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Abstract: Agro-industries should adopt effective strategies to use agrochemicals such as glyphosate
herbicides cautiously in order to protect public health. This entails careful testing and risk assessment
of available choices, and also educating farmers and users with mitigation strategies in ecosystem pro-
tection and sustainable development. The key to success in this endeavour is using scientific research
on biological pest control, organic farming and regulatory control, etc., for new developments in food
production and safety, and for environmental protection. Education and research is of paramount
importance for food and nutrition security in the shadow of climate change, and their consequences in
food production and consumption safety and sustainability. This review, therefore, diagnoses on the
use of glyphosate and the associated development of glyphosate-resistant weeds. It also deals with
the risk assessment on human health of glyphosate formulations through environment and dietary
exposures based on the impact of glyphosate and its metabolite AMPA—(aminomethyl)phosphonic
acid—on water and food. All this to setup further conclusions and recommendations on the regulated
use of glyphosate and how to mitigate the adverse effects.

Keywords: glyphosate use; resistant weeds; AMPA; cancer risks; herbicide research

1. Introduction

Glyphosate (N-phosphonomethylglycine; Figure 1a) is an aminophosphonate. This
compound is typically used as a broad-spectrum herbicide and is absorbed by plant leaves.
Glyphosate, discovered in the 1970s, was registered in more than 130 countries [1], and
the use of glyphosate-based herbicides increased 100 times since then [2]. Genetically engi-
neered herbicide-tolerant (GEHT) crops have considerably facilitated weed management
in cotton, soybean, and maize [3–5]. However, they have also caused the emergence of
glyphosate-resistant weed phenotypes [3–8]. The incorporation of additional herbicides
into spraying programs [6,7] has caused herbicide per hectare on crops with GEHT vari-
eties to escalate in this century [5,8,9]. This upward trend is expected to result in heavier
environmental loads and increased human exposure to herbicides, including glyphosate
and its main metabolite, aminomethylphosphonic acid (AMPA; Figure 1b), and to the
adjuvants contained in its formulations. Weed management should face resistance before
it happens [10]. It is key to promote changing crops or crop rotations against herbicide
resistant (HR) weeds with effective herbicides [11]. Non-herbicidal alternatives (natural
products, selective herbicides, mechanical controls, etc.) need to be added to satisfy the
reduced efficacy of herbicides [12].

Figure 1c shows the degradation pathway for glyphosate in soil [13]. Although leach-
ing of glyphosate is very unlikely due to its high soil sorption, depending on the type of soil,
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it can move to ground and surface waters through leaching and runoff [14]. Human expo-
sure to urban sources of glyphosate should be considered too. Although some nonselective
(broad spectrum) herbicides for both urban and home use in emerging countries contain
glyphosate at low levels—and pose little risk of acute toxic exposure as a result [15]—those
used in developing countries contain higher levels of this compound, or are mixed without
official control. Dietary exposure in areas lacking residue information can be assessed from
data for areas where glyphosate use and residues have been accurately determined [16].
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Figure 1. Structural formula of glyphosate (a) and AMPA –(aminomethyl)phosphonic acid– (b), together with degradation
pathway for glyphosate in soil (c).

The glyphosate mechanism as herbicidal involves inhibition of 5-enolpyruvylshiki-
mate-3-phosphate synthase (EPSPS), which interferes with phenylalanine, tyrosine, and
tryptophan synthesis. Unlike plants and some microorganisms, mammals have no EPSPS,
which is in principle an advantage safety-wise [17]. However, glyphosate herbicides are
highly controversial in toxicological and environmental terms. This review, therefore,
diagnoses on the use of glyphosate and the associated development of glyphosate-resistant
weeds. It also deals with the risk assessment on human health of glyphosate formulations
through environment and dietary exposures based on the impact of glyphosate and its
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metabolite AMPA on water and food. All this to setup further conclusions and recom-
mendations on the regulated use of glyphosate and how to mitigate the adverse effects
in the below selected sections. The literature search was done following the guidelines
included in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guide
(PRISMA). Accordingly, a search was carried out on the following databases: Cochrane
library, Embase, Medline, Cinahl, Scopus, Sci-Finder, and Web of Science. Scientific reports
included in the study were obtained using the following search terms: “(glyphosate) AND
(keywords of the different sections below)”. Common inclusion/exclusion criteria for
references selection were based on publication date, mainly in the past 20 years, of both
scientific-based papers and technical reports, with study designs, interests, and world
overall coverage, applicable to all research questions below.

2. Glyphosate-Resistant Weeds

The international database on herbicide resistance [18] contains more than 510 studies.
The best resistance mainframe is based on prevention and on detection with regular
appraisal of herbicides-treated fields [19]. There are various methods to detect resistance
with tests in the field and with bioassays in greenhouses and laboratories [20]; for example,
hybridization between A. palmeri and A. spinosus occurred with frequencies in the field
studies ranging from <0.01% to 0.4%, and 1.4% in greenhouse crosses [21]. Non-target-site
resistance (NTSR) to herbicides in weeds can be conferred as a result of the alteration
of one or more physiological processes, including herbicide absorption, translocation,
sequestration, and metabolism. The mechanisms of NTSR are generally more complex
to decipher than target-site resistance (TSR) and can impart cross-resistance to herbicides
with different modes of action. Metabolism-based NTSR has been reported in many
agriculturally important weeds, although reduced translocation and sequestration of
herbicides has also been found in some weeds [22,23]. Crossed resistance is when the plant
developed resistance to an herbicide, which permits to resist herbicides with the same
action mode [24]. Multiple resistance is when a plant has one or several mechanisms of
resistance to herbicides with distinct action modes. The selection pressure of an herbicide
is then capable to select resistant plant biotypes depending on the herbicide treatment type,
its formulation, application frequency, and the biological characteristics of the weed and
the crop [25–28]. Examples of glyphosate-resistant weeds and their locations can be found
in Table 1.

Table 1. Example of glyphosate-resistant weeds and their locations, extended from reference [29].

Weed Location

Amaranthus palmeri United States
Amaranthus tuberculatus United States
Ambrosia artemissifolia United States

Ambrosia trifida United States

Conyza bonariensis United States, Brazil,
Argentina

Conyza canadensis United States
Euphorbia heterophylla Brazil

Lolium perenne
United States,

Brazil,
Australia

Sorghum halepense United States,
Argentina

The problem is compounded by non-target site multiple resistances in grasses, as is
the case of Lolium rigidum and Alopecurus myosuroides [12,26]. In addition, the growing
expansion of multiple resistance to broadleaf weeds is bound to worsen things in the future.
Managing non-target site resistance is difficult owing to the many unpredictable resistance
patterns against which rotating herbicide sites of action may be ineffective. Herbicides are
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the main means for weed control in developed countries, but they should be used more
sustainably [30]. This entails not only using improved herbicide mixtures and rotations,
but still adopting intensive integrated weed management programs including effective
mechanical and cultural strategies [31]. A pressing need therefore exists for economic
incentives to the search for new, safer, and more effective herbicides [4].

Developing herbicide-resistance crop traits may grant the use of old herbicides in new
ways through tailored mixtures efficiently avoiding multiple resistance [32,33]. Indeed, the
use of different genetic engineering techniques as RNA interference (RNAi) [3,32,34–38],
chimeric RNA/DNA oligonucleotides [39], and gene-editing techniques (GM), such as
CRISPR/Cas9 or CRISPR/Cpf1 [40–48] technology, might be useful for this purpose. The
best approach to prevent resistant weeds is to use a combined weed management, and
herbicides will likely be partly replaced with new technologies such as, among others,
research on crop allelopathy [49–56] and engineering of microbial control agents [57–61].
Progress in these technologies is expected to allow methods for weed control to be used in
an integrated manner with the aim of maximizing diversity in weed control and minimizing
resistance. Applying evolutionary principles to agricultural settings is essential to properly
understand the system-wide effects of herbicide selection intensity [62]. Although the main
driver of herbicide resistance is the selection pressure of management, further knowledge
of the scientific bases of herbicide resistance at the genetic and cellular levels needs to be
developed [63–67]. The causes and dynamics of resistance expansion might be elucidated
by assessing the flexibility of certain alleles involved in herbicide resistance [68]. The
capability of resistant weeds to prevail, replicate, and selectively infest habitats depends on
the degree of vigour of the particular resistant gene [69]. The effects of the environment on
resistant plants in cropping conditions could thus reduce the heritability and frequencies
of resistance alleles with time [70].

Research in this field should also address the effects of climate change on the expansion
of herbicide resistance. According to Renton [71], spatially computational models could be
of help in this context by providing powerful indicators on how genetics, plant biology,
population structure, environmental conditions, and management strategies connect to
shape weed resistance dynamics. The use of scarcely diverse practices drove to a fast
increment in multiple-resistance weeds with upgraded abilities for herbicide metabolism
worldwide [72]. Elucidating herbicide metabolic pathways could help re-classify and
re-rank the risks of herbicide resistance and hence enable the adoption of more effective
herbicide rotations, such as those based on both site of action and metabolic pathway.
Processes associated with climatic changes, such as elevated temperatures, can strongly
affect weed control efficiency. For example, responses of several grass weed populations to
herbicides that inhibit acetyl-CoA carboxylase (ACCase) were examined under different
temperature regimes [73].

Mitigation Strategies

Weed resistance management has three planks: rotate modes of action to reduce
selection pressure, incorporate non-chemical practices and control weed seed set, together
with asexual reproduction (rhizomes, stolons, etc.). Effective weed control needs to discern
weeds biology, prevents with weed seed production, plant into weed-free fields, grow
weed-free seed, and inspect lands regularly. There is also a need to adopt numerous
herbicide action mechanisms active versus damaging weeds, spread herbicide estimate at
selected weed extents, and highlight growing conditions that put an end to weeds by crop
competition. Further, it is useful to practice mechanical and biological executive strategies,
avoid field-to-field and within-field migration of weed vegetative propagules, regulate
weed seed to avoid a reinforcement of the weed seed-stock, and preclude an invasion
of weeds into land by controlling ground boundaries. All these diverse approaches to
managing herbicide resistance need to be incorporated into weed management [74–78].
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This will be beneficial in managing resistance in the long term, together with math-
ematical simulations proving that mixtures magnify herbicide efficacy, choice array of
soil-applied herbicides, and postpone herbicide resistance growth in weeds. It shows
than extension efforts rotating herbicide mixtures give vision to guide the progression of
weed resistance [69]. Multiple modes of action (MOAs) for weed control are important
for managing herbicide resistance and enabling no-till farming practices that help to se-
quester greenhouse gases, but discovering new herbicide MOAs has been a challenge for
the industry [76].

According to the International Assessment of Agricultural Knowledge, Science and
Technology for Development [79] (IAASTD, 2008), agricultural development has focused
on increasing farm-level yield, more than on consolidating effects on biodiversity and the
liaison of agriculture with climate change. Increased attention needs to be directed to build
up soil fertility and to sustain agricultural production, with a focus also on protection of
biodiversity. Agro-ecology refers to treating agricultural ecosystems as ecosystems, and
can enable a successful transition to more sustainable farming and food systems [80].

Moreover, in recent decades, studies were performed looking for alternatives to
glyphosate. There is a rise in efficacy tests using different natural (or even modified)
allelo-chemicals obtained from essential oils for pest-control [81–96], as well as in their use
as herbicides [97–112].

3. Impact of Glyphosate and Its Metabolite AMPA on Water Streams

Glyphosate residues raised perception of its adverse effects on human health, soil,
and aquatic ecosystems [113]. Some microorganisms in soil and water can degrade this
compound [114]. The major metabolite of glyphosate is aminomethylphosphonic acid
(AMPA; Table 2).

Table 2. Properties of glyphosate and its metabolite AMPA.

Common Name Glyphosate AMPA

Chemical name N-phosphonomethylglycine Aminomethylphosphonic acid
CAS number 1071-83-6 1066-51-9

Molecular formula C3H8NO5P CH6NO3P
Exact mass 169.01 g mol−1 111.01 g mol−1

Vapour pressure (25 ◦C) 1.31 × 10−5 Pa 8.44 × 10−4 Pa
Henry’s law volatility

constant (25 ◦C) 2.1 × 10−7 Pa m3 mol−1 2.6 × 10−3 Pa m3 mol−1

Solubility in water (20 ◦C) 10.5 g L−1 1467 g L−1

Partition coefficient (log Pow)
(20 ◦C) −3.2 −1.6

Solid/water distribution
coefficient (Kd) 5.3–900 L kg−1 15–1554 L kg−1

Soil organic carbon
normalized adsorption

coefficient (Koc)
884–60,000 L kg−1 1160–24,800 L kg−1

Half-life (DT50) in soil 1–197 days 23–958 days
DT90 in soil 40–280 days Unknown

Glyphosate can flow throughout soil, and reach surface and ground waters [14,115–117].
Although sorption and degradation are affected by many factors that might be expected
to affect glyphosate mobility in soils, glyphosate leaching seems mainly determined by
soil structure and rainfall. Limited leaching has been observed in non-structured sandy
soils, while subsurface leaching to drainage systems was observed in a structured soil
with preferential flow in macropores, but only when high rainfall followed glyphosate
application [14]. The time needed for glyphosate in river water to be eliminated by 50%
(i.e., DT50) has been found to range from 13.8 to 301 days, which is suggestive of moderate
to high persistence [118]. Rivers are influential environments with a fundamental action
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in xenobiotic mitigation [119]. Thus, river water usually transports nutrients, organic
matter, and pollutants that can severely constrain microbial growth [120]. Biofilms, which
are network structures with a wide range of microbes, contribute to transform xenobi-
otics through co-metabolism and mineralization. Glyphosate can be utilized to obtain
phosphorus by microorganisms such as bacteria and fungi in biofilms [121,122]. The com-
pound is cleaved through the carbon–phosphorus lyase (C-P lyase) route, which comprises
consecutive enzyme-catalysed reactions including phosphonate activation and C–P bond
break [123]. The genes enciphering the enzymes are amassed into the phosphonate operon,
which occurs widely amongst bacteria. However, the effects of phosphorus on glyphosate
degradation have been investigated in segregated microbial strains [124] rather than in
natural biofilms [125].

AMPA is a metabolite from glyphosate and from aminopolyphosphonate, which is
applied in detergents, flame-retardants, and anticorrosive products [126]. As found by
meta-analysis [127], glyphosate and AMPA are concomitantly present in water, with levels
evolving in the same way at positively correlated concentrations, since glyphosate can
be rapidly converted to AMPA. Battaglin et al. [128] detected glyphosate, but no AMPA
in 2.3% of 3732 water and sediment specimens. Moreover, Struger et al. [129] found the
parent compound and its metabolite to co-occur at probability p value = 0.76 in Canadian
rivers. The concomitance of glyphosate and AMPA in groundwater suggests partial
mineralization of the former under the influence of anthropic activities or environmental
conditions. Glyphosate is converted into AMPA largely in eutrophic water than it is in
P-poor water [127]. Glyphosate and AMPA have been identified at oligotrophic sites and
found to be completely absent from upstream communities under low glyphosate–low
phosphorus conditions. Glyphosate can have from low to high persistence in soils with
aerobic conditions (DT50 2.8–500.3 days), and high persistence in anaerobic soils (DT50
135–1000 days) [118]. Glyphosate persistence in water sediments is moderate to high (DT50
13.82–301 days) [118]. Phosphorous from glyphosate and AMPA is very low accounting for
<0.17% of total P. The degree of contamination of surface water with glyphosate depends
largely on two factors, namely: (a) herbicide level, affected by soil biodegradation and
sorption; and (b) phosphorus availability in the water, reducing its degradation. This
should be considered in the evaluation of the environmental risks of glyphosate and AMPA
present in surface waters [121,127,130–137].

As some people might use surface-water for drinking and preparation of food, it
was assumed that it was consumed untreated. Based on the median (0.03 µg/L) and 99th
centile (302 µg/L) concentrations found in surface-water, oral doses were 0.00000086 and
0.0043 mg/kg b.m./d. These exposures are considerably less than the acceptable daily
intakes (ADIs) and present de minimis risk [138]. Glyphosate can be bound to divalent
and trivalent cations in the soil and water, but there is risk to aquatic life joined to the
residues of free available glyphosate in water [139]. The hazard quotients (HQs) obtained
in sediments and the repercussion over benthic creatures were of 1.4–6.7, proposing risk for
sediment dwellers. Annett et al. [140] and Thompson et al. [141] estimate HQs higher than
one for fish and for aquatic microorganisms, together with invertebrates and amphibians.
The HQs for AMPA advice it is not threatening. Glyphosate seems to be critical where
intensive agriculture is practiced, since it involves increased use of fertilizers, plant growth
regulators, and pesticides and mechanised agriculture [130,139,140,142].

Mitigation Strategies

Glyphosate residues are linked to its applications calendar and soil inputs; thus, the
need to reduce overspray, but also to focus on its relative mobility/persistence [143]. Resid-
ual levels in sediments and water streams may be diluted with the upper part of the basin
devoted to woodland, because it is not used in woodlands, and woodlands themselves
help to reduce and prevent diffuse pollution [144]. There is a need to develop sediment
quality guidelines for such contaminants [145]. The actions to restrict them in surface
and groundwater below current water quality standards can be at the exploitation level
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(collection and treatment of wash water for sprayers or engines . . . ), at field plot level (re-
duction of the dose, application date according to the weather . . . ), and at catchment level
(vegetated buffer strips, orientation of the crop rows . . . ). Artificial wetlands have to be
implemented in addition to local action, such as a pesticide reduction plan [146]. The most
commonly used mitigation techniques to prevent pesticide input into water bodies include
edge-of-field and riparian buffer strips, vegetated ditches, and constructed wetlands. It has
been identified that removal of pesticides is highly variable, and generally increases with
increasing value of KOC, but the relationship is not strong [147]. All these undertakings
should help with the mandatory regulations for Sustainable Use of Pesticides Directive,
which include each EU member state having a National Action Plan on the reduction in
the use of pesticides, buffer zones, prevention of contamination of watercourses, etc.

4. Glyphosate-Based Herbicides and Cancer Risks

The mechanisms of action of glyphosate herbicides involve endocrine or microbiome
disruption (Table 3).

Table 3. Some recent studies of glyphosate-based formulations’ toxicity involving various indicators such as organisms that
can be affected and the main results at tested concentrations.

Herbicide
Formulation Test-Organism Endpoint Results Tested Concentrations Ref

Glyphosate

Geotrichum candidum,
Lactococcus lactis subsp.

Cremoris;
Lactobacillus

delbrueckii subsp.
bulgaricus

Microbial
growth assay

Inhibition of microbial
growth by the commercial

product Roundup;
microbiocidal effect at

concentrations below those
recommended for

agricultural use of the
commercial product

Roundup; no significant
toxicity of the active

ingredient (glyphosate) on
any of the microorganisms

0.1, 1, 10, 100, 1000,
10,000 ppm [148]

Glyphosate

Tadpoles of wood frog
(Rana sylvatica or

Sylvaticus lithobates),
leopard frog (Rana pipiens
or L.) and American toad

(Bufo americanus or
Anaxyrus americanus)

Acute toxicity
assay

Significant induction of
morphological alterations

in tadpoles of the three
species; exposure to

glyphosate altered tadpole
tail size in wood and

leopard frogs at all tested
concentrations

0, 1, 2, or 3 mg
acid equivalents

[a.e.]/L of Roundup
Original MAX

[149]

Glyphosate

Roots from the smooth
hawksbeard (Crepis

capillaris L.);
polychromatic

erythrocytes of the bone
marrow of C57BL rat

Chromosome
aberration

assay;
micronucleus

assay

No induction of genotoxic
and/or mutagenic effects

on any of the species

Crepis capillaris: 0.05, 0.1,
0.5, 1%; erythrocytes:

doses inferior to half the
LD50

(1080 mg/Kg)

[150]

Glyphosate Female Wilstar rats

Acute toxicity
assay;

teratogenicity
assay

High mortality index of
females treated with the

highest concentration of the
commercial product
Roundup; increased

dose–response of foetal
skeletal alterations

500, 750, 1000 mg kg−1 [151]
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Table 3. Cont.

Herbicide
Formulation Test-Organism Endpoint Results Tested Concentrations Ref

Glyphosate Human lymphocytes

Comet assay;
FISH;
lipid

peroxidation
assay–TBARS

Significantly increased
DNA migration at

580 µg mL−1; significantly
increased comet tail

intensity at 92.8 µg mL−1;
increased DNA damage in

the presence of S9;
increased frequency of

micronuclei, nuclear buds
and nucleoplasmic bridges,

without S9; significantly
increased nuclear instability
at the highest concentration
tested with S9; significantly
increased dose–response of

TBARS levels

0.5, 2.91, 3.5, 92.8,
580 µg mL−1 [152]

Glyphosate;
2,4-D

Algae and 25 species of
aquatic animals

Acute toxicity
assay

No reduction in periphyton
biomass by either herbicide;
no strong impact of 2,4-D

on the aquatic community;
strong impact of glyphosate
on the aquatic community

(significantly decreased
species richness)

0, 1, 2, or 3 mg acid
equivalents

[a.e.]/L of Roundup©
Original MAX

[149]

Glyphosate/As
As/Cu

Soil nematode
Caenorhabditis elegans

Heat Shock
Protein

Response,
Reproduction

and
Locomotory
behaviour

(head
thrashing)

Responses in locomotory
behaviour (head thrashing),

reproduction, and heat
shock protein expression

had been observed.

Sublethal 24-h exposures
of 1/1000, 1/100 and

1/10 of the LC50
[153]

Glyphosate; Terbuthylazine Human lymphocytes Cytome FISH

Glyphosate concentrations
above 3.5 µg mL−1

increased the frequencies of
micronuclei, nuclear buds
and nucleoplasmic bridges

in treated cells without
inducing centromeric

signals; terbuthylazine at
concentrations above 0.008
µg mL−1 increased the

frequency of micronuclei
hybridized with

centromeric probe and of
nuclear buds with

centromeric signals in the
presence of S9

0.5, 2.91, 3.50, 92.8, 580
µg mL−1 (glyphosate);

0.00058, 0.0008, 0.008, 25,
156,5 µg mL−1

(terbuthylazine)

[154]

Glyphosate
Earthworms

Pontoscolex corethrurus
Amynthas corticis

Toxicity assay

Coffee plantations with
regular applications of

Glyphosate over the
preceding 22 years. Control
plantations had received no

herbicides over the
preceding 7 years. The

earthworm species found in
plots with no treatment

were Pontoscolex corethrurus
(99%) and Amynthas corticis
(1%), while A. corticis was

absent in plots that had
been treated.

Manufacturer’s
recommendations [155]
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Table 3. Cont.

Herbicide
Formulation Test-Organism Endpoint Results Tested Concentrations Ref

Glyphosate Allium cepa

Cytotoxic
evaluation

Cytogenotoxic
effects

Exposure to glyphosate of
A. cepa meristematic cells
induces diverse types of

chromosomal anomalies in
demonstrates that it has a

highly cytogenotoxic effect
for any of the

concentrations used.

5, 10, 15, 25, 30 mg L−1 [156]

Glyphosate,
alkylphenolpolyglycol ether

Neotropical fish
Piaractus mesopotamicus,

Phallocerus caudimaculatus,
Hyphessobrycon eques,

Brachydanio rerio

Toxicity assay,
Histopathological

effects

The histopathological
effects caused by

glyphosate exposure on
gills, liver, and kidneys are

reversible, except for the
liver necrosis on

P. caudimaculatus. H. eques,
P. caudimaculatus, and

P. mesopotamicus present
great potential to be used as

standard organisms for
herbicides monitoring and

the use of glyphosate
without surfactant addition

is enough to cause
histological alterations on

H. eques and
P. caudimaculatus

Manufacturer’s
recommendations

Rodeo©
Rodeo©+0.5%Aterbane©BR
Rodeo©+1.0%Aterbane©BR

[157]

Glyphosate/P

Capsicum annuum
Inoculated and

non-inoculated with
Glomus mosseae or Glomus

intraradices

Accumulation
of shikimic

acid in
mycorrhized

Capsicum
annuum L.

Remobilization of
glyphosate residues in the

soil by the addition of
phosphate should be
considered a serious

problem for crops in treated
soils. The mycorrhization

increases the pepper plant’s
tolerance to high

glyphosate concentration in
the substrate, and may

allow support to this stress
condition

Manufacturer’s
recommendations

RoundUp©
[158]

Glyphosate Misgurnus
anguillicaudatus Toxic assay

Glyphosate represent a
potential risk to loach

through inhibiting
proliferation of diploid and

triploid cell lines and
induces micronuclei and

apoptosis.

80, 240, 400, 560, 720, 880,
1040 mg/L [159]

Glyphosate Pouteria torta
Changes in the

biological
performance

In response to glyphosate,
P. torta exhibited reductions

in photosynthesis and
chloroplastid pigment

content, as well as
accumulation of shikimic
acid and the occurrence of

chlorosis and necrosis.
These changes demonstrate
use as a bioindicator of this

herbicide.

25, 50, 100, 200, 400, 800,
1200 g a.e. ha−1 [160]



Plants 2021, 10, 405 10 of 22

Table 3. Cont.

Herbicide
Formulation Test-Organism Endpoint Results Tested Concentrations Ref

Glyphosate Crassostrea gigas

Embrio-larval
development
and metamor-

phosis

Embryo-larval
development of C. gigas
was more sensitive to

glyphosate-based
herbicides compared to

various endpoints studied
in regulatory model

organisms, and embryos
and D-shaped larvae were

more sensitive compared to
pediveliger larvae.

0.1 to 100,000 µg L−1

RoundUp©
[161]

Atrazine, Glyphosate Biophalaria glabrata Cytotoxic
assay

Results indicated that those
atrazine and glyphosate

herbicides may be
considered to be highly

genotoxicant agents

- [162]

International regulatory agencies typically classify substances according to their
dose–response relationships, thereby overlooking non-monotonic carcinogenic issues in
glyphosate. Usually, toxicological data were obtained with an incomplete judgement of
the outcome of hormone imitation and the microbiome. Some agencies, including US
EPA—United States Environmental Protection Agency, EFSA—European Food Safety Au-
thority, and Canada’s Pest Management Regulatory Agency, are reviewing studies on
glyphosate’s effects on human health and species at risk to protect farm workers, food
safety, and endangered species. The present decision for the parts of the assessment that are
complete, which stands until the next review, shows that can still be recommended when
used according to instructions on the label. In March 2015, IARC -International Agency
for Research on Cancer—categorized glyphosate as “probably carcinogenic to humans”
(Group 2A) based mainly on research demonstrating that ‘there was limited evidence of
carcinogenicity in humans’, mostly from agricultural workers, but also concluded that
there was ‘sufficient evidence of carcinogenicity in experimental animals’ [163–167]. IARC
also concluded that there was evidences for genotoxicity, both for active ingredient and
formulations. According to De Roos et al. [168] and further [169], the main conclusion is
that “The most reliable approach will be to reanalyse the data after more cases accumulate,
both to assess whether the association with myeloma persists and to further evaluate con-
founding and selection bias using a larger case group to support analyses”. With the same
prospective cohort study, Andreotti et al. [170] concluded that there was some evidence of
increased risk of acute myeloid leukaemia (AML) among the highest exposed group that
requires confirmation. Their effects caused by disturbance of cell–cycle management might
also be important for cancer and non-cancer health outcomes [171,172].

There has been a strong controversy over the use of this herbicide and the detection
of potential toxic consequences of pure glyphosate itself and glyphosate-based herbi-
cide ingredients that might have a synergistic effect, such as the surfactants used. The
surfactants in glyphosate formulations (especially polyoxyethylene, POE-15) are major
contributors to DNA damage caused by glyphosate-based herbicides (GBH). Such sur-
factants have demonstrated to alter mitochondrial function [173] and are also deleterious
to human embryonic and placental cells at concentrations around 1 ppm [174]. Richard
et al. [175] found Roundup formulation with surfactants to be more than double active
than glyphosate alone at producing lethal danger in human placental cells. Moreover,
Guilherme et al. [176] found increased numbers of double-strand breaks (DSB) with the
comet assay and micronucleus (MN) lesions in eels after exposure to environmental levels
of Roundup (0.05 ppm). Therefore, there is a need to regulate the use of GBH in mixtures. In
this regards, it was found that glyphosate and its overall formula show genotoxicity in vivo
and in vitro [177]. Polyethoxylated tallow amine (POEA) and other surfactants were also
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found to be toxic [178]. EU prohibited POEAs in glyphosate formulas, but EPA permitted it
at up to 25% (w/w). IARC [179] evidenced that glyphosate formulas produce non-Hodgkin
lymphoma (NHL), according to epidemiological research. EPA focused on the Agricultural
Health Study [170], finding no relationship of glyphosate with NHL incidence in U.S.
applicators. Leon et al. [180] obtained a meta-hazard ratio of 1.36 between diffuse large
B-cell lymphoma and glyphosate. Zhang et al. [181] detected that most exposed users had
a 41% higher risk of NHL. EPA’s Office of Research and Development (ORD) concluded
that glyphosate is “likely to be carcinogenic” or “suggestive of carcinogenicity” [182,183].

The results depend on the particular cell, application, and design specifications. Thus,
the overall formula exhibits a linear dose-dependent response indicating that toxicity from
the adjuvants is monotonic [184]. Gasnier et al. [185] found glyphosate at concentrations
below 0.05% to have a non-linear effect on oestrogen receptor-reporter transfected HepG2
cells and the full formulation to linearly reduce androgen receptor-induced transcrip-
tion with low concentrations. Testosterone-producing Leydig cells afford an alternative
model for endocrine disturbance in vivo and ex vivo [148]. Walsh et al. [186] detected
disturbed progesterone yield, but only with the full formula, which altered puberty pro-
gression and reduced serum testosterone in pre-pubertal Wistar rats at 5 mg kg−1 day−1.
Some authors [187–189] recognized the non-monotonicity of glyphosate itself on a hu-
man hormone-reliant cell line of breast cancer. They found the effect to be propitiated
by the oestrogen feedback and hindered by inclusion of an oestrogen receptor antago-
nist. Armiliato et al. [190] reported elevated expression of steroidogenic factor-1 and
oocyte rise in zebra fish in the microgram-per-litre range in water. However, no significant
association with endocrine disruption was found in trout. Glyphosate did not elevate
vitellogenin plasma concentrations in young rainbow trout [191]. Gandhi et al. [192] found
environmental concentrations of glyphosate in water to alter behaviours such as movement
frequency in larval amphibians. If this was the result of a non-monotonic mechanism,
then, even very low doses may have some effect on the nervous system. Thus, low levels
of glyphosate—even those below regulatory limits—may boost human carcinogenesis
through endocrine mimicry.

AMPA is also seemingly genotoxic. Guilherme et al. [193] found 11.8 µg L−1 concen-
trations of the glyphosate metabolite to induce DSB in an eel model. In addition, Mañas
et al. [194] found AMPA to induce cracks at 2.5 mM in human lymphocyte cultures and in
mice. Calculations of total exposure to this degradation product should therefore include
residues potentially present in organisms and the environment. Some animal cancer works
were proving increased risks of hemangiosarcoma, renal tubule carcinoma, and pancreatic
cell islet adenoma, together with skin tumour build up in a mouse model [165]. If both
the parent molecule and its metabolite are carcinogenic, then the risk cannot be accurately
assessed with the standard Paracelsian dose-response model.

The exposure scenario assessment reflects short-term incidental oral exposure to
glyphosate-treated park areas (post-application exposure). The short-term assessment is
protective of intermediate-term exposure, and the life-stages selected for aggregate risk
assessment are considered protective for the exposures and risks for any other potentially
exposed life-stage, since the resulting margins of exposure (MOE), which are Incidental oral
NOAEL (No observed adverse effect level)/Residential post-application total exposure,
are of 2,200,000 for adults, and of 640 for children 1 to <2 years old [163]. For a chemical
substance with health thresholds (i.e., not genotoxic and not carcinogenic), a MOE ≥ 100 is
generally considered to be protective. Instead, for genotoxic and carcinogenic compounds,
in general a MOE ≥ 10,000 is considered to be protective.
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Mitigation Strategies

Glyphosate’s use is four times higher than atrazine (the second pesticide in the
list) [195]. For this reason, the main mitigation strategy is the control of its use. There
is typically a time lag of decades between exposure to a carcinogen and elevated cancer
rates, and glyphosate use has skyrocketed over the past 10–15 years, the full effects of
glyphosate’s rising use remain to be discovered [196].

5. Risk Assessment of Glyphosate through Environment and Dietary Exposures

Pesticides, such as glyphosate, are evaluated periodically for changes. In the case of
glyphosate, there is a strong controversy with the results obtained by different authors and
the conclusions of different agencies. These contradictions have led glyphosate use to being
banned or strictly regulated in some countries. Based on dietary risk assessment [197],
glyphosate’s NOAEL is 100 mg/kg·day. It is 1114 times higher than the exposure for the US
population, and 438 times higher than that of kids between 1 and 2 years [163]. Acquavella
et al. [198–200] found a maximum systemic dose for farmers of 0.004 mg/kg. McGuire
et al. [201] monitored glyphosate in the urine of breastfeeding women. It was found that
only 20% of dietary glyphosate is available, and most of it is excreted in the urine [138,202].
Stephenson and Harris [203,204], considering food processing on glyphosate residues,
reduced estimated exposures by 67-fold. Drinking water exposures can be estimated with
models based on physical properties of the pesticide, its use, and environmental variables
as soil type and rain [205]. Glyphosate is detected in the urine of farm and non-farm
family members, kids included, with analogue exposure [206,207]. Glyphosate was also
found in human blood [208]. EPA’s safe maximum of glyphosate exposure is six times
that of Europe’s [209]. EPA’s estimation of children exposure to glyphosate is higher than
the maximum level suggested [210,211]. All of the environmental exposure studies at
Connolly et al. [212] had mean/median levels that were 2% of the ADI or less, and the
maximum concentrations found in these studies were all less than 6%. One study on
residential exposures showed median and maximum values that were 49% and 53% of
the ADI, respectively, while another study reported a maximum value was 87% of EFSA’s
ADI; these studies with the highest percentage compared to the ADI are studies that were
outside Europe and involved aerial spraying.

Mitigation Strategies

The key is post-approval monitoring [213]. Such control will track tendencies, identify
inflection points, and measure the efficacy of past risk-mitigation assays. Many of the
inert ingredients in formulated pesticides are themselves toxic [197,214,215], or help the
active ingredient to endure in biological systems. It could be simple to estimate a 5-year
rolling average number of herbicides kill units to bear a crop to harvest [216]. If the kill
unit begins to slope upward, a new pest management action is necessary. Risks could be
reduced by commanding identical pre-harvest intervals on herbicides leading to higher
residues, similar number of application rates, compulsory resistance management, and
decreased tolerances to prohibit applications. Plans are necessary for these strategies to
become real [211,217,218].

6. Challenges and Opportunities for Herbicide Research and Development

The expected growth in the global population will inevitably have to be met by
increasing food production. Although the arable land area seemingly remains stable [219],
the increasing loss by effect of urbanization and climate change must be considered.
Historically, cities have grown in places where good arable land was available [220]. This
forced production sectors to increase their output through, for example, efficient weed
control. The decreasing variety of effective herbicides and modes of action has had an
adverse impact on plant diversity and is hampering sustainable weed management [221].
The introduction of new weed species through international transport of goods is posing
additional problems. In addition, the increasingly frequent occurrence of environmental
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extremes [222] may affect weeds disparately and alter crop responses. As shown by the
giant hogweed (Heracleum mantegazzianum Sommier & Levier), invasive weeds can pose
serious problems to European authorities [223].

Screenings for structure–activity relationships and virtual screening technologies [97]
are helpful to select compounds with diverse structures but identical performance. Active
principles with new modes of action should be well tolerated by crops, easy to apply,
cost-effective, and amenable to regulation [98]. The agro-research industry is aiming
to find effective herbicidal solutions to help sustain weed management diversity and
crop production.

7. Conclusions and Recommendations on the Regulated Use of Glyphosate

The aim of the Farm to Fork strategy and the European Green Deal is to implement
sustainable and environmentally friendly policies, in particular in agriculture, and this
encompasses the protection of human health and biodiversity. Therefore, herbicides in
general, and glyphosate in particular, are recovering our attention.

Glyphosate is a non-selective herbicide commonly used in croplands, urban areas,
homes, and gardens. We can be exposed to this compound and its degradation components
through the foods and the environment. In response to reclassification of glyphosate in
Group 2A (probably carcinogenic to humans), regulations that are more stringent were
implemented to set the maximum levels for glyphosate in livestock and poultry food
products including meat, milk and eggs, but also in different crops.

Biological pest control, organic cropping, and regulative management help to reduce
glyphosate use. Agro-ecology has drawn increasing interest and, according to many
stakeholders, represents a strategic approach that can enable a successful transition to
more sustainable farming and food systems. The policy in favour of agro-ecology would
be exceptional, because it addresses all the levers needed to promote the agro-ecological
transition, from production to consumption, by way of a transformation of the systems of
education, research and development for achieving dietary security in the ever-lengthening
shadow of climate change, bringing us thus closer to the realization of the plan in the 2030
Agenda for Sustainable Development and its 17 Sustainable Development Goals.

The potential carcinogenicity, massive use, and increasing presence of glyphosate
residues in drinking water sources should lead regulatory agencies to take actions such
as the following to protect human health: (a) Making trace level analyses in food and
water mandatory; (b) re-assessing acceptable daily glyphosate intake levels; and (c) adding
glyphosate to the water quality standards for drinking water sources. In this way, under
the Sustainable Use of Pesticide Directives, each member state in the EU must have a
national action plan that requires ‘quantitative objectives, targets, measures and timetables
to reduce risks and impacts of pesticide use on human health and the environment’ which
also includes measuring for residues. Secondly, they state a requirement for re-assessing
the ADI values, but this already occurs when chemicals are re-evaluated to renew their
licence to be on the European Market.

Environmental loads and exposure to glyphosate, AMPA, and formulation adjuvants
continue to increase. Urban use of glyphosate in emerging countries is also a key issue.
The European Food Safety Authority (EFSA) succeeded in identifying the potentially
deleterious consequences of glyphosate on untargeted wild terrestrial vertebrates [118] in
different scenarios such as crops pre-planting, post-planting and pre-emergence, cereals
and oilseeds pre-harvest, and orchard crops and grapes.

There has been a strong controversy over the use of this herbicide and the detection of
its residues in various foodstuffs. In 2013, the German Institute for Risk Assessment (BfR)
conducted a comprehensive study concluding that classifying glyphosate as a carcinogen
was unwarranted. This conclusion was reinforced by the EFSA in 2014 and 2015 by deeming
it unlikely for glyphosate to pose serious risks to humans, in line with EPA’s statements
of 1993, 2015, and 2016 that glyphosate was probably not carcinogenic. However, some
of the scientific community refuted these claims, some agreed, and some just stated that
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further research and work is required for this chemical, as it was already supported in
previous sections. This is because no information about potential conflicts of interest
of the authors of the reports was revealed or even that they were verbatim copies of
previous studies produced by the multinational Monsanto, currently owned by Bayer.
In that way, the public was served with controversy and serious doubts about potential
prevarication on the part of the interested stakeholders. On top of that, in 2015, the WHO
agency IARC classified glyphosate as probably carcinogenic to humans (Group 2A) after
analysis of publish scientific papers that associated to some cases of lymphomas (vide
supra). These contradictions have led glyphosate use to being banned or strictly regulated
in some countries. There were other issues with these evaluations, such as the IARC was
evaluating for hazard, while the European Food Safety Authority (EFSA) and European
Chemicals Agency (ECHA) were evaluating for risk. The difference between a hazard and
risk assessment is the inclusion of probable exposure levels expected. Thus, the massive
use of glyphosate and the expansion of glyphosate-resistant transgenic plants has allowed
extensive agricultural production to be increased with substantially reduced costs. In this
respect, the agrochemical can help fulfil the Millennium Goals and the 2030 Agenda by
allowing adequate amounts of food to be supplied to a growing population. Moreover, it is
clear that banning glyphosate use would increase tillage—and agricultural production—
costs in some European Union countries. On a market with total price freedom, and under
control of logistics and distribution multinationals, farmers are forced to keep prices low in
order to compete with non-EU producers, many of whom can still use glyphosate virtually
freely. As a result, EU farmers are having to sell their products at prices below their
production costs, thus causing strong economic stress in European agriculture. In any case,
there is a shadow of doubt about the safety of glyphosate as an herbicide, so appropriate
measures should be taken in this respect to protect public health, and the environment.
Furthermore, a need exists to avoid unfair competition from producers in countries where
different regulatory values are in force.

It is key to finance epidemiological, biomonitoring, and toxicological research on
endocrinology to verify if the consequences of glyphosate are mediated by endocrine
disturbance, for example. That is the main conclusion that we want to make clear, recom-
mending further follow-up to clarify this matter.
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