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Abstract: In recent years, due to the development of industrial and agricultural production, heavy
metal contamination has attracted increasing attention. Aromatic and medicinal plant Salvia sclarea L.
(clary sage) is classified to zinc (Zn) accumulators and considered as a potential plant for the phytore-
mediation of heavy metal polluted soils. In this study, an adaptation of clary sage to 900 µM (excess)
Zn exposure for eight days in a hydroponic culture was investigated. The tolerance mechanisms
under excess Zn exposure were assessed by evaluating changes in the nutrient uptake, leaf pigment
and phenolic content, photosynthetic activity and leaf structural characteristics. The uptake and
the distribution of Zn, as well as some essential elements such as: Ca, Mg, Fe, Mn and Cu, were
examined by inductively coupled plasma mass spectrometry. The results revealed that Salvia sclarea is
a Zn-accumulator plant that tolerates significantly high toxic levels of Zn in the leaves by increasing
the leaf contents of Fe, Ca and Mn ions to protect the photosynthetic function and to stimulate the
photosystem I (PSI) and photosystem II (PSII) activities. The exposure of clary sage to excess Zn
significantly increased the synthesis of total phenolics and anthocyanins in the leaves; these play an
important role in Zn detoxification and protection against oxidative stress. The lipid peroxidation
and electrolyte leakage in leaves, used as clear indicators for heavy metal damage, were slightly
increased. All these data highlight that Salvia sclarea is an economically interesting plant for the
phytoextraction and/or phytostabilization of Zn-contaminated soils.

Keywords: chlorophyll fluorescence; clary sage; nutrient uptake; oxidative stress; photosynthesis;
phytoremediation; phytostabilization; pigments; total phenolic content; Zn toxicity

1. Introduction

Heavy metals appear in the environment at high concentrations due to several indus-
trial and agricultural activities and, subsequently, became toxic to all living organisms,
including plants. Toxic metals lead to reduced plant growth, altered physiology and
metabolism, as well as hamper the plant cell integrity, causing the generation of reactive
oxygen species (ROS) [1,2]. Heavy metals also interfere with the uptake of essential nutri-
ents and water, and as a result, crop yields decrease in heavy metal polluted soils [3]. In
recent years, increased interest has been focused on some economically important plant
species with a high capacity to accumulate heavy metals and an increased tolerance to their
toxicity for the purposes of the phytoremediation of contaminated soils [2,4–7]. Plant metal
accumulation varies within and between species, development stages, soil and metal types,
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time duration, etc. [3,4,8–11]. Baker et al. [4] proposed that hyperaccumulator species
typically maintain high metal concentrations in their tissues without significant toxic symp-
toms using different mechanisms for detoxification and the sequestration of heavy metals
in nontoxic forms [1,2,11–15].

Zinc as a micronutrient is one of the essential elements necessary for optimal growth,
development and productivity, since Zn is a cofactor of many enzymes involved in the
biosynthesis of plant growth hormones, respiration and photosynthesis [16–18]. How-
ever, Zn ions in high concentrations induce phytotoxicity, easily affecting the function
of many enzymes and proteins, slowing plant metabolism and causing oxidative dam-
age [18–21]. Visible Zn toxicity symptoms include reduced growth, leaf chlorosis (due to
decreased chlorophyll content), necrosis, closure of stomata and disturbance of the water
balance [22–25]. Photosynthesis is considered the primary physiological process affected
by heavy metals directly or indirectly by ROS production damaging the photosynthetic
apparatus of plants [23,26]. Heavy metals, including Zn, in higher concentrations also
induce lipid peroxidation of the photosynthetic membranes, degrade photosynthetic pig-
ments, inhibit photosystem II (PSII) activity and electron transport and decrease both the
carboxylation efficiency of Rubisco and net photosynthesis [21,26–28]. The Zn toxicity first
affects the chlorophyll content and then inhibits the photochemical activity of PSII [21]. In
addition, the effects of Zn toxicity on the photosynthetic apparatus differ with the applied
concentrations, the time of exposure, the plant species, etc. [11,23]. Chlorophyll fluores-
cence has been widely used as a quick and a sensitive indicator of heavy metal stress in
plants [15,28–35].

In recent years, there has been a growing interest in aromatic plants (some herbs)
that are considered suitable for environmentally safe phytoremediation, as these plants
are mainly used for secondary products, and their leaf essential oils are free of heavy
metals [6,36–38]. The aromatic and medicinal plant clary sage (Salvia sclarea L.) is native to
many Mediterranean countries and is an important plant cultivated as a source of essential
oils for applications in human medicine or perfumery products [38–40]. This plant is also
proposed to be a Zn and cadmium (Cd) accumulator and a lead (Pb) hyperaccumulator
with a good potential for phytoremediation [38,41,42]. Previously, it has been shown that
heavy metals from industrial contaminated soils have almost no effect on the development
of clary sage, and this plant shows no signs of heavy metal toxicity [38]. Zn effects on the
nutrient uptake and functioning of the photosynthetic apparatus, as well as the tolerance
mechanisms of S. sclarea to high Zn concentrations, have not yet been studied. Therefore,
the aim of this study was to explore some of the mechanisms involved in Zn tolerance
of clary sage, focusing on the investigation of changes in the uptake and distribution
of essential nutrient elements (such as: Ca, Mg, Mn, Fe and Cu), as well as on some
defense mechanisms that play an important role in the detoxification of high Zn levels,
especially in leaves of S. sclarea, exposed to 900 µM Zn for eight days in a hydroponic
solution. The Zn tolerance was assessed by measuring oxidative stress markers, changes
in leaf photosynthetic pigments, the polyphenolic and anthocyanin contents and leaf
structure, as well as by studying the functional activity of the photosynthetic apparatus
(PSII and photosystem I (PSI) activities in vivo) using a chlorophyll fluorescence analysis
and P700 photooxidation.

The knowledge of these response mechanisms will be useful for the assessment
of some tolerance strategies against Zn stress in this herbal plant and to optimize the
management practices for phytoremediation.

2. Results
2.1. Zinc Accumulation and Mineral Element Uptake

The exposure of Salvia sclarea for eight days to 900 µM Zn resulted in a strongly
increased Zn accumulation in both the roots and leaves. The Zn content in the roots
(40,060 ± 1200 µg g−1 dry weight (DW), Figure 1a) was much higher than that in the
leaves (1759± 53 µg g−1 DW, Figure 2a). The increased Zn uptake was accompanied with a
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significantly increased (about 4.4 times) accumulation of Fe and Cu in the roots (Figure 1b),
as well as an increased accumulation of Fe (by 38%), Mn (by 85%) and Ca (by 22%) in the
leaves compared to the control plants (Figure 2). Despite the significantly increased Cu
accumulation in the roots, its translocation to the leaves decreased (Figure 3), as the leaf
contents of Cu were similar to the control (Figure 2b). Under excess Zn exposure, the Mg
contents in the roots decreased by 44% (Figure 1a) and in the leaves by 10% (Figure 2a),
which were related with an increased translocation factor from the roots to the aboveground
parts (Figure 3). In addition to the Mg ions, an increased translocation was also detected
for the Ca and Mn ions (Figure 3). The translocation factor, showing a plant’s ability to
translocate metal ions from its roots through the stems to the leaves [43], was less than one
for the Zn, Fe and Cu ions and decreased under excess Zn (Figure 3).
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Figure 1. Contents of Zn, Ca and Mg (a) and Fe, Mn and Cu (b) in Salvia sclarea roots (µg g−1 dry weight (DW)) after 8 days
of exposure at 5 µM (control) or 900 µM (excess) Zn. Mean values (±SE) were compared between the two Zn exposures
for the same mineral element using a Student’s t-test, and the differences were considered statistically significant with
** p < 0.01 or *** p < 0.001.
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Figure 2. Contents of Zn, Ca and Mg (a) and Fe, Mn and Cu (b) in Salvia sclarea leaves (µg g−1 DW) after 8 days of exposure
at 5 µM (control) or 900 µM (excess) Zn. Mean values (±SE) were compared between the two Zn exposures for the same
mineral elements using a Student’s t-test, and the differences were considered statistically significant with * p < 0.05 or
*** p < 0.001.
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2.2. Oxidative Stress Markers

Following the changes in relative water contents (RWC) and electrolyte leakages (EL)
of the leaves of S. sclarea subjected to high Zn exposure, the impact of Zn on the leaf
cell membrane integrity was evaluated. The results revealed that the Zn treatment had a
slightly negative effect on the leaf membrane permeability of clary sage plants and led to
increased EL values (by 22%) compared to the control leaves (Table 1) without exhibiting
any other signs of toxicity (i.e., chlorosis, necrosis, rolling of leaves or disturbances in
plant water-balance; Supplemental Figure S1). Additionally, oxidative stress and lipid
peroxidation in clary sage leaves caused by high-level Zn exposure were estimated by the
hydrogen peroxide (H2O2) and by malondialdehyde (MDA) contents as an indicator of
the membrane peroxidation levels. These oxidative stress markers increased (p < 0.05) by
about 28% for H2O2 and 21% for MDA (Table 1).

Table 1. Effects of 5 µM (control) or 900 µM (excess) Zn exposure for 8 days on the relative wa-
ter content (RWC), electrolyte leakage (EL) and the contents of hydrogen peroxide (H2O2) and
malondialdehyde (MDA) in the leaves of Salvia sclarea.

RWC
(%)

EL
(%)

H2O2
(µmol g−1 FW)

MDA
(µmol g−1 FW)

5 µM Zn 93 ± 2 a 9.9 ± 0.4 b 34.3 ± 1.3 b 25.9 ± 1.7 b

900 µM Zn 89 ± 2 a 12.1 ± 0.9 a 43.8 ± 2.2 a 31.5 ± 1.2 a

Different letters indicate significant differences between the means (±SE) for the same parameters (p < 0.05).
FW—fresh weight.

The histochemical detection of H2O2 overproduction in the leaves of Zn-stressed
S. sclarea plants indicated that the high Zn exposure caused an accumulation of H2O2
mainly at the base of the leaf and around the midrib (Figure 4) without ongoing oxidative
stress throughout the whole leaf.
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Figure 4. Histochemically detected hydrogen peroxide (H2O2) in the leaves of Salvia sclarea forming
brown precipitates with 3,3′-diaminobenzidine (DAB) under (a) 5 µM (control) or (b) 900 µM (excess)
Zn levels.

2.3. Leaf Pigments and Total Phenolic Content

Measurements of the leaf pigments were used as sensitive biochemical markers for the
metal stress and phytotoxicity. After the Zn treatment of S. sclarea plants for eight days, the
contents of chlorophyll a (Chl a) slightly decreased by about 8%, while the contents of Chl
b and the total carotenoids (Cars) did not change compared to those of the control leaves
(Figure 5). The results also revealed that, compared to the control clary sage plants, the leaf
contents of the total phenolics and anthocyanins increased under excess Zn exposure by
44% and 40%, respectively.
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2.4. Chlorophyll Fluorescence Analysis

Here, we estimated the maximum efficiency of the PSII photochemistry (Fv/Fm),
as well as the quantum efficiency of PSII photochemistry (ΦPSII), the quantum yield of
regulated energy dissipation in PSII (ΦNPQ), the quantum yield of nonregulated energy
dissipation in PSII (ΦNO) and the fraction of open reaction centers (qp). After eight days of
excessive Zn exposure (900 µM), the Fv/Fm did not differ compared to the control (5 µM
Zn), while the ΦPSII increased by about 13% (p < 0.01) (Figure 6a). Due to this increased
ΦPSII, a statistically significant decrease in ΦNO and ΦNPQ compared to the controls was
detected (Figure 6b). These three quantum yields (ΦPSII, ΦNPQ and ΦNO) are equal to one,



Plants 2021, 10, 194 6 of 16

assuming that the absorbed light energy is either utilized or dissipated. The increase of
ΦPSII compared to the control after the eight days of Zn exposure was due to a significant
(p < 0.01) increase in the fraction of open PSII reaction centers (qp) compared to the control.
Under 900 µM Zn exposure, a total of 89% reaction centers were open, while under control
conditions (5 µM Zn), only 79% were open.
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Figure 6. Changes in the maximum efficiency of the photosystem II (PSII) photochemistry (Fv/Fm) and the quantum
efficiency of the PSII photochemistry (ΦPSII) (a), as well as in the quantum yield of regulated energy dissipation in PSII
(ΦNPQ) and in the quantum yield of nonregulated energy dissipation in PSII (ΦNO) (b), of Salvia sclarea leaves after exposure
to 5 µM (control) or 900 µM (excess) Zn for 8 days. Mean values (±SE) were compared between the two treatments for
the same parameter using a Student’s t-test, and the differences were considered statistically significant with * p < 0.05 or
** p < 0.01.

2.5. P700 Photooxidation

The measurements of the steady-state P700 photooxidation (P700+) by far-red (FR)
light-induced absorbance changes at 830 nm (∆A830) were conducted to access changes in
the PSI photochemistry of S. sclarea leaves after high levels of Zn exposure for eight days.
The P700+ reduction after turning off the FR light was characterized by an exponential
decay (within half the time, t1/2), as shown in our previous study [44]. The amount of
P700+ (measured as ∆A/A830) was increased by 18% (p < 0.05) after the 900 µM Zn exposure
in comparison to the control (Table 2). The subsequent half-time (t1/2) of the P700+ dark
reduction was not statistically different from that in the control plants.

Table 2. Effects of 5 µM (control) or 900 µM (excess) Zn exposure on the far-red (FR) light-induced
P700 photooxidation (P700+) and the kinetics of the P700+ dark reduction (half-time, t1/2) in the
leaves of Salvia sclarea. ∆A/A830—the relative amplitudes of the P700+ absorbance changes at 830 nm.

P700+

(∆A/A830 × 10−3) t1/2 (s)

5 µM Zn 11.46 ± 0.35 b 2.31 ± 0.22 a

900 µM Zn 13.52 ± 0.43 a 1.97 ± 0.18 a

Different letters indicate significant differences between the mean values (±SE) for the same parameters (p < 0.05).

2.6. Leaf Anatomy under Zn Stress

Excess Zn slightly affected the leaf anatomy of S. sclarea (Figure 7), though the leaves’
basic structures remained unaltered (compare Figure 7a with Figure 7b). However, more
stomata could be observed in transverse sections (circles in Figure 7b), and the epidermal
cells contained darkly stained materials (arrowheads and asterisks in Figure 7b). The
stomatal density (No/mm2) specifically increased in the leaf upper epidermis (Figure 7c),
and the stomata numbers seemed to double upon 900 µM (excess) Zn application.
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3. Discussion

Recently, it has been reported that S. sclarea grown in heavy metal-polluted areas
accumulate heavy metals through the root system and then translocate them to the above-
ground parts [38,42]. Our data revealed a higher accumulation of Zn in the roots than in
the aboveground parts (Figures 1a and 2a) and significantly decreased the translocation
factor under excess Zn exposure (Figure 3). A similar decrease in the translocation of heavy
metals to the aboveground parts was observed in sage plants (Salvia officinalis) grown in
contaminated soils [45]. The decreased Zn translocation was also reported in some hy-
peraccumulating plants when grown hydroponically [17,34,46]. Moreover, a translocation
factor of less than one suggests that plants remediate Zn by concentrating the metals in
the roots [43,47]. Therefore, when grown hydroponically, S. sclarea phytostabilizes Zn in
its roots.

The suggested Zn value for hyperaccumulation is 10,000 µg g−1 leaf DW (>1% DW) [4,9].
In our experimental conditions, the S. sclarea leaves did not reach these values; therefore, the
clary sage can be characterized as a Zn accumulator, confirming previous observations with
these plants grown in contaminated soils [38]. The presence of 8.0–100 µg Zn g−1 DW has
been suggested to assist in the normal growth and development of plants, but higher contents
above 300 µg g−1 DW (>0.03% DW) were considered toxic for plants [18,48] and to cause the
overproduction of ROS [21]. In this study, after excess Zn exposure, we detected high Zn
concentrations of about 1759 µg Zn g−1 DW (>0.17% DW) in the leaves (Figure 2a), without
any symptoms of toxicity (i.e., chlorosis, necrosis, rolling of the leaves or disturbances in
the RWC) (Supplemental Figure S1 and Table 1) or affecting the leaves’ structure (Figure 7).
Similar high Zn concentrations were also measured in the leaves of the hyperaccumulator
Noccaea caerulescens grown hydroponically with an 800 µM Zn supply [34].
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Moreover, Zn can interfere with the uptake of some other trace elements, leading to
an imbalance in the nutrient uptake, transport and use (see [25,34,49]). A previous study
with hyperaccumulator Noccaea caerulescens under high Zn exposure showed a reduced
uptake of Mn, Cu, Ca and Mg ions, as well as an enhanced uptake of Fe and Zn, while
the Ca and Mg concentrations in the aboveground tissues remain unchanged, and the Cu
increased significantly [34].

Our results demonstrated that an increased Zn uptake is accompanied with a sig-
nificantly increased accumulation of Fe and Cu ions in the roots (Figure 1b), as well as
increased accumulation of Fe, Mn and Ca ions in the leaves compared to the control plants
(Figure 2). On the other hand, despite significantly increased Fe accumulation in roots and
leaves (Figures 1b and 2b), its translocation factor to the aboveground tissues is decreased
(Figure 3).

The observed increase of the nutrient elements in the leaves of S. sclarea (for Fe, Ca and
Mn) or the maintenance of almost the same (slightly diminished for Mg) concentrations
as in the control plants is most likely included in clary sage’s protective strategy against
Zn stress. Moreover, the Fe, Ca and Mg cations have major roles in regulating (directly or
indirectly) the photosynthetic efficiency [49]. In contrast to previous reports [50], which
found no effect or an antagonistic effect of the Zn status on the Fe uptake, here, we
observed a synergistic effect in the Fe uptake that suggested a strategy of an increase in Fe
accumulation as a response to a possible risk of Fe deficiency in leaves (reviewed in [25]).
Iron is an essential trace element required for respiration and photosynthesis and many
fundamental biological redox reactions [25,51]. In the light reactions of photosynthesis, it
has been also found that Fe protects the PSII from the photoinhibition that occurs under
Fe deficiency [51], as well as the Fe supplement, maintaining photosynthetic electron
transport [52]. Therefore, the observed increased Fe accumulation in the leaves upon
900 µM Zn exposure could be one of the reasons for the increased quantum efficiency of
the PSII photochemistry (ΦPSII) (Figure 6a), as well as the increased photooxidation of PSI
(Table 2).

Excess Zn had a significant effect on the Mg ion uptake, as the Mg contents in
the roots decreased significantly (Figure 1a); however, its translocation to the above-
ground parts strongly increased, leading to slightly diminished Mg leaf contents by 10%
(Figures 2a and 3). This was also accompanied by a slightly decreased (by 8%) amount of
Chl a in leaves, while no noticeable changes were detected in the Chl b and Car contents in
the leaves (Figure 5a). Recently, a significant negative correlation was reported between
the Zn concentrations in the leaves and the amount of Chl a in Trapa natans L., confirming
the leaf Chl a content as a sensitive biomarker for stress [53]. All of the above suggests
a higher Zn tolerance for S. sclarea. At the same time, the Ca and Mn ion contents in the
leaves and their translocation factors in clary sage plants were enhanced under exposure to
900 µM (excess) Zn in comparison to the control levels of Zn (5 µM) (Figures 2 and 3). It
has been proposed that Ca cations are necessary not only for the normal function of the
oxygen-evolving complex but, also, for the regulation of Calvin cycle enzymes [54].

It is generally considered that ROS overproduction under heavy metal stress is a key
response that can promote the lipid peroxidation of membranes, causing a disruption of
their integrity (i.e., the MDA and EL increased). Therefore, the contents of H2O2 and MDA
are frequently used as indicators of oxidative stress. This study provided evidence that
an excess Zn treatment did not induce oxidative stress, since S. sclarea leaves displayed
attenuated or no symptoms of toxicity, coupled with lower H2O2 and MDA contents
(Table 1), and less accumulation of H2O2 in the whole leaves (Figure 4). In comparison
to the control leaves, after excess Zn exposure, the H2O2 contents were higher by 28%,
leading to a slightly enhanced (by 21%) lipid peroxidation (estimated as changes in the
MDA contents) and EL values (Table 1), while no disturbances in the water balance (RWC)
of the leaves were detected, suggesting a higher tolerance of S. sclarea to Zn exposure.
Jin et al. [55] reported that elevated levels of Zn cause a significantly higher accumulation
of H2O2 in the leaves of the non-hyperaccumulating ecotype of Sedum alfredii, leading to a
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strong increase (over five times) in the MDA contents, while, in the hyperaccumulating
ecotype, this increase was less pronounced up to 1000 µM Zn. A previous study with
sage plants grown in heavy metal-polluted soil suggested that the neutralization of H2O2
is a nonenzymatic rather than an enzymatic process, as indicated by the weak activities
of the most antioxidant enzymes [45]. The production of H2O2 can also act as a long-
distance signaling molecule activating antioxidant defense mechanisms in plants under
stress [56,57].

It has been suggested that increased leaf phenolic compounds in some herb plants
have an important role in preventing oxidative stress, thus increasing the heavy metal
tolerance [58,59]. Therefore, the observed tolerance of clary sage leaves accumulating high
Zn concentrations may be due to the significantly increased amounts of total phenolics
and anthocyanins (Figure 5). In the leaf epidermis, the content of dark materials (Figure 7)
may indicate an increase in the phenolic content. Chen et al. [60] reported a reduced Chl a
content accompanied by a significantly increased total phenolic content in the leaves of
Kandelia obovata under high Zn concentrations, indicating that heavy metal tolerance is
related to the metabolism of phenolic compounds. Furthermore, Vidal et al. [61] confirmed
that plants that produce high amounts of phenolic compounds as a response to heavy
metal stress could be good candidates for phytoremediation and/or phytostabilization.
Additionally, anthocyanins have also been reported to have remarkably high antioxidant
capacity, acting as ROS scavengers in vacuoles and, thus, counteracting the toxic effects of
heavy metals [1,62,63]. Therefore, their enhanced accumulation in clary sage leaves upon
excess Zn exposure (Figure 5) indicates that a mechanism of heavy metal tolerance [64],
such as the formation of anthocyanin–chelate–metal complexes in plant tissues, is also
possible [65].

Generally, Zn excess was found to strongly affect the leaf structure. In particular,
Zn-treated poplar leaves increased in thickness with their pasalidae parenchyma to sub-
stantially increase in volume [66], while in Zn-treated Hordeum vulgare leaves, a decrease in
cell size and intercellular spaces with an increase in metal concentrations were recorded [67].
The Zn-treated S. sclarea plants showed none of the above effects. Both the control and
excess Zn-treated leaves of S. sclarea had a single-layered epidermis on the upper and lower
surfaces of the leaves (Figure 7). The bifacial leaves had a two to three layers of palisade
parenchyma, and the spongy parenchyma consisted of irregularly shaped cells (Figure 7)
having the typical anatomical features reported by Özdemir and Şenel [68]. One other
interesting feature was the increase in stomatal density (Figure 7c), a phenomenon that
occurred also in peanut plants under excess Zn application [69]. The increased stomata
number may enhance the carbon uptake, while, at the same time, minimize the water
loss [70], and this could explain the non-RWC disturbance observed (Table 1).

Since the photosynthetic efficiency is a sensitive bioindicator of environmental stress [33],
our data demonstrated stimulated PSII and PSI activity after excess Zn exposure (Figure 6a
and Table 2), while there were no changes in the dark-adapted Fv/Fm ratio (Figure 6a) or in
the O2 evolution (data not shown).

The analysis of the photooxidation of P700 to P700+, reflecting the relative contents of
active PSI reaction centers, was used to assess the effects of high Zn accumulation in leaves
on the PSI activity in vivo. The level of P700+ is suggested to be a direct and sensitive
indicator of the electron acceptance capacity from the PSI [71]. The current results revealed
that the functioning of the PSI in S. sclarea leaves was stimulated under excess Zn exposure
(Table 2). In contrast to the observed tolerance of S. sclarea to high Zn exposure, our recent
study [72] revealed that 100 µM Cd exposure for eight days caused higher toxic effects in S.
sclarea plants, expressed by a stronger reduction in the chlorophyll contents, as well as by
an inhibition of oxygen evolution and the activities of both photosystems.
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4. Materials and Methods
4.1. Plant Growth Conditions and Zn Treatment

Seeds of clary sage (Salvia sclarea L., Lamiaceae) were kindly provided by Bio Cultures
Ltd. (Karlovo, Bulgaria). After initial germination, seeds were sown into pots filled with soil
mixed with perlite (2:1 v/v) for about 6 weeks and then were transferred for 2 weeks into
hydroponic containers (3 to 4 seedlings per container) filled with a continuously aerated
nutrient solution (pH 6.0) described previously in detail [35]. The seedlings were kept in
greenhouse under 220 µmol m−2 s−1 photon flux density and a 12-h light photoperiod at
25/20 ◦C. Uniform plants were selected and subjected to treatment with 5 µM (control) or
900 µM (excess) Zn (applied as ZnSO4 and considered on the basis of earlier research [34])
in the nutrient solution for 8 days. For each treatment, 3 containers with four plants were
prepared, and the nutrient solutions were renewed every three days. Measurements were
performed on the fully expanded upper leaves of the plants.

4.2. Analyses of Zn and Nutrient Element Accumulation by the Inductively Coupled Plasma Mass
Spectrometry Method

After 8 days of treatment with 5 µM (control) or 900 µM (excess) Zn, roots and leaves
from treated plants were harvested, washed in deionized water and dried at 75 ◦C to
constant biomass, then milled (ball mill Pulverisette 23, Fritsch, Germany) and, finally,
sieved through a polypropylene sieve. The dried tissue samples (~0.3 g) were digested in
closed quartz vessels in a 3:1 ratio of 65% nitric acid and 30% hydrogen peroxide (Suprapur,
Merck, Germany). The temperature of digestion was 200 ◦C using a microwave-assisted
digestion system Ethos One (Milestone S.r.l., Sorisole BG, Italy). Digested samples were
quantitatively transferred into polypropylene tubes and diluted with demineralized water
(Direct-Q 3UV, Merc, Darmstadt, Germany). Elemental analysis of Zn, Ca, Cu, Fe, Mg
and Mn was carried out on an ICP-MS model Elan DRC II (PerkinElmer Sciex, Toronto,
ON, Canada). Spectral interference was eliminated using the dynamic reaction cell (DRC)
mode with high-purity ammonia (Linde Gas, Poznań, Poland) as the reaction gas. The
non-spectral interferences were reduced using a 10 ug L−1 solution of Ge and Rh as
the internal standard. The series of standard solutions for calibration were prepared by
appropriate dilution of 10 mg L−1 multielement stock solution (Multi-Element Calibration
Standard 3, PerkinElmer Pure, Shelton, CT, USA). Calibration curves were determined
by the interpolation method. The analytical procedure was validated using the certified
reference material: trace elements in spinach leaves NIST SRM 1570a (National Institute of
Standards and Technology, Standard Reference Material, Gaithersburg, MD, USA). More
detail information about the ICP-MS operation conditions, settings and quality assurance
are given in Appendix A.

4.3. Determination of the Oxidative Stress Markers

For the determination of electrolyte leakage (EL), some fully expanded leaves from
different selected plants were cut into small pieces and placed in 40 mL tubes with distilled
water for 24 h at 25 ◦C in the dark. After that, the electrical conductivity of the solutions
(EC1) was measured with a conductometer (Hydromat LM302, Witten, Germany); then, the
samples were boiled for 30 min and cooled to 25 ◦C, and their final electrical conductivity
was measured again (EC2). The electrolyte leakage (EL) was estimated from the equation:
EL (%) = (EC1/EC2) × 100. The relative water content (RWC) of the leaves was calculated
as described previously [73].

Fresh leaf samples (0.1 g) were immediately frozen in liquid nitrogen and stored at
–80 ◦C for the analysis of the hydrogen peroxide (H2O2) and malondialdehyde (MDA) con-
tents. The determination of the H2O2 contents in the leaves and levels of lipid peroxidation
by estimating the MDA contents were made as described by Mostofa et al. [74]. The histo-
chemical detection of H2O2 in leaves by staining with 1% 3,3′-diaminobenzidine (DAB)
solution were made following the procedure described in [75]. The mean values (±SE)
were averaged from three independent treatments with 3 repetitions for each treatment.
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4.4. Analysis of Photosynthetic Pigments and Total Phenolic Content

Finely ground frozen leaf material (0.05 g) was extracted with an ice-cold 80% (v/v)
acetone. The homogenates were centrifuged at 5000× g for 10 min at 0–4 ◦C, and the
supernatant was measured spectrophotometrically (Specord 210 Plus, Ed. 2010, Analytik
Jena AG, Germany). The amounts of chlorophyll a (Chl a), chlorophyll b (Chl b) and
carotenoids (Cars) were calculated according to Lichtenthaler [76].

For an estimation of the anthocyanin and total phenolic contents, the frozen leaf
samples (0.1 g) were extracted with 10 mL acidified methanol (1% HCl) in darkness at
0–4 ◦C for 2 days. The extracts were clarified by filtration and then used for analyses.
Total phenolic content was determined by the Folin-Ciocalteu’s colorimetric method, as
described by Sripakdee et al. [77]. The optical density was measured spectrophotometrically
at 765 nm, and the phenolic content was expressed as mg of gallic acid equivalent (GAE) per
g fresh weight (FW) of leaf tissues. Anthocyanins were estimated spectrophotometrically
as the optical density of the supernatant measured at 535 and 657 nm was calculated
as described by Mancinelli et al. [78]. Anthocyanin content was expressed as mg of
cyanidin-3-glucoside equivalent per g FW. The mean values (±SE) were averaged from
three independent treatments with 3 repetitions for each treatment.

4.5. Chlorophyll Fluorescence Analysis

Chlorophyll fluorescence analysis was performed using an Imaging PAM M-Series
system (Heinz Walz GmbH, Effeltrich, Germany), as described in detail [79]. Measurements
were conducted in dark-adapted (20 min) Salvia sclarea plants grown with 5 µM (control)
or 900 µM (excess) Zn for 8 days. The chlorophyll fluorescence parameters that were
calculated by the Imaging Win V2.41a software (Heinz Walz GmbH, Effeltrich, Germany)
involved the maximum efficiency of PSII photochemistry (Fv/Fm), the effective quantum
yield (ΦPSII), the fraction of open reaction centers (qp), the quantum yield of regulated
nonphotochemical energy loss (ΦNPQ) and the quantum yield of nonregulated energy
(ΦNO). The light intensity of 220 µmol photons m−2 s−1 was used for the photosynthetic
efficiency measurements, similar to the growth light intensity.

4.6. Measurements of P700 Photooxidation

The P700 photooxidation, i.e., the oxidation of the PSI reaction centers (P700) to
P700+ [80], was measured in vivo by the far-red (FR) light-induced absorbance transients
at 830 nm (∆A830) using a PAM-101/103 fluorometer (Walz, Effeltrich, Germany) equipped
with an ED-800T emitter-detector. The measurements were performed on dark-adapted
leaves using FR light supplied by a photodiode (102-FR, Walz). The extent of the FR-
induced oxidation of P700 to P700+ was estimated as the relative ratio ∆A/A830, where ∆A830
was the FR-induced absorbance change (P700+) and A was the absorbance in darkness.
The capacity of the cyclic electron flow was estimated by the half-time of the P700+ dark
reduction (t1/2) signal after switching off the FR light, as shown previously [44].

4.7. Light Microscopy and Stomatal Density Mesuarments

Pieces of S. sclarea leaves from plants exposed to 5 µM (control) or 900 µM (excess) Zn
for 8 days were prepared for chemical fixation, as reported in [81]. Pieces were fixed firstly
in a 3% paraformaldehyde + 3% glutaraldehyde solution buffered with 0.05 M sodium
cacodylate at pH 7.0 at room temperature for 6 h, and subsequently, the leaf segments
were post-fixed in 2% osmium tetroxide similarly buffered for 3 h. Afterwards, they were
dehydrated in an acetone series, treated with propylene oxide and, finally, embedded in
Durcupan ACM resin. An ultramicrotome (LKB 8801A, Stockholm, Sweden) equipped
with a glass knife was used to obtained semi-thin sections (0.5–2 µm) that were stained
with 0.5% (w/v) toluidine blue O and observed with a Zeiss Axioplan light microscope
equipped with a digital AxioCam MRc 5 camera (Zeiss, Berlin, Germany). The stomatal
density (No/mm2) was also evaluated in the leaf upper epidermis paradermal semithin
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sections [82] in both 5 µM and 900 µM Zn-exposed plants. Paradermal sections were
obtained from 4 individual leaves from the central part of the leaf blade.

4.8. Statistical Analysis

Average data are presented as the mean values (±SE) of three independent ex-
periments with three repetitions each. Statistical analysis of means was performed us-
ing two-sample Student’s t-tests. Differences were considered statistically significant at
* p < 0.05, ** p < 0.01 and *** p < 0.001 by using Origin 9.0 software (OriginLab, Northamp-
ton, MA, USA).

5. Conclusions

To the best of our knowledge, this study revealed for the first time some of the tolerance
mechanisms of the aromatic and medicinal plant S. sclarea to high Zn levels in the leaves,
which included: (1) an altered uptake and distribution of some essential nutrients, resulting
in increased contents of Fe, Ca and Mn ions in the leaves and (2) an enhanced leaf content
of nonenzymatic antioxidants, such as total phenolics and anthocyanins. Our results
also suggested that these mechanisms are involved into Zn detoxification and protection
against oxidative damage, thus protecting the photosynthetic activity and even stimulating
the PSI and PSII activities. Therefore, S. sclarea can be used for the environmentally safe
phytoremediation/phytoextraction of Zn-contaminated soils, since this aromatic plant is
mainly used for secondary products (free of heavy metals); thus, the contamination of the
food chain is eliminated.

Future investigations should be focused on the details of the metabolic pathways and
enzymatic antioxidant mechanisms that also contribute to the enhanced Zn tolerance in
Salvia sclarea L.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
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Zn for 8 days in a hydroponic solution.

Author Contributions: Conceptualization, A.D. and M.M.; methodology, A.H., I.-D.S.A., I.S., A.D.
and M.M.; software, A.D. and I.-D.S.A.; validation, A.D. and M.M.; formal analysis, A.H., A.D.,
I.-D.S.A., I.S. and M.M.; investigation, A.H., I.-D.S.A., I.S., A.D., E.Y. and P.B.; resources, I.-D.S.A.,
A.H., A.D., E.A. and M.M.; writing—original draft preparation, A.D.; writing—review and editing,
I.-D.S.A., A.H., E.A. and M.M. and supervision and project administration, A.D. and M.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Agreement for scientific cooperation between the Bulgar-
ian Academy of Sciences and the Aristotle University of Thessaloniki, Greece. A.H. was supported
by a grant of the National Science Center in Poland, № 2017/01/X/ST4/00373.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable

Acknowledgments: The Salvia sclarea seeds used for the experiments were kindly provided by Bio
Cultures Ltd.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. ICP-MS Operation Condition and Setting

The study was carried out using an ICP-MS spectrometer equipped with a cyclonic
spray chamber, concentric nebulizer of Meinhard type, quadrupole analyzer and Pt cones.
ICP-MS operation conditions were optimized daily. Those condition were: 1250 W RF
power, 16 L min−1 plasma gas flow rate, 0.89–0.91-L min−1 nebulizer gas flow rate and
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1.2 L min−1 auxiliary gas flow rate. The daily performance of ICP-MS was evaluated by
the Smart Tune Solution, Elan DRC/Plus/II (PerkinElmer, Shelton, CT, USA).

Appendix A.2. Quality Assurance

In order to provide high-quality results, the analytical procedure was validated. The
parameters evaluated for the validation process included linearity, limit of detection (LOD),
precision and trueness. Calibration curves were constructed daily and were based on the
blank solution with an analyte addition covering a concentration range: 0–1500 µg L−1 for
24Mg, 44Ca and 57Fe and 0–100 µg L−1 for 66Zn, 55Mn and 63Cu. The correlation coefficient
R exceeded a value of 0.999 for all elements. The trueness of the analytical results was
evaluated through the analysis of the certified reference materials and was expressed as a
recovery in percentages (R, %). The percentages of recoveries for all elements varied from
95% to 106%, respectively. The Student’s t-test confirmed a good agreement of trueness
with the certified values for all the determined elements. The precision values, expressed
as the coefficient of variation in percentages (CV, %) for all elements, were from 1.6% to
3.7%. The limit of detection (LOD) was estimated based on the standard deviation of the
10 separate blank solutions (2% HNO3) and the slope of the curve (b), according to the
equation: LOD = 3.3S/b. The LODs estimated for the ICP-MS method were as follows:
0.01 µg g−1 (Zn), 30 µg g−1 (Ca), 0.05 µg g−1 (Cu), 40 µg g−1 (Fe), 0.8 µg g−1 (Mg) and
0.03 µg g−1 (Mn) [72].
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79. Moustakas, M.; Bayçu, G.; Sperdouli, I.; Eroğlu, H.; Eleftheriou, E.P. Arbuscular mycorrhizal symbiosis enhances photosynthesis
in the medicinal herb Salvia fruticosa by improving photosystem II photochemistry. Plants 2020, 9, 962. [CrossRef] [PubMed]

80. Klughammer, C.; Schreiber, U. Analysis of light-induced absorbency changes in the near-infrared spectral region. 1. Characteriza-
tion of various components in isolated chloroplasts. Z. Naturforsch. C 1991, 46, 233–244. [CrossRef]

81. Adamakis, I.-D.S.; Eleftheriou, E.P. Structural evidence of programmed cell death induction by tungsten in root tip cells of Pisum
sativum. Plants 2019, 8, 62. [CrossRef] [PubMed]

82. Bosabalidis, A.M.; Kofidis, G. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci. 2002, 163,
375–379. [CrossRef]

http://doi.org/10.1007/s10535-009-0074-3
http://doi.org/10.3389/fpls.2019.00225
http://www.ncbi.nlm.nih.gov/pubmed/30894867
http://doi.org/10.1038/nature02598
http://www.ncbi.nlm.nih.gov/pubmed/15175756
http://doi.org/10.1016/j.ecoenv.2020.111851
http://doi.org/10.1556/CRC.37.2009.2.6
http://doi.org/10.1007/s10646-013-1073-x
http://doi.org/10.21769/BioProtoc.263
http://doi.org/10.1016/0076-687948036-1
http://doi.org/10.1104/pp.96.4.1079
http://www.ncbi.nlm.nih.gov/pubmed/16668301
http://doi.org/10.3390/plants9080962
http://www.ncbi.nlm.nih.gov/pubmed/32751534
http://doi.org/10.1515/znc-1991-3-413
http://doi.org/10.3390/plants8030062
http://www.ncbi.nlm.nih.gov/pubmed/30862127
http://doi.org/10.1016/S0168-9452(02)00135-8

	Introduction 
	Results 
	Zinc Accumulation and Mineral Element Uptake 
	Oxidative Stress Markers 
	Leaf Pigments and Total Phenolic Content 
	Chlorophyll Fluorescence Analysis 
	P700 Photooxidation 
	Leaf Anatomy under Zn Stress 

	Discussion 
	Materials and Methods 
	Plant Growth Conditions and Zn Treatment 
	Analyses of Zn and Nutrient Element Accumulation by the Inductively Coupled Plasma Mass Spectrometry Method 
	Determination of the Oxidative Stress Markers 
	Analysis of Photosynthetic Pigments and Total Phenolic Content 
	Chlorophyll Fluorescence Analysis 
	Measurements of P700 Photooxidation 
	Light Microscopy and Stomatal Density Mesuarments 
	Statistical Analysis 

	Conclusions 
	
	ICP-MS Operation Condition and Setting 
	Quality Assurance 

	References

