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Abstract: Witches’ broom disease has led to major losses in lime and alfalfa production in Oman.
This paper identifies bioclimatic variables that contribute to the prediction of distribution of witches’
broom disease in current and future climatic scenarios. It also explores the expansion, reduction,
or shift in the climatic niche of the distribution of the disease across the different geographical
areas of the entire country (309,501 km2). The maximum entropy model (MaxEnt) and geographical
information system were used to investigate the potential suitability of habitats for the phytoplasma
disease. This study used current (1970–2000) and future projected climatic scenarios (2021–2040,
2041–2060, 2061–2080, and 2081–2100) to model the distribution of phytoplasma for lime trees and
alfalfa in Oman. Bioclimatic variables were downloaded from WorldClim with ± 60 occurrence
points for lime trees and alfalfa. The area under the curve (AUC) was used to evaluate the model’s
performance. Quantitatively, the results showed that the mean of the AUC values for lime (16SrII-B)
and alfalfa (16SrII-D) future distribution for the periods of 2021–2040, 2041–2060, 2061–2080, and
2081–2100 were rated as “excellent”, with the values for the specified time periods being 0.859, 0.900,
0.931, and 0.913 for 16SrII-B; and 0.826, 0.837, 08.58, and 0.894 for 16SrII-D respectively. In addition,
this study identified the hotspots and proportions of the areas that are vulnerable under the projected
climate-change scenarios. The area of current (2021–2040) highly suitable distribution within the
entire country for 16SrII-D was 19474.2 km2 (7.1%), while for 16SrII-B, an area of 8835 km2 (3.2%)
was also highly suitable for the disease distribution. The proportions of these suitable areas are very
significant from the available arable land standpoint. Therefore, the results from this study will be of
immense benefit and will also bring significant contributions in mapping the areas of witches’ broom
diseases in Oman. The results will equally aid the development of new strategies and the formulation
of agricultural policies and practices in controlling the spread of the disease across Oman.
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1. Introduction

Citrus fruits are considered to be a major crop across the world, with about 60 million
megatons each year produced according to the Food and Agriculture Organization of
the United Nations (FAO) (2015) data. Witches’ broom diseases (WBDs) have negatively
impacted several high-value agricultural products in Oman, such as acid lime (Citrus au-
rantifolia L.) trees and the alfalfa (Medicago sativa L) crop. These diseases are caused by phy-
toplasmas related to the 16SrII-B and 16SrII-D subgroups [1,2]. The 16SrII-D phytoplasma
is more aggressive than the 16SrII-B type. Plants infected with 16SrII-D phytoplasma show
many symptoms including phyllody and witches’ broom. Also, 16SrII-D phytoplasma in-
fects wild plant hosts from different species. In Oman, 16SrII-D phytoplasma was reported
in more than 25 plant hosts from economic crops and wild plants [3].
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Phytoplasma are a group of bacteria that belongs to the Mollicutes class [4]. In
Oman, leafhoppers—Hishimonus phycitis, Austroagallia avicula, and Empoasca sp.—and also
Diaphorina citri, the Asian citrus psyllid, are the main and putative vectors in transmitting
16SrII-B [5] and 16SrII-D [6] phytoplasmas. The insect vectors of phytoplasmas were
recorded from all areas infected with phytoplasmas in Oman [5,6]. The most common
symptoms caused by phytoplasmas are witches’ broom, yellowing leaves, inhibited growth,
big buds, leaf deformation, virescence, phyllody, purple color, bolting, the formation of
bunchy fibrous secondary roots and discoloration, reducing yield, decline, and dieback [4,7].
A diseased tree takes about six months for its symptoms to develop [8].

Witches’ broom disease of acid lime trees (WBDL) is due to a phytoplasma infection
that belongs to the 16SrII-B subgroup phytoplasma type, which was first found in Omani
lime trees in the late 1970s and early 1980s [9]. The 16SrII-B subgroup phytoplasma, which
is the causal agent of WBD, spread to other countries such as the United Arab Emirates
(UAE) by 1989 and the southeastern part of Iran by 1997 [10]. As the disease progressed,
the lime industry in Oman was severely impacted, and many trees were brought down to
prevent the disease from spreading [11]. Acid lime trees constitute 4% of the fruit crops
grown in Oman [12]. According to Al-Yahyai et al. [13], however, the spread of the disease
is particularly acute in Oman, as 98% of acid limes were found to be infected with the
16SrII-B subgroup phytoplasma. In addition, more than half a million acid lime trees have
been destroyed because of WBDL in Oman since 1990. This has resulted in the loss of
more than 75% of acid lime production [14]. WBD affecting acid lime trees in Oman has,
therefore, resulted in the loss of more than 50% of the cultivated acid lime area during the
last four decades. WBDL (16SrII-B) kills acid lime trees in less than five years, and these
trees’ production cannot be quickly restored [8].

Alfalfa is one of the main forage crops in Oman, with a value of US$120 million per
year [6]. Alfalfa, which is produced in a limited capacity in Oman, is a reported host for the
16SrII-D phytoplasma disease. According to Khan et al. [15], phytoplasma disease results
in a 25% loss in alfalfa production, leading to a loss of US$30 million per year. The main
symptoms of infected alfalfa are an excessive increase in the number of shoots and the
yellowing of leaves, which reduce the marketability of the crop [6].

Alfalfa witches’ broom (AlfWB), which affects crops across the world, was first re-
ported in the 1990s from all regions of Oman [15]. Several causal agents have been doc-
umented for WBD in alfalfa, such as ‘Candidatus Phytoplasma asteris’ in the USA, ‘Ca.
Phytoplasma trifolii’ in Canada, ‘Ca. phytoplasma fraxini’ in Argentina, and the 16SrII-D
subgroup in Oman and Iran [3,16]. 16SrII-D phytoplasma causes WBD in Alfalfa in Saudi
Arabia and the UAE [10,15]. In Oman, the WBD has been found all across the country,
though fewer infections are reported from the southern part of Oman [11]. Due to the
importance of acid lime trees and alfalfa crops to the Omani economy, this research focuses
on exploring the environmental factors that contribute to phytoplasmas. Although dis-
ease identification, symptoms, and hosts have already been extensively researched, very
few studies have been carried out to assess the results of climate change using modeling
tools to create different climate-change scenarios and consider the host plants. Several
anthropogenic practices contribute to producing greenhouse gases, which have changed
the patterns of temperature and precipitation around the world [17]. Therefore, the pri-
mary aim of this study is focused on implementing MaxEnt to explore the environmental
factors that contribute to the phytoplasmas that affect acid lime trees and alfalfa crops.
The MaxEnt model is a robust and maximum entropy-based model that is capable of
simulating the species’ spatial distribution using relevant environmental variables and
species occurrence information.

2. Materials and Methods
2.1. Species Occurrence Data

A total of 174 phytoplasma-symptomatic (pathogen incidence) samples of both acid
lime trees and alfalfa plants were collected at various locations in North and South Oman
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during a survey conducted from 2015 to 2020. The identifications and classifications of
phytoplasmas of acid lime trees and alfalfa infected with phytoplasma disease were proven
using molecular techniques which were conducted to amplify the 16Sr RNA gene sequence
of phytoplasmas in previous studies [3,18,19]. Polymerase chain reactions (PCR) of the 16Sr
RNA gene were performed by using the forward primer P1 [20] and the reverse primer
P7 [21] as direct PCR. The R16F2n/R16R2 primer pair was used for the nested PCR. The
16Sr DNA sequences results of infected acid lime trees and alfalfa plants samples showed
that the phytoplasmas belong to 16SrII-B and 16SrII-D subgroups [1,3,18,19]. The data
were gathered from various farms of acid lime trees infected with 16SrII-B phytoplasma
(87 locations) and alfalfa infected with 16SrII-D phytoplasma (87 locations) (see Figure 1).
The records of both the 16SrII-B and 16SrII-D subgroup phytoplasmas were cleaned by
removing the point duplications, evaluating the coordination of the points, and removing
false locations outside the geographic areas being studied. Then, spatial autocorrelation
was conducted using the Species Distribution Model SDM toolbox in ArcMap 10.8 to
achieve spatial independence of the data. The occurrence data were kept 10 km apart from
each other to keep the maximum number of records [22].
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2.2. Environmental Data 
Figure 1. Occurrence data distribution for 16SrII-B (lime, blue color) and 16SrII-D (alfalfa, red color).

2.2. Environmental Data

Twenty variables were taken into consideration for the purpose of this research. Of
them, eleven were derived from the monthly temperature (bio1–bio11) and eight were
from the monthly precipitation (bio12–bio19) in addition to the topographic elevation. The
bioclimatic variables were acquired from the WorldClim dataset [23] at a 2.5 min resolution
(about 5 km).

The bioclimatic variables obtained from WorldClim version 2.1 covering the period
from 2020 to 2040 were downscaled using the CMIP6 model. The climatic data include nine
global climate models (GCMs) and four shared socio-economic pathways (SSPs) for four
periods: 2021–2040, 2041–2060, 2061–2080, and 2081–2100 and are available as a Geotif [24].
This study used SSP585 to extract the 19 bioclimatic variables (in Geotif data format) using
R-Studio, and the average of the bioclimatic variables were used as an input for MaxEnt.
The bioclimatic variables derived from WorldClim have been utilized by many researchers



Plants 2021, 10, 460 4 of 15

in predicting potential species distributions as influenced by changes in temperature and
precipitation [25].

To avoid multicollinearity, the cross-correlations were run on the SDMtoolbox in Ar-
cMap10.8. Multicollinearity is a type of regression analysis used to explore the connections
between dependent and independent variables [26]. This study used Pearson’s correlation
coefficient, r =0.8, which was selected as a cut-off threshold to remove strongly correlated
bioclimatic variables for the 16SrII-B and 16SrII-D subgroup phytoplasmas. The results
showed that there was no multicollinearity between the variables for 16SrII-B, and 16SrII-D
bio2 was removed as it showed multicollinearity. Therefore, 20 environmental variables
were used to model both the 16SrII-B and 16SrII-D subgroup phytoplasmas that included
the digital elevation model (DEM) as shown in Tables 1 and 2. A bold font was used to
highlight the variables that contributed to the disease distribution.

Table 1. The environmental variables considered in the 16SrII-D phytoplasma niche models and the average percent
contributions of the environmental variables. The general statistics have been calculated with the help of occurrences
(n = 68). The bold variables are the most frequently contributed factors of the model.

Variables Percent Contribution Permutation Importance Min. Max. Mean SD

Isothermality (Bio3) 29.7 1.1 36.8 50.4 43.82 2.79
Mean Diurnal Range (Bio2, ◦C) 25.6 18.1 8.8 14 11.77 1.26

Precipitation Seasonality (Bio15) 13.1 22.2 48.2 118 79.98 14.54
Mean Temperature of Wettest Quarter (Bio8, ◦C) 10.1 9.9 19.8 30.7 24.62 1.7

Precipitation of Warmest Quarter (Bio18, mm) 7 4.4 3 291 31 41.63
Precipitation of Driest Month (Bio14, mm) 5.6 32.3 0 11.1 2.23 1.91

Digital Elevation Data (m) 5.6 0.4 9 2062 418.92 356.5
Precipitation of Driest Quarter (Bio17, mm) 1.6 1.7 3 42.2 11.47 7.79

Annual Mean Temperature (Bio1, ◦C) 0.5 4.2 18.3 30 27.83 2.18
Annual Precipitation (Bio12, mm) 0.3 1.8 87.5 855 167.6 107.9

Precipitation of Wettest Quarter (Bio16, mm) 0.3 0.9 46.71 567 89.9 65.31
Precipitation of Coldest Quarter (Bio19, mm) 0.2 0.2 44.1 116 57.71 11.43

Mean Temperature of Coldest Quarter (Bio11, ◦C) 0.2 2.5 11.2 23.5 20.68 2.2
Max Temperature of Warmest Month (Bio5, ◦C) 0.2 0.2 31.5 45.1 40.87 2.61

Temperature Annual Range (Bio7, ◦C) 0.1 0 21.9 31.3 26.8 2.2
Mean Temperature of Driest Quarter (Bio9, ◦C) - 0.1 15.2 37.5 29.8 4.57

Temperature Seasonality (Bio4) - - 411 661 544.4 59.51
Precipitation of Wettest Month (Bio13, mm) - - 18.2 263 38.13 30.76

Min Temperature of Coldest Month (Bio6, ◦C) - - 4.72 18.35 14.01 2.159
Mean Temperature of Warmest Quarter (Bio10, ◦C) - - 24.6 37.56 34 2.33

Table 2. The environmental variables considered in the 16SrII-B phytoplasma niche models and the average percent
contributions of the environmental variables. The general statistics were calculated using occurrences (n = 63). The bold
variables are the most contributed bioclimatic factors in the model.

Variables Percent Contribution Permutation Importance Min. Max. Mean SD

Isothermality (Bio3) 36.9 4.5 36.1 53.5 43.8 3.49
Temperature Annual Range (Bio7, ◦C) 24.1 16.1 15 30.3 25.7 2.50

Min Temperature of Coldest Month (Bio6, ◦C) 9.8 2.7 6.74 19.1 14.4 2.00
Precipitation Seasonality (Bio15) 7.9 16.5 43.7 107 74.9 15.2

Precipitation of Driest Month (Bio14, mm) 5.9 16.8 0 8.47 2.42 1.73
Mean Temperature of Driest Quarter (Bio9, ◦C) 3.2 24.9 33.2 43.9 40.14 2.129
Precipitation of Warmest Quarter (Bio18, mm) 3.1 0.1 2.14 172 34.2 31.5

Precipitation of Wettest Month (Bio13, mm) 2.3 0.8 15.8 143 36.2 18.5
Mean Temperature of Wettest Quarter (Bio8, ◦C) 2 3.9 18.2 32 24.6 2.70

Mean Temperature of Warmest Quarter (Bio10, ◦C) 1.7 5 26.4 36.8 33.6 1.9
Precipitation of Wettest Quarter (Bio16, mm) 1.2 0.3 41.4 31 86.3 40.4

Annual Precipitation (Bio12, mm) 0.6 0.1 88.4 535 171 82.1
Precipitation of Coldest Quarter (Bio19, mm) 0.5 0.4 12 124 58.7 17.0

Temperature Seasonality (Bio4) 0.4 4.9 211 655 522 79.5
Precipitation of Driest Quarter (Bio17, mm) 0.3 2.1 2 33.8 13.2 7.49

DEM (m) 0.3 0.8 9 1936 463 409
Annual Mean Temperature (Bio1, ◦C) 0 0 20.2 29.7 27.7 1.70

Mean Temperature of Coldest Quarter (Bio11, ◦C) 0 0 13.1 24.8 20.8 1.92
Max Temperature of Warmest Month (Bio5, ◦C) 0 0 17.2 35.3 28.7 3.56
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2.3. Predictive Modeling

MaxEnt (maximum entropy, version 3.3.3k downloaded from http://www.cs.princeton.
edu (accessed on 12 December 2020)) was used in this research to analyze and map the
current (1970–2000) and future (2021–2040, 2041–2060, 2061–2080, and 2081–2100) potential
distribution of the 16SrII-D and B subgroup phytoplasmas across Oman. The MaxEnt
model uses occurrence points to estimate occurrence probabilities based on species data
and bioclimatic variables. MaxEnt algorithms are based on computing the occurrence
probability derived from randomly produced background points and species presence
records and then judging the maximum entropy distribution. MaxEnt can include both
continuous and categorical variables and control overlaps through the use of regularization
parameters [27]. The advantage of MaxEnt is its ability to work better with low occurrence
data than other species distribution models [28].

To make sure the predicted results are accurate in terms of modeling, a sampling bias
layer was created in SDMtoolbox (v2.7) using a kernel density tool to limit the background
points of the occurrence data and to identify the preferred locations within the area being
surveyed. To confine the geographical distribution of a habitat or a species, MaxEnt uses
five various separate attributes: linear, product, quadratic, hinge, and threshold [29].

2.4. Model Development and Validation

SDMtoolbox (v2.7) was used to assess the environmental variables that contribute
to the distribution of 16SrII-D and 16SrII-B and the impact of climate change on future
dispersal. SDMtoolbox is a Python-based ArcGIS toolbox developed in Duke University,
the City College of New York, and Southern Illinois University and is used to study the
spatial potential of areas suitable for the ecology, evolution and genetics of species [30].
SDMtoolbox is a series of Python scripts that have been developed to automate the spatial
analysis process in ArcMap and Python [31]. This tool is embedded in the MaxEnt model.

The model produced the area under the curve (AUC), which was used to calculate the
goodness of fit of the model. The AUC is represented in values from 0 to 1. Five categories
are used to judge the model’s performance: the model is failing (0.5–0.6), poor (0.6–0.7),
fair (0.7–0.8), good (0.8–0.9), or excellent (0.9–1) [32]. The contributions of the bioclimatic
variables to the 16SrII-D and B phytoplasmas distribution were measured with the help of
a jackknife test.

In addition to the usage of AUC to evaluate SDM’s fit with true presence and absence
data, the true skill statistic (TSS = sensitivity + specificity − 1) is used, and it creates values
ranging between −1 and 1. The produced values above zero indicate that the model’s
performance is good [28]. The robustness of the model using the independent presence
and absence of the dataset has values of 0.89, 0.78, and 0.67 for sensitivity, specificity, and
TSS respectively.

A regularization multiplier (RM) was used to select the best model, as different
combinations of RMs produce different results. MaxEnt uses an RM to select the features
that contribute the most to the model to reduce model overlapping [33]. The RM values
used in this study were 0.5, 1, 1.5, 2, 2.5, and 3. Linear [L], quadratic [Q], product [P],
threshold [T], and hinge [H] were set in MaxEnt in addition to other RM combinations to
obtain the best model for 16SrII-D and 16SrII-B subgroup phytoplasmas.

To calculate the connections between the predicted probabilities for 16SrII-D and
16SrII-B phytoplasmas and each of the environmental variables, the ‘response curves’ were
used. With the help of a jackknife test, the relative influences of different environmental
variables on the 16SrII-D and 16SrII-B phytoplasmas distributions were calculated. ‘Jack-
knife’ produces the percentage contribution to estimate the contribution of a particular
variable to the model and the permutation’s importance to show the extent to which the
model depends on that variable [27].

http://www.cs.princeton.edu
http://www.cs.princeton.edu
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2.5. SrII-D and SrII-B Phytoplasmas Model Assessment

So far as the 16SrII-D subgroup phytoplasma is concerned, this study tested 40 combi-
nations of RMs and feature types to select the best model for the distribution of the disease.
All the tested models did very well in their projections—all of them had low omission rates
at 10% and excellent AUC values. The lowest ORs at 10% were 0.11, whereas the highest
AUC value was 0.874.

For the 16SrII-B subgroup phytoplasma, this study tested 59 combinations of RMs
and feature types to select the best model for the distribution of the disease. Once again, all
the tested models performed very well in their projections—they had low omission rates at
10% and excellent AUC values. The lowest ORs at 10% were 0.067, whereas the highest
AUC value was 0.914 at a standard deviation of 0.015.

The best model for 16SrII-D phytoplasma includes seven environmental variables—
linear [L] and quadratic [Q] features, and RM=3. In contrast, for 16SrII-B phytoplasma,
it includes only six environmental variables—linear [L], quadratic [Q], and product [P]
features, and RM =0.5.

3. Results
3.1. Model Validation and Influencing Bioclimatic Variables

For the period between 2021 and 2040, the results for the suitability and distribution
of AlfWB phytoplasma disease (16SrII-D) of alfalfa were found to be highly significant,
where the average AUC for the 25 replicate runs is 0.827. The highest value of the AUC for
AlfWB (16SrII-D) disease is 0.874 for the training sample and 0.860 for the test sample at
a standard deviation of 0.029. The average AUC for WBDL phytoplasma disease of acid
lime (16SrII-B) was 0.874, and for the test sample, it was 0.910 at a standard deviation of
0.045 (Figure 2). This indicated that the bioclimatic variables set for 16SrII-D and 16SrII-B
subgroup phytoplasmas, which were used to predict the model and interpret its potential
suitability, worked well and were highly accurate.

In contrast, for the 16SrII-B variant, the five main bioclimatic variables that significantly
contributed to the spatial distribution of phytoplasmas in lime trees were isothermality
(bio3, contributed 36.9%), temperature annual range (bio7, contributed 24.1%), minimum
temperature of the coldest month (bio6, contributed 9.8%), seasonal precipitation (bio15,
contributed 7.9%), and precipitation of the driest month (bio14, contributed 5.9%). Mean-
while, the precipitation of the warmest quarter (bio18, contributed 3.1%) and the mean
temperature of the driest quarter (bio9, contributed 3.2%) were less influential.

The mean of the AUC values for the future distribution of 16SrII-B and 16SrII-D
phytoplasma for the periods of 2021-2040, 2041–2060, 2061–2080, and 2081–2100 are shown
in Table 3. The AUC values for 16SrII-B, which were ranked as “excellent”, were 0.859,
0.900, 0.931, 0.913 for 2021-2040, 2041–2060, 2061–2080, and 2081–2100 respectively. The
corresponding values for 16SrII-D were 0.826, 0.837, 08.58, and 0.894 respectively. The
results of the simulations, therefore, indicate the model’s reliability in analyzing the impact
of climate change on the distribution of phytoplasma disease for the 16SrII-B (WBDL) and
16SrII-D (AlfWB) variants.

Table 3. AUC values of II-B and II-D modeling distribution from various climate-change scenarios.

Period
AUCmean AUCmean Standard Deviation

16SrII-B 16SrII-D 16SrII-B 16SrII-D

2021–2040 0.8598 0.8268 0.0357 0.0469
2041–2060 0.900 0.837 0.058 0.044
2061–2080 0.931 0.858 0.026 0.038
2081–2100 0.913 0.894 0.043 0.024
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(16SrII-B). The envelope around the mean AUC (plus/minus one standard deviation) is shown in
blue color. For 16SrII-D phytoplasma, the seven bioclimatic variables that were influential in the
spatial distribution of phytoplasmas in Alfalfa were isothermality (bio3, contributed 29.7%), mean
diurnal range (bio2, contributed 25.6%), seasonal precipitation (bio15, contributed 13.1%), mean
temperature of the wettest quarter (bio8, contributed 10.1%), precipitation in the warmest quarter
(bio18, contributed 7%), precipitation in the driest month (bio14, contributed 5.6%), and topography
(DEM, contributed 5.6%).

3.2. Current and Future Potential Suitable Habitats under Different Climatic Scenarios

The predicted suitable future distributions for 16SrII-D and 16SrII-B subgroup phyto-
plasma, under current and projected climate-change scenarios, for the periods of 2021–2040,
2041–2060, 2061–2080, and 2081–2100 are shown in Figures 3 and 4.
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Figure 4. Potentially suitable climatic distribution of 16SrII-D phytoplasma under different climate-change scenarios in
Oman for (a) 2021–2040, (b) 2041–2060, (c) 2061–2080, and (d) 2081–2100.

Figures 3 and 4 shows the major regions that are most potentially suitable for the
distribution of AlfWB (16SrII-D) and WBDL (16SrII-B) diseases. The total suitable habitat
includes ill-suited habitat (0–0.40), poorly suited habitat (0.40–0.60), moderately suitable
habitat (0.60–0.75), and highly appropriate habitat (0.75–1.0). The highly suitable habitats
(0.75–1.0) for both 16SrII-B and 16SrII-D phytoplasmas were primarily located in the
northern part of Oman. Under the current climatic conditions, 10,211.4 km2 (3.74%)
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of the area is highly suitable for the distribution of 16SrII-B phytoplasma, and most of
the impacted area of 306,188.37 km2 (8.4%) is located along the coastal area, while the
16SrII-B phytoplasma disease affects more crops in the southern parts of the country in
comparison to the 16SrII-D variant. However, 16SrII-D shows an increase at a moderately
suitable habitat (0.60–0.75) during 2021–2040, with an extensive distribution across Oman
to about 8.57% of the area. In the same period, 16SrII-B phytoplasma shows an increase in
moderately suitable habitat to about 7.22% of the area along the coastal area at the northern
part of Oman. The potential distribution of disease under future climatic scenarios during
the periods of 2021-2040, 2041–2060, 2061–2080, and 2081–2100 are shown in Figures 3 and 4.

Moreover, the output of the maximum training sensitivity plus specificity from MaxEnt
used as a threshold to produce a binary map of the presence and absence of 16SrII-D and
16SrII-B as recommended by Hu and Jiang’s study [34]. Figures 5 and 6 show the presence
and absence in the habitat of 16SrII-D and 16SrII-B.
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Table 4 shows the percentage of distributional changes between two binaries of
current and future climate scenarios for 16SrII–B phytoplasma. The distribution change is
categorized as gain, no change, and loss classes. The overall result showed an increase in
all classes with a maximum increase in the gain class of 24.74% in the period of 2081–2100
and minimum loss of about 0.01% in the period of 2061–2080. On the other hand, Table 5
shows the percentage of distributional changes for 16SrII–D phytoplasma where a minor
increase in the gain and the loss classes was observed with a maximum increase of 0.08%
and a minimum loss of about 11.56% in the period of 2021–2040. That being said, the period
of 2021–2040 showed a higher percentage of no change in the habitat distribution of the
disease by 88.36% and a maximum loss of the disease habitat distribution by 21.51% in the
period of 2081–2100.

Table 4. Percentage of distributional changes of 16SrII-B between current and future climate-change scenarios.

Current 2021–2040 Current 2041–2060 Current 2061–2080 Current 2081–2100

Class % Increase % Increase % Increase % Increase

Gain 1.65% 2.21% 6.28% 24.74%
No Change 98.28% 97.67% 93.71% 75.22%

Loss 0.07% 0.12% 0.01% 0.03%

Table 5. Percentage of distributional changes of 16SrII-D between current and future climate-change scenarios.

Current 2021–2040 Current 2041–2060 Current 2061–2080 Current 2081–2100

Class % Increase % Increase % Increase % Increase

Gain 0.08% 0.06% 0.05% 0.01%
No Change 88.36% 82.90% 79.66% 78.48%

Loss 11.56% 17.04% 20.30% 21.51%

Concerning 16SrII-D phytoplasma, compared to the current distribution, in future
climatic scenarios during the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100,
the total area of moderately suitable habitat (0.60–0.75) for the distribution of disease
would increase by 1.58%, decrease by −3.77%, decrease by −5.23%, and decrease by
−6.42% respectively. The total area of highly suitable habitat (0.75–1.0) would increase
by 1.38%, decrease by −2.89%, decrease by −4.92%, and decrease by −5.29% respectively
(Table 6). Also, the areas of poorly suitable habitat (0.40–0.60) would first increase by
21.95% and then increase by 5.01%, increase by 1.2%, and decrease by −3.26% respectively
(Table 6). Moreover, the total area of unsuitable habitat (0.0–0.40) for the distribution of
phytoplasmas would decrease by −24.91%, and increase by 1.66%, 8.94%, and then by
14.96% respectively (Table 6).

Table 6. Predicted suitable areas for AlfWB disease (16SrII-D) under current and future climatic conditions.

Decade
Scenarios

Predicted Area/km2 Percentage (%) of Increase/Decrease
(Compared to the Current Distribution)

Total
Unsuitable

Habitat
(0–0.40)

Total Poorly
Suitable
Habitat

(0.40–0.60)

Total
Moderately

Suitable
Habitat

(0.60–0.75)

Total Highly
Suitable
Habitat

(0.75–1.0)

Total
Unsuitable

Habitat

Total Poorly
Suitable
Habitat

Total
Moderately

Suitable
Habitat

Total Highly
Suitable
Habitat

1970–2000
(current) 221,488.8 16,609.8 19,065 15,549.6 NA NA NA NA

2021–2040 154,770.6 77,078.4 23,566.2 19,474.2 −24.91% 21.95% 1.58% 1.38%
2041–2060 227,812.8 30,504 8853.6 7719 1.66% 5.01% −3.77% −2.89%
2061–2080 247,845 20,050.8 4836 2157.6 8.94% 1.20% −5.23% −4.92%
2081–2100 264,380.4 7793.4 1581 1134.6 14.96% −3.26% −6.42% −5.29%
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On the other hand, for 16SrII-B phytoplasma, the results showed that in comparison
to the current distribution, the total area of moderately suitable habitat (0.60–0.75) for
the disease distribution would increase by 0.76% between 2021 and 2040, increase by
0.04% between 2041 and 2060, increase by 0.86% between 2061 and 2080, and increase by
1.25% from 2081 to 2100. During these three time periods, the total area of highly suitable
habitat (0.75–1.0) would decrease by −0.53%, decrease by −1.32%, decrease by −0.67%,
and increase by 0.09% respectively (Table 7). In addition, the area of poorly suitable
habitat (0.40–0.60) would increase by 0.80, 2.59, 3.76, and 15.69% respectively (Table 7).
Moreover, the total area of unsuitable habitat (0.0–0.40) for the distribution of phytoplasmas
would decrease across the various climate projections by −1.03, −1.30, −3.95, and −17.03%
respectively (Table 7).

Table 7. Predicted suitable areas for witches’ broom disease of acid lime trees (WBDL) disease (16SrII-B) under current and
future climatic conditions.

Decade
Scenarios

Predicted Area/km2 Percentage (%) of Increase/Decrease
(Compared to the Current Distribution)

Total
Unsuitable

Habitat
(0–0.40)

Total
Poorly

Suitable
Habitat

(0.40–0.60)

Total
Moderately

Suitable
Habitat

(0.60–0.75)

Total
Highly

Suitable
Habitat

(0.75–1.0)

Total
Unsuitable

Habitat

Total
Poorly

Suitable
Habitat

Total
Moderately

Suitable
Habitat

Total
Highly

Suitable
Habitat

1970–2000
(current) 236,406 8481.6 17,614.2 10,211.4 NA NA NA NA

2021–2040 235,457.4 10,750.8 19,846.2 8835 −1.03% 0.80% 0.76% −0.53%
2041–2060 234,713.4 15,661.2 17,856 6658.8 −1.30% 2.59% 0.04% −1.32%
2061–2080 227,422.2 18,897.6 20,125.2 8444.4 −3.95% 3.76% 0.86% −0.67%
2081–2100 191,468.4 51,689.4 21,204 10,527.6 −17.03% 15.69% 1.25% 0.09%

Standard deviation (SD) was used to quantify the error associated with the climatic
projections as shown in Figure 7. The climatic projection for both the 16SrII-B and 16SrII-D
subgroup phytoplasma for the period 2061–2080 and 2081–2100 shows higher SD variability
than the period 2021–2040 and 2041–2060 in habitat suitability.
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4. Discussion

This study was the first of its kind to look into the impacts created by bioclimatic factors
in association with projected climate-change scenarios on the geographical distribution
of phytoplasmas for 16SrII-D (AlfWB) and 16SrII-B (WBDL) diseases across Oman using
MaxEnt modeling. MaxEnt modeling has been frequently used by many researchers due to
its rapid processing ability and its capacity to provide comprehensive results concerning
the current and future occurrences of a target species [35].

Al-Ghaithi et al. [8] documented the possibility of the impact of environmental factors
on the distribution of 16SrII-B phytoplasmas—the causal agent of WBDL disease in acid
lime trees—but they were unable to identify these environmental factors. This study
modeled the potential distribution of 16SrII-D and 16SrII-B subgroup phytoplasma diseases
and showed the possibly impacted area under both current and future climate-change
scenarios. The MaxEnt model resulted in an “excellent” rating for the AUC value of
0.826 for AlfWB (16SrII-D) and 0.859 for WBDL (16SrII-B) under the 2021–2040 climate
scenario. Donkersley et al. [36] suggested establishing nurseries in areas where most of the
phytoplasma infection of acid lime trees can be found.

Moreover, the MaxEnt model provided values for all the projected climatic scenarios
and also predicted the potential distribution of the disease under different climatic condi-
tions. For 16SrII-B phytoplasma disease, it provided AUC values of 0.8598, 0.900, 0.931,
and 0.913 for the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100 respectively.
For the 16SrII-D phytoplasma disease, the MaxEnt model provided AUC values of 0.8268,
0.837, 0.858, and 0.894, respectively, for the same four periods. These results are available as
a baseline for future studies that focus on mapping the distribution of other phytoplasma
types of other hosts in Oman. Due to MaxEnt’s ability to detect localities with similar
conditions for occurrence, this study provided a good proxy for a suitable habitat for the
16SrII-B and 16SrII-D vectors.

The simulation of the potential distribution of 16SrII-B and 16SrII-D phytoplasmas
are based on data obtained from native regions rather than data from exotic areas. The
simulation in this study should, therefore, be regarded as a realized niche instead of a fun-
damental niche [37]. It is worth mentioning, moreover, that this study is based on climatic
variables (20 climatic variables: bio1–bio19 and DEM) rather than on other abiotic factors,
such as soil, hydro-geology, and other variables. According to Li et al. [38], bioclimatic
variables should be considered as critical factors in controlling the redevelopment and
spread of natural populations. For example, a study conducted by Nagler et al. [39] showed
the impact and the significant contribution of bioclimatic variables on the distribution of
Elaeagnus angustifolia.

The result of the MaxEnt modeling has revealed and predicted the different distri-
bution of suitable habitats for 16SrII-B and 16SrII-D phytoplasmas of WBDL and AlfWB
diseases. As shown on the map in Figure 3, the coastal area had the potential for the
distribution of 16SrII-B phytoplasma across the various climatic scenarios, even in the
southern part of the country. Although some of the collected occurrence samples were
asymptotic, the area along the coast will still be a hotspot for the disease. However, for
16SrII-D phytoplasma, it was found that while the coastal area in the north was a highly
suitable habitat for the distribution of the disease, the southern coast of Oman was not so.
Nevertheless, the areas of moderately suitable and highly suitable habitat kept decreasing,
and their distribution reduced across Oman for the period for all future scenarios except
for the period between 2021 and 2040. Global warming will, therefore, greatly influence
the distribution of 16SrII-D phytoplasma disease by causing shifts or contractions in the
ranges of the disease in specific areas (Figure 4). On the other hand, MaxEnt predictions
showed that potentially highly suitable climatic distributions for 16SrII-B phytoplasmas
will expand under all future climate scenarios as shown in Table 5. That being said, the
16SrII-B and 16SrII-D subgroups phytoplasmas were registered in more than 25 plant
hosts including economic crops, and medicinal and wild plants in Oman [1,3,9,18,40–43].
Therefore, studying the phytoplasma groups and the impacts of environment factors on
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these phytoplasmas in Oman ultimately will help the decision-maker in controlling the
phytoplasma diseases and agricultural practices in Oman. In addition, the 16SrII-B and
16SrII-D distribution under various climatic projections could serve as a proxy of the host
because the model is built on these environmental variables.

Furthermore, the results in Tables 6 and 7 show that under different climatic scenar-
ios, there were no similarities that could be attributed to factors such as the occurrence
of data from samples collected from the northern part of the country. The selection of
bio-environment variables might also be a source of uncertainty because there might be
overlapping results. In addition, the global climate models used in this study were of coarse
resolution, which could create uncertainties about their validity. However, this study has
helped in analyzing the environmental variables that could contribute to the distribution of
disease, thereby enabling the development of possible ways to stop, slow down, or reverse
the negative impacts of climate change on 16SrII-D and 16SrII-B phytoplasmas. Therefore,
studying the effects of climate change on 16SrII-D and 16SrII-B phytoplasmas is essential
to establishing a reliable decision-making process to guide plant breeding research that can
select the genetic strains best suited for specific areas in Oman. Moreover, this study will
help decision makers determine suitable areas for growing acid lime trees and alfalfa in
Oman during the coming 80 years.

MaxEnt proved its ability to make predictions about 16SrII-B and 16SrII-D distribu-
tions based on the environmental variables. This model can be used as a tool for land
managers to predict the likelihood of presence of this disease based on small data samples.

5. Conclusions

This is the first study that evaluated the environmental variables that affect the 16SrII-
D and 16SrII-B distribution of phytoplasmas diseases in Oman. In addition, this study has
also predicted the effect of climate change on the distribution of the disease for the periods
between 2021 and 2100.

1. The models produced reliable results based on the current distribution of the dis-
eases. According to the model, isothermality (bio3), temperature annual range (bio7),
minimum temperature of the coldest month (bio6), precipitation seasonality (bio15),
and precipitation of the driest month (bio14) play a major role in the distribution
of the WBDL (16SrII-B) phytoplasma disease. Similarly, isothermality (bio3) and
precipitation of the driest month (bio14) played a significant role in AlfWB (16SrII-
D) phytoplasma disease distribution. In addition, the mean diurnal range (bio2),
seasonal precipitation (bio15), mean temperature of the wettest quarter (bio8), precip-
itation of the warmest quarter (bio18), and DEM played a significant role in 16SrII-D
phytoplasma distribution.

2. On an overall basis, climate change will make more areas vulnerable to these two
diseases. Therefore, this study will help in producing suitable strategies to control the
disease spatial distribution and management.

3. The results generated in this research will be useful for Oman’s neighboring nations,
where phytoplasma diseases are also prevalent.

4. This study identified hotspots and vulnerable areas that can help in mapping and
delineating those places, and in developing new strategies to control the spread of
the disease across Oman and other countries that face similar challenges.

Finally, this study would be the first attempt in spatial modeling of witches’ broom
disease distribution in Oman. In other words, this study has opened windows of opportu-
nities for research and development (R&D) in this area. Data collection and monitoring
campaigns are important areas that efforts can be directed to, especially at local scales.
Notably, in the nearest future, we will attempt further R&D in understanding the insect
vectors of 16SrII-D and 16SrII-B phytoplasma disease. This will strengthen our understand-
ing and providing a better picture of the distribution of phytoplasma disease in Oman
under a changing climatic scenario.
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