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Abstract: B chromosomes (Bs) are supernumerary dispensable genomic elements that have been
reported in several thousand eukaryotic species. Since their discovery, Bs have been subjected to
countless studies aiming at the clarification of their origin, composition, and influence on the carriers.
Despite these efforts, we still have very limited knowledge of the processes that led to the emergence
of Bs, the mechanisms of their transmission, and the effects of Bs on the hosts. In the last decade,
sophisticated molecular methods, including next-generation sequencing, have provided powerful
tool to help answer some of these questions, but not many species have received much attention yet.
In this review, we summarize the currently available information about Bs in the genus Sorghum,
which has so far been on the periphery of scientific interest. We present an overview of the occurrence
and characteristics of Bs in various Sorghum species, discuss the possible mechanisms involved in
their maintenance and elimination, and outline hypotheses of the origin of Bs in this genus.

Keywords: B chromosomes; supernumerary chromosomes; Sorghum; chromosome elimination;
phylogenesis; evolution

1. Introduction

B chromosomes (Bs) are supernumerary, dispensable chromosomes that have been
observed in all major groups of living organisms—animals, plants, and fungi [1]. The basic
characteristics of Bs are their inability to pair with A chromosomes (As) during meiosis and
their irregular mode of inheritance [2,3]. As the transmission rate of Bs is higher than 0.5,
they can be viewed as parasitic elements with their own evolutionary pathway [4]. One of
the common features of Bs is that they are present only in some individuals of a particular
species, and this variability may also exist at the level of populations or even at the level of
tissues of a single individual. Most Bs share the common basic features mentioned above,
but they have also developed some species-specific attributes, which in some cases resulted
in the emergence of unique systems of Bs [5].

Bs are known to be present in a number of plant species, however, they have been
studied in more detail mainly in plants with agronomic importance (e.g., rye, maize) [6–13].
Information about Bs in other plant species is rather superficial. In angiosperms, Bs tend to
be present in species that have relatively large genomes and a small number of chromo-
somes [14–16]. Bs were found in 8% monocots and 3% eudicots, and their distribution in
various orders, families, and genera is not random [17]. Among monocotyledonous plants, the
orders Commelinales and Liliales seem to be the “hotspots” of B chromosome occurrence [17].

Based on the dispensable nature of Bs and on their potentially detrimental effect on a
host, it would be logical to expect that they will be gradually suppressed and subsequently
eradicated from the population. However, Bs seem to successfully persist in the popula-
tions thanks to their specific accumulation mechanisms [18]. One of these mechanisms
is nondisjunction, which has been relatively well described in rye and maize [12,19–22].
In maize, nondisjunction takes place during the second pollen mitosis, when two sperm
cells are formed. Sister chromatids of B chromosome fail to disjoin at anaphase; both are
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pulled to one pole and thus end up in one sperm cell. As a result, one of the sperm cells
accumulates B chromosome at the expense of the other. The sperm cell with B chromosome
then preferentially merges with the egg cell [20,23–25]. In rye, nondisjunction occurs during
the first pollen mitosis, when vegetative and generative nuclei are formed: both chromatids
of the B chromosome are in most cases included in the generative nucleus [26]. Nondisjunc-
tion of rye and maize Bs are both examples of post-meiotic drive. Besides this mechanism,
pre-meiotic and meiotic drive have also been reported, but mainly in animals [27–30].

Generally, Bs are smaller than As, but Bs of similar size as As (“large” Bs) have also
been reported [2,31,32]. In many species, different morphological variants of Bs have been
observed within a single species, for example, in chives Allium schoenoprasum, grasshopper
Eyprepocnemis plorans, or fish Astyanax scabripinnis [33–35]. Bs occur in different organisms
at variable numbers, and the tolerable maximum depends on the particular species. When
present in low numbers, Bs generally do not have any detrimental effect on the host,
however, in higher numbers they can reduce the fitness of the carrier [2]. There have been
a few reports suggesting some positive effects of the presence of Bs on their carrier [36–38],
but in general, Bs do not provide any obvious benefits.

Due to the absence of selection pressure, Bs behave like a “genomic sponge” and
accumulate sequences of various origins. As shown in rye and maize, Bs can accumulate
organellar DNA, transposable elements, satellite sequences, ribosomal DNA, and other
sequences from various As [39–41]. Bs can also contain genic sequences, but they are
mostly not functional due to the pseudogenization [42–44]. All captured sequences can
then diverge from their original homologues, and thus Bs can serve as a potential source of
genetic variability. Although Bs have been considered transcriptionally inactive elements,
recent studies indicate that at least some Bs are transcriptionally active and contain func-
tional protein-coding genes [45–48]. Genes localized on Bs were shown to play a role in
female sex determination in cichlid fish [49], in the processes related to cell division in
E. plorans [48], and in the cell cycle and development in the red fox (Vulpes vulpes) and
raccoon dog (Nyctereutes procyonoides procyonoides) [50]. These data suggest that Bs can
carry genes controlling their specific behavior.

2. B Chromosomes in the Genus Sorghum

In the genus Sorghum, Bs have been reported in five species: S. bicolor ssp. verticilliflo-
rum [51], S. stipoideum (Figure 1a) [52], S. purpureosericeum (Figure 1b) [53,54], S. halepense
(Figure 1c) [55,56], and S. nitidum (Figure 1d) [31,57]. Despite the morphological variability
of Bs described in sorghums, they share one common feature—they are well preserved in
the cell lineages leading to the reproductive organs, but are absent in most somatic tissues.
Several cytological studies on Sorghum Bs have been performed, and their morphology
and behavior during meiosis have been relatively well documented in all species except
S. bicolor ssp. verticilliflorum.

From all the Bs in genus Sorghum, the most detailed information is available about Bs
from S. purpureosericeum. A maximum of six Bs in one cell was reported in this species [53],
and the Bs described so far are not morphologically identical. Darlington and Thomas [54]
described three types of heterochromatic Bs (long, medium, short), which did not pair
with each other. Based on the published reports, the medium type of B chromosome with
visible constriction seems to be the most common. The transmission of B chromosome(s)
through meiosis in both 1B and 2B plants has been well documented, showing nearly
regular behavior in 2B plants, resulting in four microspores with 1B chromosome. In
1B plants, however, the B chromosome passes undivided through the first meiotic divi-
sion and divides in a second division, giving rise to two microspores with 1B and two
without [58]. Meiosis of B-carrying plants was also previously studied by D’cruz and
Deshmukh [59], who found precociously dividing B chromosome at metaphase I of male
meiosis. An outline of the B chromosome behavior in the first pollen mitosis was proposed
by Darlington and Thomas [54], who also suggested a unique manner of the accumulation
of Bs in this species. They observed extra divisions (polymitosis) between the first and
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second pollen mitosis, which they believed led to B chromosome multiplication [54]. The
existence of the micronucleus containing Bs in resting cells has also been noticed, and the
theory of B chromosome elimination via micronucleation has been previously proposed in
earlier reports [52,54,58].
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Figure 1. Chromosome pairing in meiotic metaphase I in pollen mother cells of Sorghum sp. Bs are marked by arrows. (a) 
Five A-bivalents and one B-univalent of S. stipoideum [52] (reprinted with permission from Springer Nature: Nature, He-
redity, B-chromosomes in Sorghum stipoideum, Wu, Copyright 1992); (b) Five A-bivalents and two B-univalents in S. pur-
pureosericeum [54] (copied from Morbid mitosis and the activity of inert chromosomes in Sorghum, Darlington and Thomas 
(1941) with the permission of the publisher); (c) Ten A-bivalents and three B-bivalents of S. halepense [56] (modified from 
Paternal transmission of accessory chromosomes in a species of Eu-sorghum, Raman et al. (1965)); (d) Five A-bivalents and one 
B-univalent of S. nitidum [57] (copied from Accessory chromosome in Sorghum nitidum Pers., Wu and Pi (1975) with the per-
mission of the publisher). 
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Figure 1. Chromosome pairing in meiotic metaphase I in pollen mother cells of Sorghum sp. Bs are marked by arrows. (a) Five
A-bivalents and one B-univalent of S. stipoideum [52] (reprinted with permission from Springer Nature: Nature, Heredity, B-
chromosomes in Sorghum stipoideum, Wu, Copyright 1992); (b) Five A-bivalents and two B-univalents in S. purpureosericeum [54]
(copied from Morbid mitosis and the activity of inert chromosomes in Sorghum, Darlington and Thomas (1941) with the permission
of the publisher); (c) Ten A-bivalents and three B-bivalents of S. halepense [56] (modified from Paternal transmission of accessory
chromosomes in a species of Eu-sorghum, Raman et al. (1965)); (d) Five A-bivalents and one B-univalent of S. nitidum [57]
(copied from Accessory chromosome in Sorghum nitidum Pers., Wu and Pi (1975) with the permission of the publisher).

In S. nitidum, Raman and Krishnaswami [31] observed Bs in diploid plants (2n = 2x = 10),
but not in tetraploids (2n = 4x = 20). The size of Bs was equal to the chromosomes of A
complement. When two Bs were present, they paired regularly and behaved normally
at meiosis. Wu and Pi [57], and later Wu [60], analyzed S. nitidum plants with one B
chromosome (2n = 2x = 10 + 1B). They described B chromosome as an isochromosome,
which folded back to pair with itself at the pachytene. The whole chromosome was
heterochromatic with a terminal knob distal to the centromere, and its heterochromatic
arm was separated from the knob by a constriction. This B chromosome was much shorter
than any chromosome of the A-complement, which indicates that S. nitidum might contain
more than one type of B chromosome.

The only study on the Bs in S. stipoideum was published by Wu [52]. The author found
one type of B chromosome, which was distinctly shorter than any of the As and euchromatic
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along its whole length. Its euchromatic nature is interesting in the context of the fact that
the other Bs in the Sorghum genus are heterochromatic, and it implies transcriptional
activity. However, the euchromatic nature of Bs is not striking, as, for instance, Allium
cernuum and Crepis pannonica also carry partially or completely euchromatic Bs [61,62].
The B chromosome of S. stipoideum was described as an isochromosome, which exhibited
inter-arm pairing when present only in one copy. At anaphase I of 1B plants, B chromosome
divided precociously or moved undivided to one pole of the cell. During anaphase II,
the majority of the cells had lagging B-chromatids and after division, micronuclei were
observed, indicating B chromosome elimination. In 2B plants, meiotic behavior was
nearly regular. However, numerical variability among and even within the spikelets
was observed [52].

In S. halepense, four to six Bs have been observed, and their occurrence seems to be
limited exclusively to diploids (2n = 2x = 20) [63]. The behavior of Bs during meiosis in
pollen mother cells was aberrant; accessory bivalents exhibited delayed disjunction or
nondisjunction leading to the subsequent elimination. Three types of Bs were reported,
two of which showed partial homology [56,63].

The presence of B chromosome in S. bicolor ssp. verticilliflorum is rather questionable.
Huskins and Smith [51] observed an additional pair of chromosome fragments during male
meiosis in this species. These fragments were much smaller than As and were attached
to a bivalent of As. They considered those fragments to be a pair of supernumerary
chromosomes. However, as this study is the only existing work describing the presence
of Bs in this species, it is questionable whether it was a real B chromosome or rather a
mere chromosomal fragment. It has been documented that some chromosomes contain
so-called “fragile sites” that are prone to breakage during cell division and are sensitive to
replication stress [64]. In plants, these sites are associated with 45S rDNA. Fragile sites can
lead to chromosomal rearrangements and affect genome organization [65–67]. In the case
of S. bicolor ssp. verticilliflorum, fragile sites in some genotypes might lead to chromosomal
fragments misinterpreted as Bs. Unfortunately, so far there has been no other research that
could confirm or disprove the existence of Bs in this species.

3. Elimination and Maintenance of B Chromosomes

Although Bs are usually transmitted regularly in mitosis, sorghums belong to species
where the transmission is irregular. Bs in genus Sorghum show a high level of numerical
instability, which is frequently observed in somatic tissues. In all Sorghum species, B chro-
mosome elimination or irregular transmission leads to a mosaic distribution of the Bs. In
S. purpureosericeum, Janaki-Amal [53] reported B chromosome absence in roots. Darlington
and Thomas [54] described B chromosome absence in root, stem, and leaf tissues in the
same species. These findings correspond with the results of a recently published study [68],
in which the authors analyzed parts of adult B-carrying plants in order to identify the
tissues where the B chromosome is preserved. Except for the inflorescence, where Bs are
stably present, the residual population of B-carrying nuclei was detected in leaf meristem,
last node, and peduncle. Thus, in S. purpureosericeum, Bs probably persist only in the meris-
tems from which generative organs are later established, and are likely to be eliminated
from other vegetative tissues [68]. Similarly, B elimination from root tissue was noticed in
S. nitidum [31] and S. halepense [56]. In microsporocytes and tapetal cells of S. stipoideum,
Bs occurred mosaically, while root, stem, and leaf meristem cells were completely lacking
Bs [52]. Recently, the process responsible for the elimination of B chromosome from the
roots of Aegilops speltoides has been described [69]. The strictly controlled process is based
on B chromatid nondisjunction in mitosis, lagging in anaphase, and the formation of a
micronucleus, which is subsequently eliminated. Elimination mechanisms in Sorghum have
not yet been investigated, but they might be similar to Aegilops.

Research on other B-containing species indicates that the existence of accumulating
mechanisms is necessary to avoid the loss of Bs [70]. The Bs in genus Sorghum also
undoubtedly had to evolve some accumulation mechanism(s) acting directly against natural
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selection. However, our knowledge of these multiplicative mechanisms is only fragmentary.
If we consider possible divisions where the nondisjunction can take place, the meiotic drive
can be ruled out, as the division of pollen mother cells was proven to be regular [54,58]. As
pre-meiotic drive is generally rare, attention should be focused mainly on pollen mitosis. A
solitary study of Darlington and Thomas [54] is the only work dealing with the division
following male meiosis. The authors did not find any irregularities in first pollen mitosis
and suggested that nondisjunction occurs during second pollen division. Conclusions
presented in this work were drawn from the statistical analysis of progenies of B-carrying
plants, and the study lacks strong proof of this hypothesis. This approach, based on the
analysis of the frequency and number of Bs in the offspring, can be replaced today by
technologically advanced methods, which enable the visualization of the B chromosome
in situ, directly on its way through both pollen mitoses. These modern approaches have
already been used to elucidate the mechanism of nondisjunction in rye or Aegilops [12,71].
Markers recently developed for S. purpureosericeum [68] open up the possibility of also
using these approaches in Sorghum.

The tissue-specific elimination of Bs complicates their detection in growing plants.
In the sorghum model, the detection of Bs requires the cultivation of the plant up to the
stage of inflorescence, when immature anthers are collected and the meiocytes are scored
at metaphase I, when the presence of Bs can be determined. In species with a specific
proportion of A and B chromosomes, an alternative approach based on flow cytometry can
be used (Figure 2) [68]. Although the flow cytometry screening method also requires the
inflorescence, it is less laborious and thus facilitates and speeds up the whole detection
process. The protocol was originally established for S. purpureosericeum and worked well
both for isolated haploid nuclei from pollen grains and for samples prepared from whole
florets. However, this approach is not suitable for the detection of Bs in very young
seedling/seeds, as it requires a relatively large amount of material and thus is destructive.
The flow cytometry approach has previously been used to detect Bs in leaves and immature
embryos of Aegilops speltoides [69,71]. The evaluation of B status in developing seeds would
make the work significantly faster, however, unfortunately, this kind of approach based on
PCR markers is not currently available.
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Figure 2. Flow cytometric analysis of the nuclei of Sorghum purpureosericeum isolated from spikelets. The cytological
verification of B chromosome presence/absence in the analyzed plant is shown in the inset. (a) Histogram of B-negative
plant showing two distinct peaks corresponding to 2C and 4C nuclei; (b) histogram of B-positive plant with a significant
change in the flow karyotype. Even one copy of the B chromosome results in a clear separation of the populations of nuclei
carrying B chromosome at both 2C and 4C ploidies.
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Cytological techniques play an irreplaceable role in B chromosome research, but only
molecular studies are able to provide us with information that is above the resolution
of cytogenetics. Sequencing is a powerful tool that can bring us information about the
genomic content, origin, evolution, and biological role of Bs. Next-generation sequenc-
ing, enabling large-scale analysis, provides an opportunity for a significant advance in B
chromosome research. However, out of the five types of Bs reported in Sorghum, only the
B chromosome in S. purpureosericeum has been subjected to molecular studies so far [68].
Sequence analysis has revealed several B-specific repeats in this chromosome, including
DNA transposon/hAT and one LINE element. Based on the selected repetitive sequences,
PCR and cytogenetic markers specific for B chromosome have been developed [68]. The
accumulation of different types of repeats in Bs is common; these repeats are often strongly
amplified and may even form a significant part of the B chromosome, like the PSR element
in Nasonia vitripennis [72] or micro B of Brachycome dichromosomatica [73]. B-specific repeats
have also been identified in other plant species, such as E3900 and D1100 in rye [10,13],
ZmBs and StarkB in maize [7,74], and Bd49 in B. dichromosomatica [75].

4. Did B Chromosomes Emerge Several Times in the Genus Sorghum?

Sorghum is a genus of monocot flowering plants in the grass family Poaceae, sub-
family Panicoideae, and the tribe Andropogoneae. The genus includes 23 annual and
perennial species and a number of subspecies and races resulting from hybridization.
Based on morphological traits, they are divided into five subgenera: Sorghum, Parasorghum,
Stiposorghum, Chaetosorghum, and Heterosorghum (Figure 3) [76]. Subgenus Sorghum is
represented by cultivated sorghum (Sorghum bicolor (L.) Moench) and its wild relatives.
Representatives of this subgenus originated in Africa and Asia, and their chromosome
numbers are 2n = 2x = 20 in diploids and 2n = 4x = 40 in tetraploids [77]. The subgenus
Parasorghum includes seven species from Australia, Central America, Africa, and Asia [77],
and their chromosome numbers vary from 2n = 2x = 10, 20, 30 to 40. S. macrospermum
(2n = 2x = 40) is the only representative of the subgenus Chaetosorghum and can be found
endemically in the Northern Territory of Australia. Subgenus Heterosorghum is represented
by S. laxiflorum, growing in Northern Australia and Papua New Guinea (2n = 2x = 40).
The last subgenus, Stiposorghum, includes 10 species occurring in Northern Australia with
chromosome numbers ranging from 2n = 2x = 10, 20, 30 to 40 [77].
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The genus Sorghum has been subjected to several phylogenetic analyses [79–82], most
of which agree with this classification of species into the abovementioned sections, al-
though relationships between some sister taxa are still under debate. For example, a
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close relationship between S. macrospermum and S. laxiflorum led to proposals to merge
the Chaetosorghum and Heterosorghum sections [80–82]. We have performed phylogenetic
reconstruction of the genus with a focus on species possessing Bs. PhyML analysis of
concatenated sequences of ITS1-ITS2, trnH-psbA, and trnL-trnF resulted in a phylogram in
which two strongly supported major clades I and II were identified (Figure 4), which is in
agreement with the phylogenetic analyses published previously.
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A widely accepted hypothesis of the formation of Bs assumes that they have auto-
somal origin. This is supported by the fact that sequences similar to those from As have
often been found on Bs. Bs containing mosaically organized sequences derived from
different As have been described, for example, in rye [39], maize [83], and Brachycome
dichromosomatica [73]. In Nasonia vitripennis, B chromosome was formed from interspecies
hybridization [84]. Additionally, Bs originating from sex chromosomes were described in
grasshopper Eyprepocnemis plorans and frog Leiopelma hochstetteri [85,86]. Despite countless
studies dealing with the possible origin and evolution of B chromosome(s) [7,39,84,87–90],
these issues still remain unclear.
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There are three possible evolutionary scenarios for B chromosome(s) in the genus
Sorghum (Figure 5). B chromosome(s) may have formed (1) in a single event in a common
ancestor of all Sorghum species and then have been preserved in some lines during evolution
and disappeared in others (Figure 5a); (2) once in the ancestor of closely related species, all
of which have kept Bs up until today (Figure 5b); or (3) several times during independent
events in Sorghum evolution, which includes also the possibility that the B chromosome
originated only at the level of individual species (Figure 5c).
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Considering the conclusions of the cytological studies [31,51–60,63], it is clear that
there are several types of Bs within the genus, which differ in their morphology. One
evolutionary scenario assumes the formation of the B chromosome in a single event and
its persistence in closely related species. Given that Bs occur in both clades (Figure 4), we
can exclude a close phylogenetic relationship between the species carrying Bs. However,
the phylogenetic analysis cannot rule out the possibility that B chromosome originated
only once during the early evolution of Sorghum or in the ancestor of the genus. This
hypothesis could be supported or questioned based on the analysis of sequence similarity
between the Bs from different species in the genus Sorghum, however, these data are not
currently available. Recently, Wu et al. [71] identified B-specific tandem repeat shared by
Bs in Aegilops speltoides, Aegilops mutica, and Secale cereale, however, they were not able to
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conclude whether the chromosomes have a common origin or whether the shared repetitive
sequence is a result of the exchange of genetic material among those species.

The hypothesis assuming multiple independent origins of Bs in the genus Sorghum is
also feasible. This scenario of B chromosome origin appears to be supported by the nature
of the B chromosome of S. nitidum—the appearance of B in this species might represent
an example of the formation of the B chromosome at the species level, as has already
been hypothesized by Wu and Pi [57] and Wu [60]. The B chromosome in S. nitidum is an
isochromosome, and its arms strikingly resemble the short arm of the nucleolus-associated
chromosome, which is also entirely heterochromatic and approximately similar in length.
Since B chromosome does not pair with the nucleolus-associated chromosome, further
structural and genic changes had to occur later, leading to the loss of homology and
to the inability of B chromosome to pair with the short arm of the nucleolus-associated
chromosome [60]. Such resemblance between Bs and As has not been found in any other
Sorghum species. However, since Bs are expected to be prone to aberrations and the
accumulation of mutations [11,91], a relatively rapid diversification and loss of ability to
pair with the original A homologue can be assumed. It is possible that the B chromosome
of S. nitidum is evolutionarily younger than other Sorghum Bs, and therefore a high level of
similarity between A and B is still maintained in this species.

Another argument speaking for the independent origin of Bs in different Sorghum
species is the possibility of intra- and inter-specific hybridization. It has been suggested
that if hybridization occurs between separated, diverged subpopulations, various irregular-
ities in meiosis may appear, which is a precondition for the B chromosome formation [60].
Namely, the subgenus Sorghum is a complex group that includes a number of closely related
species, subspecies, and races that can interbreed freely, and some species (e.g., S. halepense)
are assumed to have hybrid origin [92–94]. Frequent hybridization might represent condi-
tions favorable for the formation of Bs. The origin of Bs through interspecific hybridization
has been demonstrated in hybrid derivatives from spontaneous crossing between two Coix
species [95] and has also been described in Poecilia formosa and Nasonia vitripennis [84,96,97].

5. Conclusions

B chromosomes (Bs) are unique genomic elements with a transmission rate higher than
0.5. Although our knowledge of Bs has advanced considerably since their discovery in the
first half of the last century, many questions remain unanswered. The elusiveness of Sorghum
Bs, resulting from their extensive elimination during early plant development, certainly
contributed to the fact that they have not yet been subjected to any comprehensive research.
In the last century, several authors have provided cytological characteristics of Bs in some
Sorghum species, but since then the research in this field has hardly progressed. However, new
technologies give us new opportunities to meet this challenge. The use of flow cytometric
screening and sorting makes it easier to detect the presence of Bs and to obtain material for
sequencing, which will be necessary for their thorough molecular characterization. So far, our
knowledge of the mechanisms of accumulation or somatic elimination of Bs in Sorghum is
only marginal. Analysis of the effects of Sorghum Bs on gene expression is another interesting
topic that deserves thorough investigation. Research on Bs in Sorghum is still in its infancy,
and there is a long way to go before we discover at least some of the mechanisms behind the
unique behavior of these enigmatic elements in this genus.
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