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Abstract: Plant–animal interactions are key to sustaining whole communities and ecosystem function.
However, their complexity may limit our understanding of the underlying mechanisms and the
species involved. The ecological effects of epizoochory remain little known compared to other
seed dispersal mechanisms given the few vectors identified. In addition, epizoochory is mostly
considered non-mutualistic since dispersers do not obtain nutritional rewards. Here, we show a
widespread but unknown mutualistic interaction between parrots and plants through epizoochory.
Combining our observations with photos from web-sources, we recorded nearly 2000 epizoochory
events in 48 countries across five continents, involving 116 parrot species and nearly 100 plant species
from 35 families, including both native and non-native species. The viscid pulp of fleshy fruits and
anemochorous structures facilitate the adherence of tiny seeds (mean 3.7 × 2.56 mm) on the surface
of parrots while feeding, allowing the dispersion of these seeds over long distances (mean = 118.5 m).
This parrot–plant mutualism could be important in ecosystem functioning across a wide diversity of
environments, also facilitating the spread of exotic plants. Future studies should include parrots for a
better understanding of plant dispersal processes and for developing effective conservation actions
against habitat loss and biological invasions.

Keywords: plant–animal mutualism; seed dispersal; zoochory; Psittaciformes; Moraceae; biological
invasions; citizen science

1. Introduction

The knowledge of biotic interactions is critical to understand the structure of commu-
nities and ecosystem function [1,2], as well as to develop effective conservation actions
against increasing habitat loss worldwide [3,4]. These complex interaction networks, such
as those that arise from plant–animal interactions, are key to the support of ecosystem
dynamics and diversity of both animals and plants [1,5]. For example, frugivores increase
germination and dispersal of their food plants due to their role as seed dispersers [6] and,
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consequently, not only can they influence the composition and abundance of plant commu-
nities but they can also trigger cascading effects on other communities [7–9]. However, the
wide array and complexity of biotic interactions can make many of them remain unknown
or not fully understood [10].

Among different seed dispersal mechanisms, epizoochory (i.e., the dispersal of animal
and plant propagules adhered to the body surface of animals, [11]) is one of the zoochory
syndromes less studied, as we have important knowledge gaps on its frequency, efficiency
and the extent of its effects on plant communities [12–15]. Plants with epizoochory syn-
dromes usually show specialized structures in their seeds such as hooks or barbs that
facilitate the adherence and attachment of propagules [11–13,16], although there are ex-
amples of seeds that stick to animal body parts when mixed with mud [17]. Effective
attachment mechanisms can assist long retention times on the disperser, increasing the
likelihood to disperse over long distances. Once seeds adhere to the animal surface, their
detachment can be facilitated by certain behaviors of the dispersers, such as grooming and
bill-wiping [18,19] and conspecific social interactions, which could even assist secondary
seed dispersal events after seed transference between individuals [13,20]. These seeds,
in general, attach inadvertently to the animal’s body without a clear benefit to the trans-
porter [11,13]. Sometimes, however, tiny seeds within the viscid pulp of some fleshy fruits
can attach to animals and be transported without seed anchoring structures but glued by
the residues of the fruit’s pulp [21]. This infrequent form of epizoochory, which is even less
known, can be considered as mutualistic, contrary to the other types where only plants
are benefitted. Previous studies have shown that epizoochory in certain groups such as
terrestrial birds is anecdotic [21–23] and largely skewed to waterbirds, probably because
plants exploited by terrestrial birds are rarely epizoochorous [21,23].

Here, we show that epizoochory is a widespread mutualistic dispersal mode among
parrots (Order Psittaciformes), associated with fruit consumption. Parrots are a diverse
group of fruit and seed generalists that exploit a high diversity of plants and plant parts in
different maturation stages [24,25]. Widely considered as seed predators, the mutualistic
roles of parrots in studies of plant–animal interactions have been mostly neglected [26,27].
Recent studies, however, have largely proved their role as legitimate primary seed dispersers
(e.g., [25,28–30]) and promoters of secondary seed dispersal [31]. The small size of the seeds
that could be transported by parrots through epizoochory [32,33], together with the often fast
and hidden movements of parrots while feeding inside the vegetation, have probably made
this an overlooked behavior so far. Therefore, our main aim was to obtain solid evidence that
parrots can also play a seed dispersal role through epizoochory. To this end, we combined
direct observations and photos to detect events of epizoochory between parrots and their
food plants worldwide, providing also information on dispersal distances and traits of the
seeds dispersed. Our study highlights how unexpected biotic interactions may be largely
overlooked, providing thus useful information towards understanding ecosystem structure
and functioning in the current scenario of global change.

2. Results
2.1. Epizoochory Events and Dispersal Behavior

A total of 1892 individual parrots carrying adhered seeds were recorded from our
direct observations (90.5%) as well as web-sourced pictures (9.5%) taken by 158 wildlife
photographers (Supplementary Table S1), showing how they may have inadvertently
contributed to citizen science. Observations were obtained in 48 countries, including
10 where parrots are non-native (Figure 1). We recorded these interactions in a wide range
of environments, including continents and islands, rain and dry forests, and natural and
urban areas, involving 116 parrot species from 48 genera. Parrots ranged in size from the
smallest (green-rumped parrotlet Forpus passerinus, 12 cm) to the largest species (scarlet
macaw Ara macao, 85 cm). The propagules transported (Figure 2) were always from vascular
plants except in one case (a lichen). We identified the species in 91% of cases (N = 1722),
the genus in 95% of cases (N= 1795), and the family of plants in 96% of cases (N = 1812),
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corresponding thus at least to 96 species from 35 families. Moraceae was the main family
involved, followed by Salicaceae and Amaranthaceae (Figure 3).

Figure 1. Locations of native (red circles) and non-native parrots (blue circles) recorded carrying
attached seeds, with filled circles indicating our own observations and unfilled ones those recorded
by wildlife photographers. Colors in the map represent the main terrestrial biomes of the world
(https://www.worldwildlife.org/publications/ecoregions-map, accessed on 11 April 2021).

Figure 2. Some examples of seeds adhered to parrots beaks while feeding on fruits: (a) monk parakeet
Myiopsitta monachus, Spain, (b) orange-winged amazon Amazona amazonica, Spain, (c) rose-ringed
parakeet Psittacula krameri, South Africa, (d) emerald-collared parakeet Psittacula calthrapae, Sri Lanka,
(e) double-eyed fig parrot Cyclopsitta diophthalma, Australia, (f) green-checked parakeet Pyrrhura
molinae, Argentina, (g) blue-winged parrotlet Forpus xanthopterygius, Bolivia, (h) yellow-collared
macaw Primolius auricollis, Bolivia, (i) yellow-chevroned parakeet Brotogeris chiriri, Brazil, and (j)
burrowing parrots Cyanoliseus patagonus, Argentina, simultaneously dispersing seeds of Prosopis nigra
by epizoochory and estomatochory. Photos (a–c) are from non-native parrot populations. Photos: D.
Hernández-Brito (a–d), J.L. Tella (e–j), C. Raffel (g), J. Widmer (h), and F. Rage (i).

https://www.worldwildlife.org/publications/ecoregions-map
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Figure 3. Percentage of events (grey bars) and the number of plant species (black bars) within the
main plant families. * Category “Others” includes the plant families with a lower percentage of
events (<2.4%): Apocynaceae, Bignoniaceae, Bursareceae, Cactaceae, Cannabaceae, Combretaceae,
Compositae, Cupressaceae, Dilleniaceae, Elaeocarpaceae, Euphorbiaceae, Gentianaceae, Lamiaceae,
Leguminosae, Malpighiaceae, Melastomataceae, Meliaceae, Monimiaceae, Myrtaceae, Phytolaccaceae,
Poaceae, Primulaceae, Rosaceae, Rubiaceae, Sapindaceae, Solanaceae, Urticaceae, and Verbenaceae.

Nearly half of the parrot species (N = 50) interacted with more than one plant species
(Figure 4, range: 1–28, mean = 2.38), thus resulting in 276 interactions between parrot
and plant species. Most observations of non-native parrots (80.7%) involved exotic plant
species, while this happened with only 8.6% of the observations involving native parrots.
Observations of exotic parrots were mainly conducted in urbanized areas (70.1%), while
native parrots in urban environments were 46.7% of the total. In most instances (65.63% of
plant species), tiny seeds were attached to the beak or head feathers of individuals when
they were feeding on the pulp of fleshy fruits (e.g., family Moraceae) (Figure 2a,b,d,f,g,h).
In fewer cases (16.67% of plant species), cottony structures containing small seeds of
anemochorous fruits (e.g., family Malvaceae) were attached to their beaks or feet (Figure 2i).
In the rest of the cases, seeds came from dry dehiscent fruits (e.g., capsules and legumes)
that were also attached to the facial feathers and the beak through resins and mucilages
in seeds (Figure 2e,j). The dimensions of the seeds (i.e., length and width) attached
and subsequently dispersed by parrots ranged from 0.7 (Aizoon canariense) to 12.5 mm
(Pseudopondias microcarpa) (mean ± SD = 2.73 ± 1.38 mm) and 0.4 (Patellifolia procumbens)
to 9.25 mm (Protium heptaphyllum) (mean ± SD = 1.59 ± 1.04 mm), respectively (Figure 5a).
However, if only the measurements per dispersed plant species are considered, they
showed larger mean sizes both in terms of length (mean ± SD = 3.70 ± 2.44 mm) and width
(mean ± SD = 2.56 ± 1.79 mm) (Figure 5b). Nearly 90% of observations corresponded to
seed sizes (both in length and width) smaller than or equal to the mean seed size of the
plant species dispersed, indicating that most seeds dispersed were within the lower range
distribution of seed size, probably because smaller seeds are more easily attached.

We observed that parrots usually dropped seeds that were detached from their body
surface in grooming sessions with the beak or by rubbing them against tree branches.
Conspecific interactions such as social grooming, courtship feeding, and parental care
(Figure 2c) were also witnessed promoting the removal or transfer of seeds between
individuals when attached seeds were dropped.
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Figure 4. Distribution of the number of epizoochorous interactions between different parrot species
and their food plants. Red dashed line shows the mean value of the number of parrot–plant
interactions (N = 276).

Figure 5. Size (length and width) of the seeds dispersed by parrots through epizoochory considering
(a) the percentage of seed dispersal events (b) and the percentage of dispersed plant species. Dashed
lines show the mean values of each seed trait.

2.2. Seed Dispersal Distances

Seed dispersal distances were measured in 112 epizoochory events. Straight-line
distances covered by 17 parrot species when they flew with attached seeds after foraging
ranged from 12 to 452 m (mean = 118.5 m, median= 100 m, Figure 6). It is worth noting that
these seed dispersal distances are minimum values as, in most cases, we lost the parrots
while flying or could not confirm whether they dropped the seeds where they first perched
or later on, after moving larger distances by flying until other perching sites.
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Figure 6. Distribution of seed dispersal distances (N = 112) recorded in 17 parrot species. Red dashed
line shows the mean value of seed dispersal distances.

3. Discussion
3.1. Epizoochory in Parrots as a Widespread Mutualism

In this study, we found that epizoochory in parrots adds a new example of under-
studied animal-mediated dispersal mode [15] that challenges our understanding of this
dispersal syndrome in several ways. First, epizoochory is generally considered infrequent
compared to other zoochory mechanisms such as endozoochory (i.e., dispersal of viable
seeds after gut passage), as it is mostly caused by the eventual attachment of propagules to
the body of mammals or some bird species [11,16,17,34]. These plant–animal interactions
are not considered mutualistic, as adhered fruits do not provide dispersal agents with
a nutritional reward [11,16], with the only exception of some extremely rare events of
epizoochory in songbirds [21,22]. Here, however, we are providing evidence of epizoo-
chory as a taxonomically and geographically widespread mutualistic interaction, since
parrots eat the pulp and/or seeds of the plants they are dispersing. Second, epizoochory
in mammals occurs thanks to specialized fruit structures of some plants (barbs, hooks,
or viscid outgrowths) that allow their attachment to fur [11,12], suggesting an epizoo-
chorous dispersal syndrome for these plants. However, parrots do not disperse fruits
through epizoochory but their seeds and the plants dispersed are traditionally considered
to belong to endozoochorous or anemochorous (i.e., seeds dispersed by wind) disper-
sal syndromes [35,36]. Observations in parrots thus question the blind identification of
dispersal syndromes by just attending to fruit morphology [11,30,37]. Third, contrary to
other epizoochorous vectors, parrots may enhance seed viability since they remove (in-
gest) the pulp that often contains germination inhibitors [38,39] before the dispersal of the
attached seeds. Fourth, plants typically dispersed by epizoochory do not attract animals
and, thus, encounters with dispersers occur by chance, driving low fruit removal rates [11].
Contrarily, parrots are attracted by the fruits they eat and may transport adhered seeds
very frequently. The attachment of seeds to the bill of other frugivorous or granivorous
birds seems to be anecdotal [21,22], although the same limiting factors during observations
(e.g., small seed sizes and cryptic behavior during foraging) could also overlook this seed
dispersal mechanism in these groups as well as underestimate their effects. However, the
unique fruit manipulation abilities of parrots, using their large and mobile beaks, their
tongues, and their feet for feeding [25], may facilitate high rates of seed attachment through
pulp residues of fleshy fruits, viscid mucilages, and seeds with specialized structures for
anemochory that easily adhere on their body surfaces. Finally, coinciding with typical
epizoochory syndromes [11,16], parrots may perform directed dispersal by moving seeds
far from the mother plant to similar habitats where germination is feasible.
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3.2. Ecological and Conservation Implications

Our preliminary data depict an overlooked plant–animal mutualism that merits fur-
ther research. Although we found evidence of epizoochory in c. 30% of the extant parrots
of the world, we expect that other researchers, after combining observations with picture-
based citizen science, will substantially increase the number of species and pairwise interac-
tions worldwide. Thus, other plant species with small seeds could be dispersed by parrots
independently of their sizes, which contrasts with other seed dispersal mechanisms, such
as endozoochory, in which the size of the dispersing animal is determinant [40,41]. More
fieldwork and experiments are needed to ascertain the frequency of epizoochory, retention
times of seeds, dispersal distances, and seed fate. Parrots conduct extensive movements
within their foraging ranges [25], which would enhance epizoochory effectiveness [14]. Re-
garding retention times, we recorded in our study a breeding female rose-ringed parakeet
(Psittacula krameri) that after feeding on black mulberry fruits (Morus nigra) held several
seeds attached to its facial feathers for at least three days. Thus, retention times of adhered
seeds could be potentially larger than those recorded in endozoochory [11,42], promoting
long-distance dispersal. On the other hand, non-native parrots largely assist seed dispersal
of exotic plants. This is explained because our records of exotic parrots were mainly ob-
tained in urbanized environments, where the abundance and diversity of exotic taxa are
higher than in natural environments [43,44]. Despite exotic plants show lower frequen-
cies of seed dispersal by native parrots, plant invasions can be also facilitated by native
frugivores [45]. Thus, the consumption of exotic plants by both native and exotic parrots
in urban areas can trigger their spread across surrounding natural landscapes through
seed dispersal [46–48]. Given that parrots are successful invaders worldwide [49], with
nearly 16% of the extant parrot species showing non-native populations out of their natural
geographical distribution [50], further research should assess whether their interactions
with exotic plants can be promoting their spread. These potential interactions may trigger
plant invasions, increase their impacts through invasional meltdown processes [51], and
disrupt the existing animal-mediated dispersal systems [16,52], through the competence
with native plants for the attention of potential seed dispersers [51,53]. Additionally, we
have observed that some exotic plants and their exotic dispersers coexist in their native
ranges. For instance, several fig species (genus Ficus) from southern Asia and Africa
were introduced in European urban areas together with the rose-ringed parakeet. The
same pattern is observed with pepper tree species (genus Schinus) and the monk parakeet
(Myiopsitta monachus) introduced in Europe, both native to southern South America. These
co-occurrences between species out of their native ranges keeping their mutualistic interac-
tions can develop synergetic impacts and facilitate their invasion processes [51,54]. Finally,
the complementarity between epizoochory and other dispersal mechanisms [21] also needs
further research.

In recent years, parrots have been shown to play a dual role as seed predators and
primary seed dispersers through endozoochory [30,32,55] and estomatochory (i.e., plant
propagules are purposely transported with their beaks and dropped after fruit consump-
tion, e.g., [9,28,29,56–58]), also facilitating secondary seed dispersal [31]. We have already
identified some plant species dispersed by parrots through all these dispersal mechanisms
(e.g., Figure 2j), so epizoochory (acting alone or together with others) should be further
considered when assessing the role of parrots on ecosystem functioning [26] and network
structure [27]. In a scenario of global change where unstoppable habitat loss continues,
plants with zoochory mechanisms may be less vulnerable to perturbations [59,60] and these,
together with their dispersers, provide key services for the recolonization and recovery
of forested habitats [4,15,36]. Thus, we consider that advances in the knowledge of seed
dispersal by parrots and future efforts for understanding additional biotic interactions will
assist in the development of effective conservation actions against both habitat loss and
biological invasions.
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4. Materials and Methods
4.1. Data Recording and Source

To assess epizoochory in parrots, we mainly used information from our observations of
seed dispersal in different fieldwork campaigns performed in 17 countries and 5 continents
(Figure 1) between 2012 and 2020. We actively looked for foraging groups of parrots both
through roadside surveys and walking transects across a variety of biomes and habitats [31].
We conducted 98 roadside surveys covering c. 57,250 km of transects [61], and a large-but
unquantified-number of walking transects to look for foraging parrots. Once parrots were
detected, we tried to observe individuals at a distance for 5–15 min and to record the
potential presence of seeds attached to the surface of parrots (mainly beak or head) after
fruit consumption. We were able to detect attached seeds by using binoculars, telescopes,
and telephoto lens. We were able to identify the parrot species, also recording flock size,
the ripening stage of the fruits/seeds (unripe/ripe), the attachment mechanism of seeds
(fleshy, anemochorous, and others), date, and the location where the observation was
recorded. Regarding plants consumed by parrots, we identified the species whenever
possible. Observations taken out of the native range of a parrot or a plant species were
classified as exotics.

To find more evidence of epizoochory in parrots, we carefully reviewed our photo
gallery from our fieldwork campaigns. Besides, to check whether wildlife photographers
might have also captured this phenomenon in their pictures, we made a non-exhaustive
viewing of some photo galleries publicly available on the internet, namely: eBird, WikiAves,
Flickr, Instagram and Facebook (Supplementary Table S1). Photographs were visually
examined and strictly considered as epizoochory events when undamaged seeds attached
on parrots were discernible from other residues of consumed plants, such as the pulp. Plant
species were identified when possible. Otherwise, they were categorized as “Unidentified”
or “Unknown” if they were unidentifiable to the genus- and/or family level, respectively
(Supplementary Table S1). For each identified plant species, we obtained the average
size of ripe seeds (length and width, in mm) from published studies and web sources
(Supplementary Table S1). Additional data from photographs that were unavailable in
their respective web sources such as location and date were obtained through direct
communication with photographers.

4.2. Seed Dispersal Distances

When we were able to detect seeds attached that were transported by parrots dur-
ing our direct field observations, we measured seed dispersal distances using a laser
rangefinder (Leica Geovid 10 × 42, range of measurements: 10–1300 m) [29]. To record
seed dispersal distances, we only considered the distance between the mother plant where
the parrot was feeding and the last position that we could record after the parrot flew.
Given that vegetation can hinder the monitoring of parrots while flying, we considered a
minimum dispersal distance as a conservative measurement.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10040760/s1, Table S1: List of epizoochory events. We show the country and the biome
of the observation, as well as the date when the observation was recorded. We show the species
(parrots and plants) and plant family. We also show the region of origin of the parrot and plant
species in an area where the species is native or exotic. We show the flock size of disperser parrots,
the ripening stage of the fruits/seeds (unripe/ripe), the attachment mechanism, and the average size
of ripe seeds (length and width, in mm). The observation was categorized regarding its source (own
or web), showing the name of the photographer and the web platform for web data.
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