoding trehalase shows sensitivity towards the ABA-dependent stomatal closure [87].

2.2. Seed Dormancy

Seed dormancy, a temporary quiescent state, is an adaptive mechanism to prevent
viable seed germination under unfavorable growth conditions. To avoid the harsh and
challenging growing season or drought, seeds in the dormant stage suppress metabolic
processes and eventually germinate under favorable conditions. A seed can maintain
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its viability at a dormant stage for long duration [88], widely dictated by environmental
factors and plant hormones. A dynamic balance between abscisic acid (ABA) and gib-
berellins (GAs) regulates seed dormancy and germination. ABA promotes and maintains
seed dormancy, whereas GAs break seed dormancy. The levels of ABA upsurge during
embryonic development and remains high in mature seed. ABA inhibits the cell wall
loosening of embryos and prevents water imbibition required for germination. Several
genetic analyses demonstrated the involvement of ABA-mediated signaling in seed dor-
mancy. For example, abscisic acid insensitive 3 (ABI3), a major downstream component of
ABA signaling, is a pivotal regulator of seed dormancy and desiccation tolerance during
embryogenesis by affecting ABA signaling and ABA biosynthesis. ABI3 activates the
expression of ABA-inducible genes, like seed storage proteins (SSPs), oleosin (OLE), late
embryogenesis abundant (LEA) proteins, peroxiredoxin-like proteins (PRXs), and small
heat shock proteins (SHSs) [89]. In addition, ABI3 transcriptionally represses ODR1 (re-
versal of reduced dormancy5 1 or RDO51) by binding to its promoter at the proximal
RY motif. ODR1 also interacts with bHLH57 to negatively regulate the expression of
ABA biosynthetic genes, like 9-cis-epoxycarotenoid dioxygenase6 (NCED6) and NCED9,
required for seed dormancy [90,91]. ABI5, another major downstream component of ABA
signaling, is activated by SnRK2s via phosphorylation before binding to various promoters
consisting ABRE/G-box elements like LEA genes [92,93]. ABI5 also interacts physically
with ABI3 to synergistically regulate promoters of many ABA-induced genes [94]. Pre-
dominantly, ABI5 inhibits embryo development by stimulating a group of LEA genes to
combat drought stress. ABI5 also induces PGIP (POLYGALACTURONASE INHIBITING
PROTEIN) and PGIP2 encoding polygalacturonase inhibitors to inhibit seed germination
in Arabidopsis [95] (Figure 2).
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Figure 2. ABA triggers seed dormancy to avoid drought stress. ABI3 (abscisic acid insensitive 3), a
major downstream component of ABA signaling, triggers SSP (seed storage protein), OLE (Oleosin),
LEA (late embryogenesis abundant), PRX (peroxiredoxin-like proteins) and SHS (small heat shock
proteins) to promote seed dormancy. DELLA protein RGA-LIKE2 (RGL2), a negative regulator of
GA signaling, induces ABI5 TFs to upregulate LEA and PGIP1/PGIP2 (POLYGALACTURONASE
INHIBITING PROTEIN) genes and triggers endogenous ABA concentration to promote seed dor-
mancy. ABI3 downregulates ODR1 (reversal of reduced dormancy5 1 or RDO51) as it inhibits ABA
biosynthesis enzymes, NCED6 (9-cis-epoxycarotenoid dioxygenase6) and NCED9. ABI3 and ABI5
regulate MFT (MOTHER OF FT AND TFL1) expression and MFT via negative feedback regulation
represses ABI5. DOG1 (delay of germination-1), a master regulator of dormancy, is induced by
ABA/drought. DOG1 binds to PP2Cs to derepress ABA signaling by SnRK2. MYB96 TF activates
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ABA biosynthesis enzymes to increase the endogenous ABA concentration and induces ABI4 to
inhibit seed germination. SPT (SPATULA) regulates the expression of ABI5, RGA and RGL3 to
promote seed dormancy.

DELLA proteins are a GRAS family of transcription factors and serve as a convergence
point of ABA and GA signaling pathways. DELLA inhibits the GA responses concomitantly,
activating ABA to stimulate seed dormancy to escape from the water deficit condition. In
Arabidopsis, out of five DELLA proteins (GA INSENSITIVE (GAI), REPRESSOR OF GA1-3
(RGA), RGA-LIKE1 (RGL1), RGL2 and RGL3), RGL2 acts as a major repressor of seed ger-
mination as it induces ABI5 expression as well as endogenous ABA concentration when GA
levels are low. Similar to ABI5, the expression of RGL2 is stimulated by exogenous ABA [92].
The expression of MFT (MOTHER OF FT AND TFL1), a phosphatidylethanolamine-binding
protein, is positively and negatively regulated by ABI5 and ABI3, respectively, to deploy
ABA signaling pathways by suppressing ABI5 during seed germination via a negative
feedback regulation [96]. Another TF, SPATULA (SPT), acts as both dormancy promoter
and repressor by regulating the expression of ABI5, RGA and RGL3 in Arabidopsis [97,98].
One of the R2R3 TFs, MYB96, transcriptionally regulates ABA biosynthetic genes like
NCED2, NCED5, NCED6, and NCED9 as well as GA biosynthetic genes like GA3ox1 and
GA20ox1 to sustain a balance between ABA and GA, thereby regulating seed dormancy [99].
Catabolism of embryonic lipid reserves (triacylglycerol) assists the seed germination event
via acting as energy source. ABI4, another positive regulator of ABA signaling, which is
essential for inhibiting seed germination by lipid breakdown, is controlled by MYB96 [100].
In addition, WRKY2 TF acts as a negative regulator of ABA-mediated seed dormancy in
Arabidopsis [101] (Figure 2).

Apart from these, a heme-binding protein, i.e., delay of germination-1 (DOG1), acts
as a crucial regulator of dormancy as it binds to PP2Cs (ABA-hypersensitive germination
1/AHG1, AHG2) to positively regulate ABA signaling. Thus, dog1 mutant seeds display a
non-dormancy phenotype [102] (Figure 2). Under abiotic stresses like drought, bZIP67 TF,
epigenetic regulation and alternative splicing regulate the expression levels of DOG1 to
control seed dormancy [103]. Homologues of DOG1 in wheat (TaDOG1L4) promote seed
dormancy as confirmed by overexpression and RNA interference studies [104]. Like Ara-
bidopsis, TaDOG1L4 interacts with TaPP2C-a10 to modulate the ABA signaling mechanism
in wheat seed dormancy [105].

2.3. Cuticular Wax Biosynthesis

The plant cuticle is an extracellular, thick, waxy layer that remains outside part of the
epidermis to protect against a dehydrating environment, UV radiation, pathogen entry,
and other abiotic stresses. The primary constituent of the plant cuticle is a macromolecular
scaffold of cutin and waxes. These waxes are organic solvent-soluble lipids, typically
derived from very-long-chain fatty acids (C20–C34) [106]. During the transition from an
aquatic to a land lifestyle, plants were exposed to a set of challenges in the terrestrial
environment, including drought, high temperature, exposure to UV radiation etc. In
order to sustain under such a challenging environment, plants would have necessitated
some morphological and physiological features. Establishing a hydrophobic surface layer
or cuticle was one of the adaptive milestones to retain water inside plant cells under
dehydrating conditions [107]. Apart from reducing leaf transpiration and maintaining
stomatal conductance, cuticular wax can act as a photoprotective layer of PS II complex
under drought stress in wheat [108].

Cuticular wax composition can vary considerably within the same plant during
drought conditions, viz. an increased percentage of alkane in total wax is observed under
water deficit conditions [107,109,110]. In addition, wax load per unit area and cuticle
thickness can substantially increase in a dehydrating environment. The wax ester synthase
(WSD1) gene is upregulated in water deficit conditions, resulting in an increased cuticular
wax load in leaves and stems of Arabidopsis [111]. Similarly, up-regulation of some genes in
the aliphatic wax biosynthetic pathway enhances cuticular wax load, including wax esters
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in grape berries under drought [112]. Altering cuticular wax accumulation by intracellular
trafficking and augmented expression of candidate genes in the fatty acid biosynthesis
pathway is regulated by the glossy gene (GL6), causing slower water losses to survive in
water deficit conditions [113] (Figure 3).
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Figure 3. ABA promotes the cuticular wax accumulation under drought stress. ABA responsive
MYB96 TF activates cuticular wax biosynthesis by upregulation of ECR (trans-2-enoyl-CoA reductases),
KCS2/6 (3-ketoacyl-CoA synthetases), KCR1-1/1-2 (3-ketoacyl-CoA reductases) and MAH1 (mid-chain alkane
hydroxylase 1) genes. ABA responsive MYB94 TF activates cuticular wax biosynthesis by upregulation
of WSD1 (wax synthase/acyl-CoA: diacylglycerol acyltransferase), KCS2, CER2 (eceriferums), FAR3 (fatty
acyl-CoA reductase) and ECR genes. Apart from MYB TF, ABA responsive RAP2.4 TF activates
cuticular wax biosynthesis by upregulation of KCS2 and CER1. In addition, several cuticular wax
biosynthetic genes and cuticle-associated genes [GL6 (glossy gene), ACC1 (acetyl-CoA carboxylase 1),
LACS2 (long-chain acyl-CoA synthetase 2), KCS1, CYP86A2 (cytochrome P450), CER5, CER6, CER60]
regulate ABA induced cuticular wax biosynthesis.

ABA has been established as an important regulator, which leads to the increase in
cuticular wax biosynthetic genes and cuticle-associated genes, including acetyl-CoA car-
boxylase 1 (ACC1), long-chain acyl-CoA synthetase 2 (LACS2), 3-ketoacyl-CoA synthase (KCS1),
cytochrome P450 (CYP86A2), and eceriferums (CER1, CER2, CER5, CER6, CER60) [107,114]. In
Arabidopsis, ABA treatment induces the expression of the CER6, which causes an increase
in surface wax accumulation in Arabidopsis [115]. BnKCS1-1, BnKCS1-2, and BnCER1-2
promote cuticular wax production in Brassica napus and thereby increase resistance to water
deficit conditions [116]. Apart from stomatal closure and the regulation of seed dormancy,
ABA-responsive MYB96 TF plays a substantial role in the biosynthesis of cuticular wax by
binding with the promoter of fatty acid elongating enzymes like 3-ketoacyl-CoA synthetases
(KCS), 3-ketoacyl-CoA reductases (KCR), 3-hydroxyacyl-CoA dehydratases, and trans-2-enoyl-
CoA reductases (ECR), essential for cuticular wax biosynthesis. The same is validated from
the contrasting phenotypes observed, like enhanced levels of epicuticular wax crystals
on the leaf surface in MYB96 overexpression lines and reduced levels of cuticular wax in
myb96-1 mutants [54]. The expression of multiple wax biosynthetic genes, like KCS2, KCS6,
KCR1-1, KCR1-2, ECR, and MAH1 (mid-chain alkane hydroxylase 1), is significantly enhanced
as a result of the overexpression of MYB96 in Camelina sativa [117]. Under drought stress
conditions, another R2R3 TF MYB94 along with MYB96 additively upregulate the expres-
sion of wax biosynthetic genes to prevent the loss of water from aerial organs as double
mutants (myb96myb94) show an additional reduction in wax load and transcript level of
wax biosynthetic genes than single mutants [118]. MYB94 regulates wax biosynthesis
genes via direct binding to the promoter of the WSD1 (wax synthase/acyl-CoA: diacylglycerol
acyltransferase), KCS2/DAISY (β-ketoacyl-CoA synthase), CER2, FAR3 (fatty acyl-CoA reductase),
and ECR (enoyl-CoA reductase) genes in Arabidopsis [119]. In maize, ZmFDL1/MYB94
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has been reported to function as a positive regulator in cuticular wax biosynthesis under
drought conditions [120]. Apart from MYB TFs, AP2/ERF TF family members activate wax
biosynthetic genes to enhance drought resistance. For example, ABA and drought inducible
RAP2.4 TF increase cuticular wax biosynthesis via direct interaction with CCGAC or GCC
consensus motifs in promoters of KCS2 and CER1 genes in Arabidopsis [121] (Figure 3).

2.4. Leaf Senescence

Organ senescence causes programmed cell death regulating the development of all
living organisms. Leaf senescence in plants is not only age-related, but also acts as the
long-term adaptive mechanism under drought conditions facilitating minimal water loss
for survival and completion of their life cycle. Leaf senescence and abscission, involving
the termination of photosynthesis, increase of reactive oxygen species (ROS), accumula-
tion of exhausted materials to dying cells, and remobilization of nutrients from senescent
leaves to young leaves, meristem, or storage organs, is predominantly regulated by var-
ious factors modulated by various phytohormones, viz. ABA, ethylene, jasmonic acid,
salicylic acid, and strigolactones [122–124]. Among these, ABA is a critical phytohormone
that mediates leaf senescence. Accumulation of ABA by overexpression of OsNCED5
accelerates senescence in transgenic rice and contrasting phenotype has been detected
in nced5 mutant [125]. ABA is involved in the biosynthesis of ethylene by inducing 1-
aminocyclopropane-1-carboxylic acid (ACC) synthase to promote senescence as ethylene is
reported to induce organized cell disassembly and nutrient mobilization from senescent
leaves to young organs [126,127].

In ethylene-independent manner, core ABA signaling components like PYL receptors,
PP2Cs phosphatase and protein kinases like SnRK2 play a crucial role in regulating leaf
senescence. For example, the overexpression of PYL9 under stress-inducible promoter in
Arabidopsis increases ABA sensitivity and drought resistance by promoting leaf senescence,
thereby facilitating water transport to developing tissues [128]. Accumulation of ABA
under drought conditions activates SnRK2 mediated phosphorylation of ABFs (ABA-
responsive element-binding factors) and RAV1 (ABA-Insensitive 3/VP1) TFs via ABA
signaling. The phosphorylated ABFs and RAV1 bind to ABRE motif elements in the
promoter of NAC (NAM, ATAF, and CUC) TFs, which are likely to act as crucial regulators
in mediating ABA-triggered leaf senescence by modulating downstream SAGs (senescence-
associated genes). Precocious leaf senescence has been observed in Arabidopsis after
overexpression of ABA inducible NAC TFs, like NAP, ORESARA1 (ORE1), and Oresara 1
sister 1 (ORS1) [128–130]. In Arabidopsis, an ABA-inducible group of stress-responsive
NAC TFs, SNAC-As, including ANAC055, ANAC019, ANAC072/RD26, ANAC002/ATAF1,
ANAC081/ATAF2, ANAC102, and ANAC032, triggers leaf senescence by activating a set
of ABA-inducible genes independent of AREB/ABFs [131]. In rice, OsNAC2 plays a
fundamental role in leaf senescence as it transcriptionally activates OsNYC3 (non-yellow
coloring1) and OsSGR (STAY-GREEN) genes (Figure 4). Additionally, OsNAC2 modulates
ABA biosynthetic (OsNCED3 and OsZEP1) and catabolic genes (OsABA8ox1) to increase
ABA levels. Thus, leaf senescence is significantly delayed in OsNAC2-RNAi lines, whereas
the overexpression of OsNAC2 accelerates senescence in transgenic rice plants [132].

To date, there are pieces of evidence indicating that chlorophyll breakdown is a
marker of leaf senescence and ABA can promote the degradation of chlorophyll under
drought [133]. The ABA-responsive element (ABRE)-binding TFs, viz ABI5 or EEL (EN-
HANCED EM LEVEL), ABF2, ABF3, and ABF4, which are activated by PYLs-PP2C-SnRK2
core-sensing system, trigger NYE1 (NON-YELLOWING 1) or SGR1, NYE2, NYC1, and
PAO9 (pheophorbiden a oxygenase) to accelerate chlorophyll degradation. In addition, ABF
can directly activate the SAG gene, like SAG29 essential for leaf senescence [134]. In rice,
OsNAP is a positive regulator of early leaf senescence as it induces chlorophyll degradation
genes (CDGs), such as SGR, NYC1, NYC3, and RCCR1 (red chlorophyll catabolite reductase
1) [135] (Figure 4). A WRKY TF, OsWRKY5, promotes ABA biosynthesis and chlorophyll
degradation genes, leading to early leaf senescence [136]. In addition, the transcript levels
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of ABIG1 (ABA insensitive growth 1) or HAT22 (homeobox from Arabidopsis thaliana 22)
is increased in the presence of ABA. In Arabidopsis, ABIG1, a part of an ABA signaling
pathway, accelerates leaf senescence by activating multiple pathways in drought condi-
tions [137]. On the other hand, OsMYB102 delays the leaf senescence in rice as it acts
as a negative regulator of ABA accumulation and signaling [138]. Similarly, a WRKY TF
in cotton, GhWRKY91, acts as a negative regulator of ABA- and drought-induced leaf
senescence [139].
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Figure 4. ABA activates leaf senescence under drought stress. After perception of ABA, PYL
receptor triggers SnRK2 to phosphorylates ABFs (ABA-responsive element-binding factors) and
RAV1 (ABA-insensitive 3/VP1) TF, which binds to promoter of NAC (NAM, ATAF and CUC) TFs
to regulate downstream SAGs (senescence-associated genes) genes required for chlorophyll degra-
dation. ABFs and ABI5 induce NYE1 (non-yellowing 1), NYE2, NYC1 (Non-Yellow Coloring1) and
PAO9 (pheophorbiden a oxygenase) to induce leaf senescence. ABA inducible NAC TFs (NAP, ORE1,
ORS1, ANAC055, ANAC019, ANAC072/RD26, ANAC002/ATAF1, ANAC081/ATAF2, ANAC102
and ANAC032) accelerate chlorophyll degradation. ABA promotes leaf senescence by stimulating
ACC (1-aminocyclopropane-1-carboxylic acid) synthase essential for ethylene biosynthesis. In rice,
WRKY TF modulates leaf senescence by triggering ABA biosynthetic genes and CDGs (chlorophyll
degradation genes). ABA inducible NAP TF triggers SGR (STAY-GREEN), NYC1, NYC3 and RCCR1
(red chlorophyll catabolite reductase 1) to promote chlorophyll degradation. ABA inducible NAC2 TF
triggers NYC3, SGRs and ABA biosynthesis by activating NCED3 and ZEP1 (zeaxanthin oxidase) to
promote chlorophyll degradation.

2.5. Root and Shoot Length

Roots are essential for plant growth and development as they utilize soil resources via
the uptake of water and nutrients. Under water-limited conditions, plant sustainability,
as well as productivity, depends on root traits like root length, root diameter, root angle,
root density, lateral root number, root hair density etc. To support existing shoots in wa-
ter deficit condition, plants produce considerably longer roots with decreased diameter,
which is vital to acquire the available water at depths in the soil and thus, maintenance
of root elongation at low water potentials (ψw) is an essential adaptive feature under dry
conditions [140]. Typically, drought stress activates ABA to accumulate in the roots, and en-
hanced drought duration increases the level of ABA in the root apex to trigger the adaptive
morphological changes, including root tip swelling and root apical meristem premature
(RAM) differentiation [141,142]. Accumulation of ABA also regulates the architecture
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of the root system and hydraulic conductivity or unit length root conductance [143,144].
Predominantly, root water uptake in plants is influenced by ABA inducible water channel
proteins named aquaporins that alter cell water permeability to maintain cellular water
and osmotic homeostasis [145,146].

The underlying mechanisms that allow morpho-physiological effects on root growth
by ABA are intricate as they connect with diverse hormonal regulatory networks. For
example, in ABA-deficient seedlings, increased ethylene accumulation inhibits root growth,
and therefore ABA maintains root growth under low water conditions by inhibiting ethy-
lene production [147]. To promote root stem cell maintenance, a low concentration of
ABA inhibits quiescent centre (QC) division and differentiation of stem cells and their
daughter cells in primary root meristem [148,149]. Typically, moderate water stress or low
concentration of ABA positively modulates root growth by manipulating auxin levels via
auxin transport and auxin signaling [150]. Root-specific NF-Yb21 (NUCLEAR FACTOR-Y)
TF interacts with FUS3 (FUSCA3) to promote ABA biosynthesis via activation of NCED3,
which in turn promotes auxin transport leading to root growth and drought tolerance
in populus [151]. On the other hand, high concentrations of ABA inhibit root growth by
reducing the expression of auxin transport genes in Arabidopsis roots, viz. AUX1, PIN1
(PIN-FORMED 1), PIN3, PIN4, and PIN7 [152,153]. As a result, decreased sensitivity to
ABA is detected in aux1 (auxin resistant 1), axr4, and pin2 mutants. Apart from auxin
transport genes, several signaling components of auxin like AXR1 (Auxin resistant 1),
AXR4, Aux/IAA16 (Aux/Indole-3-acetic acid), TIR1 (transport inhibitor response 1), and
IBR5 (IBA response 5) are downregulated by ABA, resulting in the suppression of primary
root growth [154]. Apart from these, a recent study depicts a model of ABA concentration-
dependent root growth modulation by H+ extrusion across the plasma membrane. High
ABA concentration upregulates PP2Cs, which dephosphorylate Thr947 of H+-dependent
adenosine triphosphatase 2 (AHA2) after binding its C-terminal R domain, resulting in
primary root growth arrest of Arabidopsis by inhibition of apoplastic H+ efflux. Whereas,
low ABA concentration positively regulates root growth by derepressing AHA2 and H+

extrusion via ABA receptor-mediated inhibition of PP2C activity [155] (Figure 5).
The inhibition of lateral root (LR) growth is another adaptive phenotypic response

of plants against drought stress. Plants adapt to drought by restricting the horizontal
spread of lateral growth and utilizing energy in primary root elongation to acquire water
in water deficit soil [156]. Thus, despite a similar number of lateral root primordia in both
wild type and ABA related mutants in Arabidopsis, root primordia fail to elongate in
mutants [156,157]. Predominantly, lateral root initiation is promoted by auxin-dependent
cell cycle-related genes. In Arabidopsis, ABA-induced MYB96 TF enhances the expression
of GH3, encoding an auxin-amido synthetase, which inhibits lateral root elongation by
inactivating endogenous auxin pool [80]. An auxin efflux carrier gene PIN1 modulates
polar auxin transport from the shoot to root apices, affecting lateral root development. ABA
negatively regulates PIN1 expression by its downstream signaling components, viz ABI4
and ABI5 (Figure 5). Thus, LR initiation and the elongation of emerged LRs are inhibited
in ABI4 overexpression lines of Arabidopsis [154,158–160].

Although different sensitivity is observed between shoot and root tissues under water-
limited conditions, drought-induced ABA typically inhibits shoot growth. Water deficit
and ABA cause prevention of shoot growth of maize, but it is derepressed in fluridone-
treated seedlings as it targets carotenoid biosynthetic pathway to reduce endogenous ABA
pool [161]. Similarly, ABA accumulation under low water potential has been reported
to prevent the shoot growth of soybean [162]. Predominantly, endogenous ABA restricts
ethylene production under water deficit conditions to maintain shoot growth in the early
and late developmental stages [143,163,164]. Apart from that, it has been reported that
OsbZIP23 TF plays a key role in conferring drought tolerance by enhancing the expression
of many stress related genes, like LEA, RD22, etc., in rice [165].
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Figure 5. ABA inhibits both primary and lateral root elongation under drought stress. ABA acti-
vates ethylene biosynthesis to inhibit primary root growth. ABA inhibits auxin transport [AUX1,
PIN1 (pin-formed 1), PIN3, PIN4 and PIN7) and auxin signaling genes [AXR1 (auxin resistant 1), AXR4,
Aux/IAA16, TIR1 (transport inhibitor response 1) and IBR5 (IBA response 5)] to arrest primary root
growth. ABA upregulates PP2Cs to dephosphorylate AHA2 (H+-dependent adenosine triphos-
phatase 2) to inhibit primary root growth. ABA inducible MYB96 TF upregulates GH3 (gretchen
hagen 3) to inhibit lateral root elongation. ABA restricts lateral root growth by suppressing PIN1
proteins via ABI4 and ABI5.

3. Conclusions and Future Perspectives

Plants are exposed to a changing environment throughout their existence. Drought is
one of the most prevalent global problems that negatively affect agricultural production,
reducing net photosynthesis by altering plant carbon allocation and metabolism. To
cope with drought, plants can elicit physiological and biochemical responses aimed at
enhancing resistance. Phenotypic plasticity, including modifications of vegetative and
reproductive architecture, is essential for resistance to water deficiency. The developmental
plasticity of the plant organs is regulated by endogenous ABA level, which precisely
regulates numerous signaling proteins, TFs, and even ABA biosynthetic genes. Extensive
cross-talk among those proteins leads to the formation of complex signaling networks
(Figure 6). Here, we provided considerable phenotypic and genetic evidence for the ABA-
mediated drought stress resistance in plants through various molecular mechanisms, which
is critically important to understanding the fundamental biology that underscores the stress
resistance phenotype. This detailed knowledge about how plants modify when challenged
by drought is essential to enhance drought-stress resistance in different crop plants.

Drought stress responses are coordinated by complex signaling networks. It is implau-
sible that a single gene alone regulates plant drought tolerance. QTL mapping facilitated
the establishment of relationships between drought stress tolerance and agronomic and
physiological traits by identifying genomic regions linked with traits of interest. Recent
genomics tools, molecular techniques, and precise phenotype analysis detected several
candidate genes for crop drought tolerance. Multiple cross-talk among different regulatory
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networks during drought stress makes it a challenge to discriminate those interactions that
most effect under water deficit conditions. Therefore, it is critically important to recog-
nize convergent points in the drought stress response circuitry essential for translational
research. In future, a systems biology approach, including transcriptomics, proteomics,
and metabolomics, high-throughput phenotyping, functional characterization of novel
regulatory candidate genes, and detailed study of epigenetics, will be needed to precisely
manipulate physiological processes for developing drought-tolerant crops.
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