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Abstract: The new sequencing technology enables identification of genome-wide sequence-based
variants at a population level and a competitively low cost. The sequence variant-based molec-
ular markers have motivated enormous interest in population and quantitative genetic analyses.
Generation of the sequence data involves a sophisticated experimental process embedded with
rich non-biological variation. Statistically, the sequencing process indeed involves sampling DNA
fragments from an individual sequence. Adequate knowledge of sampling variation of the sequence
data generation is one of the key statistical properties for any downstream analysis of the data and
for implementing statistically appropriate methods. This paper reports a thorough investigation
on modeling the sampling variation of the sequence data from the optimized RAD-seq (Restriction
sit associated DNA sequencing) experiments with two parents and their offspring of diploid and
autotetraploid potato (Solanum tuberosum L.). The analysis shows significant dispersion in sampling
variation of the sequence data over that expected under multinomial distribution as widely assumed
in the literature and provides statistical methods for modeling the variation and calculating the model
parameters, which may be easily implemented in real sequence datasets. The optimized design of
RAD-seq experiments enabled effective control of presentation of undesirable chloroplast DNA and
RNA genes in the sequence data generated.

Keywords: sampling variation; overdispersion; RAD-seq data; Solanum tuberosum L.

1. Introduction

Development of next-generation sequencing technology (NGS) has enabled the identi-
fication of sequence variant-based genetic molecular markers at a genome-wide scale, a
population level, and a very competitive cost in comparison to traditional DNA molecular
markers such as restriction fragment length polymorphisms (RFLPs), amplified fragment
length polymorphisms (AFLPs), and single-nucleotide polymorphisms (SNPs) [1,2]. This
has motivated great interest in genotyping by sequencing (GBS) for population and quanti-
tative genetic analyses in diploid and tetraploid species [3]. It is established that the use of
genotype information at molecular markers may significantly improve the efficiency of
genetic analysis, particularly in tetraploids [4].

GBS is relatively straightforward in diploid species, although serious consideration
must be given to several major sources of variation in collecting and processing the se-
quencing data for accurate identification of allele-specific sequencing reads [5]. GBS in
tetraploids is a much more challenging task and involves distinguishing the number of
each constituent allele (i.e., the allele dosage) in a heterozygote genotype (i.e., Uitdewil-
ligen [6]). However, the reliability and accuracy of NGS heavily rely on knowledge of
the nature of variation embedded in the sequence data. The variation may be biological
or nonbiological in nature, and it may be associated with technical issues such as errors
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associated in process of sequencing library construction, sequencing errors, and errors
stemmed from data processing [5,7–9].

Tremendous research has been focused on modeling the complexities in variation
pattern and structure of diploid sequencing data [10,11]. Sequence data generated from
polyploids such as cultivated potato (Solanum tuberosum L.) show much more sophisticated
variation than diploid sequence data. In diploids, homozygote and heterozygote genotypes
at a polymorphic site can be inferred directly from sequence data, and GBS in diploids is,
thus, relatively trivial. However, GBS in polyploids represents a much more challenging
task; for example, there would be five possible genotypes at a biallelic site (A and a)
of a tetraploid genome, i.e., AAAA, AAAa, AAaa, AAAa, and aaaa. The heterozygote
genotypes (A_a_) are indistinguishable from each other using sequence data. Coupled
with other sources of errors, polyploid sequence data were recognized as being “messy”
for their complicated sampling distribution in Gerard et al. [12]. Gerard et al. made a
comprehensive survey of the impacts of several key sources of variation in hexaploid
sweet potato (Ipomoea batatas) sequence data for GBS [12]. Among the variation sources
discussed in the literature, sampling variation is the ultimate and key statistical property
of sequencing data, and it is essential information for the reliability of modeling and any
downstream analysis with the data. They pointed out that the “messy” hexaploid sequence
data may involve dispersion over standard independent distributions, but little is known
about to what extent the data deviate from a specific distribution and what form of the
statistical distribution the data follow.

This paper represents statistical methods for modeling sampling variation of new-
generation genomic sequence data from diploid and tetraploid plants and for estimating the
model parameters from the sequence data. These methods were demonstrated through ana-
lyzing the RAD-seq (Restriction site associated DNA sequencing) [13] data from diploid and
tetraploid parental lines and their offspring individuals of potato (Solanum tuberosum L.).
Lastly, we discussed how the sampling variation pattern predicted from the analysis
may influence quantitative genetic analysis involving use of the next-generation genomic
sequence data.

2. Results
2.1. Sequence Data Collected

We collected sequence read data from two pooled sequence libraries for diploids and
tetraploids of Solanum tuberosum L., each of which comprised 12 samples (two parental
lines and 10 offspring). The diploid and tetraploid potato strains used to generate the
offspring populations are detailed in Section 4. The designed length of DNA segments
targeted in the RAD-seq experiment varied between 360 and 560 bps. After chopping the
adapter and PCR primer sequences of 136 bps, the actual selected DNA segments were
in the range of 224–424 bps as demonstrated in Figure 1a,b, with the mean lengths of the
DNA segments being 317 bp and 310 bp, respectively. Figure 1c,d show the number of
reads in each of the pooled RAD-seq libraries of diploid or tetraploid potato, which was
approximately equal to 4 M, i.e., the designed number of sequence reads for each of the
samples, demonstrating the uniform presentation of the component samples in the pooled
RAD-seq libraries. These findings show that the designed parameters of the RAD-seq
library construction were well met and realized.
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Figure 1. Distribution of the lengths of DNA segments (a,b) and the number of sequence reads in each of the pooled
RAD-seq libraries comprising 12 diploid and tetraploid samples (c,d). The green lines in (a,b) bracket the ranges of the
designed length of the DNA segments. The red dashed lines in (c,d) show the average number of reads per sample. (a,c)
Diploids; (b,d) tetraploids.

2.2. The Efficiency of the RAD-Seq Protocol to Remove the Chloroplast and Ribosomal RNA
(rRNA) DNA Fragments

Raw short reads after the quality check were aligned to the potato reference genome
using Bowtie2 [14] according to the mapping quality criteria set in Section 4. When the reads
were collected from the library without designed removal of DNA from the chloroplast and
rRNA genes, we showed that fewer than one-third of the sequence reads were aligned to
the genomic sequence in diploid (27%) and tetraploid (30%) genomes (Table 1). In contrast,
when chloroplast and rRNA sequences were designed to be removed by implementing a
second round of digestion, the majority of reads were successfully mapped to the reference
genomic sequence in the diploids (86%) or tetraploids (85%) of potato (Table 1). Only
small proportions of the sequence reads (5–7%) were mapped to the chloroplast genomes
and the rRNA genes. These results indicate that the design objectives of the optimized
RAD-seq approach were successfully achieved in effectively minimizing the presentation
of the chloroplast and rRNA in the RAD-seq libraries and in significantly increasing the
proportion of reads mapped to the reference genomic sequence.
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Table 1. Proportions (%) of the sequence reads aligned to different regions in the diploid or tetraploid
potato genomes from the RAD-seq experiment. rRNA, ribosomal RNA.

Mapped
Regions

Without Removing Chloroplast
and rRNA Fragments

With Removing Chloroplast and
rRNA Fragments

Diploid Tetraploid Diploid Tetraploid

Genomic DNA 27.0 30.3 85.5 84.8
Chloroplast

DNA 64.5 61.1 6.5 4.4

rRNA genes 0.7 1.2 0.3 0.3
Unmapped 7.8 7.4 7.7 10.5

2.3. Preliminary Bioinformatic Analysis of the RAD-Seq Data

The RAD-seq data collected from this study were used to fit the two alternative
sampling distributions (binomial distribution and β-binomial distribution). However,
sequence coverage and polymorphic segregating alleles may vary considerably from one
polymorphic site to the other in the RAD-seq dataset. To minimize these influences, we
further screened the RAD-seq data to be included into the model fitting on the basis of
the following screening and grouping criteria: the selected data for the modeling fitting
must carry a polymorphic site with at least two alleles in the diploid or tetraploid samples
and have a coverage of ≥20. The selected sequence data were then grouped according
to their coverage into [20,60), [60,100). Within each of the groups, we assigned one of the
polymorphic nucleotides (usually the one from the reference genome) as allele A and the
other as a, and the number of A-carrying sequence reads was counted as nA. The number
of the polymorphic sites in each of the groups was denoted by M.

According to the above criteria, we were able to identify a total of 59,503 biallelic
sites between the two diploid parents and a total of 68,389 biallelic sites between the two
tetraploid potato parents. Among them, there were 28,984 or 31,879 sites common between
the two diploid or tetraploid parents. Use of FreeBayes [15] software enabled genotyping
at these polymorphic sites in both the diploid and the tetraploid groups, as tabulated in
Table 2.

Table 2. The number of polymorphic markers screened from the RAD-seq datasets of diploid and
tetraploid parental strains (P1 and P2) and 10 offspring individuals (O1, O2, . . . , O10).

Individuals
Diploids Tetraploids

AA Aa aa AAAA AAAa AAaa Aaaa aaaa

P1 6369 16,109 20,837 6355 12,420 7389 4776 17,905
P2 6314 12,992 25,866 6104 12,129 7804 5232 20,150
O1 6190 9712 15,781 6330 11,007 6747 5122 20,605
O2 5756 8471 16,875 5719 9556 6294 4549 18,086
O3 5657 8024 16,292 8779 13,662 8297 6727 24,261
O4 5843 10,034 15,295 6398 9618 6664 4131 21,851
O5 5812 9257 15,803 6609 11,194 7071 5152 21,951
O6 5181 5843 15,410 6508 10,303 6886 5137 19,245
O7 4904 8329 17,343 6965 10,571 7877 5145 20,327
O8 5294 10,134 19,844 6149 9854 6936 4444 18,988
O9 5562 10,918 23,296 5692 9535 6300 3968 15,634
O10 5450 7459 18,270 6999 12,306 7714 5269 21,468

The above-predicted genotypes at the selected polymorphic sites were used in the
subsequent model fitting analysis.

2.4. Sampling Distribution Fitting

We fitted the RAD sequence data at the identified biallelic nucleotide sites, which
accounted for 95% of the RAD sequence scanned, from the above diploid and tetraploid
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parents and their offspring individuals to the two candidate distributions, binomial and
β-binomial distributions. For illustrative purposes, we showed the expected number of
allele A (the others were labeled a) from the candidate distributions and compared it to the
observed number. Figure 2a,b show frequencies of the observed and expected numbers of
the reference allele under the candidate distributions from RAD-seq data from all diploid
and tetraploid individuals listed in Table 2 when the coverage of polymorphic sites was
between 20 and 60. Figure 2c,d show frequencies of the observed and expected numbers
of the reference allele when the sequence coverage of polymorphic sites was between
60 and 100. To test for goodness of fit between the observed and expected numbers of allele
A, we calculated χ̂2

d f , and we present the ratio of χ̂2
d f /d f in Figure 3a,b for the sequence

coverages 20–60 and 60–100, respectively.
It is clear from Figures 2 and 3 that the sampling variation of the RAD-seq data

was clearly and substantially better modeled by the β-binomial distribution than by the
binomial distribution in both diploid and tetraploid sequence data.
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β-binomial distributions.
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3. Discussion

Advancement in new-generation sequencing techniques has stimulated a wide spec-
trum of analyses in modern genetics and genomics. The sampling distribution of the
sequence data generated from the techniques is one of the most important features of
the data, and a good understanding of this statistical property is essential for sequence
data to be appropriately implemented into relevant analyses. For example, a binomial
distribution has been widely assumed in prediction of genotypes at polymorphic sites
called from sequence data in both diploids [5,10,16,17] and polyploids [2,18,19]. Gerard
et al. demonstrated that the sampling variation of real sequence data deviates substantially
from that under bi- or multinomial distributions, although these authors did not provide
a further investigation into how the dispersed verion would be statistically approriately
modeled [12].

Generation of sequence data can be assimilated to a random process of sampling a
number of alleles carried by an individual genotype at any given site. This process may be
subject to a wide range of technical and biological variations, as thoroughly reviewed in
the literature. Statistically, binomial (or multinomial) distribution models a random process
of independently and probablistically identical sampling from two (bi-) or multiple objects.
The present study demonstrates that the RAD-seq data collected from the present study
showed markedly wider variation than that expected under binomial distribution, whilst
the β-binomial fit the data variation much better than the binomial distribution.

The i.i.d (identical and independent distribution) assumption behind the bi- or multi-
nomial distribution may rarely be satisfied in the sampling process of generation of any
sequence data. For instance, different primer and/or template sequences may be subjected
to marked variation of PCR products in sequence library construction [20]. The efficiency
in sysnthesis of sequence reads depends on the concentration and sequence of the template
pool [21]. The inheritent features in the process of sequence data generation and errors in-
volved in every step of the bioinformatic process of sequence data may substantially violate
the i.i.d assumption; thus, binomial or multinomial distributions cannot be recognized to be
a statistically appropriate model for smapling variation of the sequence data, particularly
the data located at the distribution tails of the data, as shown in the present study.

The deviation in sampling variation of sequence data from that of bi- or multinomial
distribution, as demonstrated in the present study, would have significant impacts on and
bias the downstream analyses. For instance, when the sequence data are used to predict
genotypes at the sequence variant sites, the probabilities of the predicted genotypes will be
severely biased from the sequence reads which are at tails of the sequence data distribution,
as shown in Figure 2. Although use of the predicted genotypes has been demonstrated to
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improve the efficiency of quantitative genetic analyses in both diploids and tetraploids
through computer simulation studies [5,22,23], little is known about the impacts of biased
genotype prediction on these analyses. Obviously, an adequate knowledge of sampling
distribution of sequence data represents the prerequisite for the reliability of sequence-
based genotyping and, in turn, the reliability of any analysis based on the genotyping
information. The present study revealed a key feature of sequence data and highlighted
the importance of an essential step in genetic and genomic analyses using new-generation
sequence data, as well as provided methods for fitting new-generation sequence data to a
β-binomial distribution and estimating the corresponding model parameters.

The present study implemented the optimized RAD-seq experiments for sequencing
parental varieties and the first-generation offspring of diploid and tetraploid potatoes
(Solanum tuberosum L.). The RAD-seq experiments enabled an adequate length selection of
DNA segments that were designed for an even coverage of the target genome, minimizing
representation of chloroplast DNA and RNA genes in the sequence library and, in turn,
maximizing gain of the target sequence data.

4. Materials and Methods
4.1. Creation of Diploid and Tetraploid Segregation Populations of Solanum tuberosum L.

We created two segregation offspring populations from crossing two highly heterozy-
gous diploid potato strains (BD6-6 and BD66-6) or two tetraploid potato cultivars (Atlantic
and Longsu-3). These parental strains vary significantly in a series of morphological and
developmental traits and were provided by Crop Institute of Qinghai Academy of Agricul-
ture and Forestry Sciences (Qinghai, China) where the cross-breeding and field experiments
were conducted. Although there were a total of 184 diploid and 301 tetraploid offspring
together with their parental lines successfully collected from the crossing experiments, in
the present study, only 10 offspring individuals and their parents were implemented from
each of the two outbred segregation populations. Selection of these offspring individual
samples was largely random for demonstrative purposes. Leaf samples were collected
when the plants bloomed the first flower, and 10–20 g of fresh leaves were collected for
each of the plants.

4.2. Construction of RAD-Seq Libraries

DNA samples were first extracted from the leaf samples of the selected individual
plants as described above using the DNeasy Plant Mini Kit (QIAGEN, Valencia, CA, USA)
to extract DNA, and the sequence libraries of the selected DNA sampled were constructed
following the method we previously described in [24]. The sequence library construction
protocol was modified in two aspects. Specifically, DNA segments with target length were
selected in two steps, firstly by the Pippin prep system, and secondly further refined by
use of Ampure XP beads. This effectively improved the accuracy of selection for DNA
segments with the designed fragment length. The workflow and protocol of the RAD-seq
library construction are diagrammatically illustrated in Figure 4. Adaptors used in the
library construction are listed in Table S1 (Supplementary Materials).

The constructed RAD-seq libraries of 12 samples were pooled into an integrate library
to be sequenced by an Illumine High-2000 sequencer to generate an average of 4 M reads
of 2 × 150 bps for each of the 24 biological samples. We stress that the RAD-seq protocol
implemented here is an optimized RAD-seq approach that minimizes presentation of
untargeted DNA segments from chloroplast DNA and RNA genes, as detailed in our
previous work [24].
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fragments. (c) The first round of fragment size selection with Pippin prep. (d) The second digestion to remove DNA
fragments from the chloroplast genome and/or RNA genes. (e) PCR amplification. (f) The second round of fragment size
selection with Ampure XP beads.

4.3. Preliminary Processing of the Sequence Data

The RAD-seq data collected were firstly checked for quality and filtered for the next
step of analysis. The sequence reads were removed from further analyses if they had an
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average Phred score below 20, which was assessed by use of the software trim-galore, or
mapping quality lower than 20, which was worked out by using the software Bowtie2.
Moreover, the paired reads mapped more than 500 bps apart were excluded from further
analyses. The potato reference genome was used for the quality screening analysis and
was downloaded from http://potatogenomics.plantbiology.msu.edu.

4.4. Identifying SNPs from the Sequence Data

The sequence reads after the above quality filtering process and with a mapping
coverage greater than 20 were subjected to screening for single-nucleotide polymorphisms
embedded in the sequence reads. A nucleotide site is called polymorphic if there are two
(diploids) or more (tetraploids) nucleotides present at the site. We removed those variants
with <5% of the reads to the improve statistical efficiency of the subsequent analyses.

4.5. Calling Polymorphic Sites and Genotype at the Identified Sites

It is straightforward to determine a diploid individual genotype at a polymorphic site
within sequence reads. However, there would be three possible genotypes at a biallelic
or triallelic site for a tetraploid heterozygote; thus, it is not trivial to predict tetraploid
genotypes even from sequence data [6,25]. We implemented the method “freebayes”
described in Garrison [15] to predict tetraploid genotypes of the tetraploid individuals
from their sequence data. The method predicts the probability of a sample genotype
at a heterozygous locus given sequence data through an approximation Bayes formula.
The method was designed to model short-read sequence data of independent samples.
It predicts both polymorphic sites and genotypes at the sites using a computationally
efficient algorithm through a series of computationally tractable approximation algorithms,
particularly when the number of individuals and the number of polymorphic sites are large.

4.6. Sampling Distributions of Sequence Data

For a given individual with a ploidy level k (=2 or 4), its genotype is denoted
by AkA CkC GkG TkT ,with kX being the number of allele X = A, C, G, or T and kA + kC +
kG + kT =2 (diploids) or 4 (tetraploids). The individual is observed in the RAD-seq ex-
periment to have nX sequence reads carrying X = A, C, G, and T. Sampling variation
of the RAD-seq is characterized by the following conditional probability distribution:
Pr{nA, nC, nG, nT |kA, kC, kG, kT}. We explore here several cases of patterns of sampling
variation of the RAD-seq data, i.e., the form of the probability distribution. When the
genotype allele is independently sampled in the process of sequencing, nA, nC, nG and nT
follow a multinomial distribution with the form given below

Pr{nA, nC, nG, nT |kA, kC, kG, kT} =
(

n
nAnCnGnT

)(A,C,G,T)

∏
X

(kX/k)nX , (1)

where n = nA + nC + nG + nT and k = kA + kC + kG + kT . Equation (1) indicates an ideal
circumstance, i.e., sampling of alleles in an individual genotype is independent in the
process of sequence library construction, sequencing, and later sequence data processing.
This independence assumption has been widely made in the recent literature [2,3,7,10].
The mean and variance of the multinomial distribution are n∏

(A,C,G,T)
X (kX/k) and

n∏
(A,C,G,T)
X (kX/k)(1− kX/k).

However, many empirical analyses have demonstrated severe deviation of sequence
data from this independence assumption [1,10,12]. We proposed here the multivariate
Polya distribution [26] as a more general form to model the sampling distribution of
nA, nC, nG and nT in the present context of sequence data analysis. The Polya distribu-
tion is a compound probability distribution of a general multinomial distribution with

http://potatogenomics.plantbiology.msu.edu
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Bernoulli trial probability parameters αX (X = A, C, G, T) being sampled from the Dirichlet
multinomial distribution, as given by

Pr{nA, nC, nG, nT |kA, kC, kG, kT} =
(n!)Γ

(
∑
(A,C,G,T)
X αX

)
Γ
(

n + ∑
(A,C,G,T)
X αX

) (A,C,G,T)

∏
X

Γ(nX + αX)

nX!Γ(αX)
. (2)

When Equation (2) is conjugated with Equation (1), the marginal probability distribu-
tion of nA, nC, nG and nT is given by

Pr{nA, nC, nG, nT |αA, αC, αG, αT} =
nB(αS, n)

∏
(A,C,G,T)
X,nX>0 B(αX , nX)

, (3)

where αS = αA + αC + αG + αT and the beta function B(x, y) = Γ(x)Γ(y)/Γ(x + y).
Equation (3) can model a much wider spectrum of variation, i.e., overdispersion, in sam-
pling the sequence data, and it is appropriate for sequence data from a species of any ploidy
levels. Although there is no technical problem when developing statistical analysis of the
sequence data with the probability model (Equation (3)) for other numbers of segregating
alleles at a polymorphic site, we focused here on diploid and tetraploid sequence data only.
In diploids, each individual has up to two alleles at each SNP site. In principle, there may be
up to four alleles at an SNP site in tetraploids. However, empirical surveys show that bial-
lelic SNPs have accounted for ~96% of polymorphic sites identified from tetraploid potato
sequence data [6] (Uitdewilligen et al. 2013; Luo et al. unpublished data). Approximately
95% of biallelic sites were observed in the dataset analyzed in the present stduy. Thus,
we focused here on the biallelic case for both diploid and tetraploid sequence datasets.
Without loss of generality, we denoted the two alleles A and a. Equations (1) and (3) could
be simplified into

Pr{nA|n, kA} =
(

n
nA

)
(kA/k)nA((n− kA)/k)n−nA , (4)

which is the probability function of binomial distribution with mean and variance n× kA/k
and n× kA(k− kA)/k2, and, in general,

Pr{nA|n, αA, αa} =
(

n
nA

)
B(nA + αA, n− nA + αa)

B(αA, αa)
=

(
n

nA

)
Γ(αA + αa)Γ(n− nA + αa)Γ(αA + αa)

Γ(n + αA + αa)Γ(αA)Γ(αa)
, (5)

which is the probability mass function of beta binomial distribution with mean and
variance nαA/(αA + αa) and nαAαa(αA + αa + n)/[(αA + αa)

2(αA + αa + 1)]. Equation (5)
involves a series of gamma functions Γ(z), and their numerical calculation would be com-
putationally tedious, particularly for a large value of z. Yang proposed an approximation
of gamma functions, as given below [27].

Γ(z) = Γ(y + 1) ∼=
√

2πy(
y
e
)

y
(ysinh

1
y
)

y/2
exp(

7
324

1
y3(35y2 + 33)

). (6)

Accuracy of the approximation is on the order of 10−4 when z→ ∞ . The first and
second moments of the beta binomial distribution can be calculated from

µ1 = E(nA) =
nαA

αA + αa
, (7)

µ2 = E(n2
A) =

nαA[n(1 + αA) + αa]

(αA + αa)(1 + αA + αa)
. (8)
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Setting them as equal to estimate µ̂1 = ∑M
i nAi/M and µ̂2 = ∑M

i n2
Ai/M from a

sample of nA1, nA2, . . . , nAM, we can calculate the model parameters αA and αa from

α̂A =
nµ̂1 − µ̂2

n(µ̂2/µ̂1 − µ̂1 − 1) + µ̂1
, (9)

α̂a =
(n− µ̂1)(n− µ̂2/µ̂1)

n(µ̂2/µ̂1 − µ̂1 − 1) + µ̂1
. (10)

Parameters characterizing the above three possible sampling distributions can be
calculated from the sample data. Using these parameter estimates and the corresponding
probability distribution function (Equation (5)), one can calculate the expected value for
each nAi as ñAi (i = 1, 2, . . . , M), and we conducted a goodness-of-fit test between the
expected and observed nAi through an empirical chi-square test. An estimate of the test
statistic is calculated by

χ̂2
d f=M−1 =

M

∑
i=1

(nAi − ñAi)

2

/ñ2
Ai, (11)

with d f = M− 1 degrees of freedom. Significance of the goodness-of-fit test is characterized
by the p-value, which is calculated from

P = Pr
{

χ2
d f=M−1 > χ̂2

d f=M−1

}
= 1− Pr

{
χ2

d f=M−1 ≤ χ̂2
d f=M−1

}
, (12)

in which χ2
d f=M−1 is the chi-square variable with d f = M− 1 degrees of freedom.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-7
747/10/2/319/s1: Table S1. A complete list of all Illumina adapters used in the optimized RAD-
seq study.
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