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Abstract: Hexaploid tritordeum is the amphiploid derived from the cross between the wild barley
Hordeum chilense and durum wheat. This paper reviews the main advances and achievements in the
last two decades that led to the successful development of tritordeum as a new crop. In particular,
we summarize the progress in breeding for agronomic performance, including the potential of
tritordeum as a genetic bridge for wheat breeding; the impact of molecular markers in genetic studies
and breeding; and the progress in quality and development of innovative food products. The success
of tritordeum as a crop shows the importance of the effective utilization of plant genetic resources for
the development of new innovative products for agriculture and industry. Considering that wild
plant genetic resources have made possible the development of this new crop, the huge potential of
more accessible resources, such as landraces conserved in gene banks, goes beyond being sources
of resistance to biotic and abiotic stresses. In addition, the positive result of tritordeum also shows
the importance of adequate commercialization strategies and demonstrative experiences aimed to
integrate the whole food chain, from producers to end-point sellers, in order to develop new products
for consumers.

Keywords: tritordeum; Hordeum chilense; pre-breeding; genetic resources

1. Introduction

Rice, maize and common wheat are the most important crops for human consumption
in the world. Both rice and maize are diploids, but bread wheat is an allohexaploid
(2n = 6x =42, AABBDD) derived from the cross between Triticum turgidum (AABB) and
Aegilops tauschii (DD) [1]. The allohexaploid genome structure of bread wheat is, in part,
responsible for the adaptability of this crop to a wide range of climatic conditions [1].

The wide adaptability of polyploids is an interesting feature for breeding, but allo-
ploidy has not been generally exploited by breeders since it is usually associated with
sterility. The first triticale was obtained by Rimpau in 1888, after spontaneous chromosome
doubling of hybrids from crosses between bread wheat and rye Rimpau, 1891 (as cited
in [2]). The development of triticale from the first cultivars released in the 60 s to our days,
exemplifies the possibilities of alloploidy for the development of new crops (reviewed
by [2]).

The success of triticale renewed the interest of developing new synthetic amphiploids
between barley and wheat. Plant breeders had been interested in crossing both crops
since the beginning of the 20th century (reviewed by [3]), but fertile amphiploids were
only obtained when the wild barley Hordeum chilense Roem. et Schultz. was used. This
new species was named tritordeum (× Tritordeum martini A. Pujadas) [4]. Octoploid [5]
and hexaploid [6] tritordeums were obtained from the crosses between H. chilense (as
mother) and common or durum wheat as pollen donors, respectively. Both tritordeums
were initially considered for breeding but the hexaploid became the species of choice
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since octoploid tritordeums showed a high chromosome instability. A similar situation
happens in triticale. Although different ploidy levels have been developed and studied,
only hexaploid triticale (× Triticosecale Wittmack, 2n = 6x = 42) has commercial application
(reviewed by [2]).

After two decades of breeding, the potential of tritordeum was clear [3,7]. Hexaploid
tritordeum was perceived as an interesting new crop with a similar role to bread wheat in
the food industry and with potential as a bridge to transfer useful traits from H. chilense
to wheat. However, tritordeum breeding still faced significant problems to become a
new crop. The most important limitations were the persistence of traits from the wild
progenitor, the lack of molecular tools for the effective study and utilization of traits of
interests inherited from H. chilense and the competition in the food industry with bread
wheat-derived products. In this review, we summarize the findings and achievements of
the last 20 years which have allowed the successful development of hexaploid tritordeum
as a new crop.

2. Progress in Breeding for Agronomic Performance

Tritordeum showed a promising potential at the beginning of this century but it still
faced significant problems including the retention of traits from its wild progenitor. In first
place, tritordeums had brittle rachis. This is an important adaptive trait in the wild that
allows an efficient seed dispersion but it is a non-deal trait for agriculture. In addition,
tritordeum breeding lines also presented tenacious glumes that interfere with threshing.
The combination of both traits resulted in high yield losses during harvesting and consti-
tuted a barrier for tritordeum cultivation and commercialization. The improvement of both
traits was addressed in the breeding program through the research project ‘Breeding of
tritordeum’ (AGL2005-01381) using two different approaches. The first consisted in the
utilization of mutagenic substances in seeds of both H. chilense and tritordeum looking for
tough rachis mutant phenotypes. This approach was unsuccessful (unpublished results)
but allowed the identification of imidazolinone resistant tritordeums due to the mutation
in the acetohydroxiacid synthase locus (a single Ser-Asn627 substitution) [8]. This muta-
tion would facilitate an efficient weed management as happens with Clearfield® wheat
varieties [9]. Furthermore, this mutated locus has been successfully transferred to durum
wheat and constitutes and additional source of resistance to imidazolinone herbicides
available in this species [10].

The second approach consisted in a crossing program between hexaploid tritordeum
and common wheat. The aim of this research was to obtain free threshing lines throughout
the development of chromosome substitution lines. Free threshing is determined by the Q
locus in chromosome 5A [11,12] and it controls pleiotropically other traits including glume
tenacity and rachis fragility. The extensive search in the breeding program allowed the
identification of three hexaploid tritordeum lines (HT374, HT376 and HT382) with free
threshing ability [13]. Molecular and cytogenetic characterization of these lines showed
that both HT374 and HT376 carried a substitution 5D/(5Hch), which suggested the role of
an homoeologous Q factor located in 5Hch. The molecular characterization of the Q gene
in wheat [12] allowed the study of this transcription factor in tritordeum. The cloning and
characterization of the Q gene from H. chilense showed that this gene was absent in HT374
while it was present in HT382 [14]. These results suggest that the free-threshing ability of
HT374 was derived from the lack of the AP2-like gene from H. chilense in 5Hch [14]. On the
other hand, the characterization of the breeding line HT382 revealed a double substitution
1D/(1Hch), 2D/(2Hch). The Tenacious glume (Tg) locus is located in chromosome 2D [15]
and, thus, the substitution of chromosome 2Hch, eliminating the homoeologue Tg locus
from H. chilense, was considered as the cause of the free threshing ability of HT382 [13].

Regarding yield and agronomic performance, tritordeum breeding lines showed
similar behaviour to wheat and triticale elite cultivars under low water conditions [16].
However, further efforts to achieve extended grain filling period and earlier anthesis were
required [16]. The continuous breeding pressure allowed the selection of lines with good
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threshing ability, without any bread wheat chromosomes and with yield levels similar to
wheat in regions with temperate winters (South of Spain). As a result, two tritordeum
varieties, ‘Aucan’ (grant number 35093), and ‘Bulel’ (grant number 40872), were registered
in the Community Plant Variety Office.

Tritordeum, including ‘Bulel’, seems better adapted to organic farming than durum
wheat since it shows an increase in the below ground community of the Bacteroidetes
phylum and better grain quality than durum wheat [17]. However, it has a lower grain
yield [17]. However, it is important to note that new advanced lines of tritordeum outper-
form ‘Aucan’ and ‘Bulel’ for yield performance [18]. Table 1 summarizes the agronomic
performance data available for tritordeum over time.

Table 1. Agronomic performance of tritordeum lines over time.

TKW Yield

Plant Material 1 Location 2 Value (g) Relative
Performance 3 Value (kg/Ha) Relative

Performance Reference

First HTs 36.0 66.2 no data [6]
Primary tritordeums Córdoba (Spain) 35.4 65.2 n.d. [2]
Breeding lines Gimenells (Spain) 33.4 64.5 2262 52.5 [16]
Breeding lines Tal-Amara (Lebanon) 27.2 64.7 2744.5 54.6 [16]
Breeding lines Córdoba (Spain) 31.5 77.6 3173.3 73.5 [16]
Breeding lines Granada (Spain) 33.8 85.1 2364.5 58.9 [16]
Breeding lines Nabeul (Tunisia) 22.9 66.8 1257.5 54.7 [16]
Advanced lines Larisa (Greece) 1st 29.6 103.5 4327.5 59.0 [18]
JB1 Larisa (Greece) 1st 31.4 110.0 3666 50.0 [18]
JB3 Larisa (Greece) 1st 28.5 99.8 3211 43.8 [18]
Advanced lines Larisa (Greece) 2nd 29.8 101.1 3480 85.8 [18]
JB1 Larisa (Greece) 2nd 31.3 106.3 3189 78.6 [18]
JB3 Larisa (Greece) 2nd 28.7 97.5 3196 78.8 [18]
Aucan Écija n.d. n.d. 3404.1 117.3 [19]
Aucan Jerez (Spain) n.d. n.d. 4717.2 107.5 [19]

1 JB1 and JB3 were pre-selections of ‘Aucan’ and ‘Bulel’ registered varieties. 2 Two seasons (denoted as 1st and 2nd) were considered by [18].
3 Relative performance compared to bread wheat control with the exception of First HTs that are compared to durum wheat parents.

Tritordeum can also be used as a bridge species to transfer useful traits from H. chilense
to wheat. H. chilense shows resistance to many diseases which could be exploited for
wheat breeding [20]. For instance, tritordeum is resistant to Septoria leaf blotch (STB)
due to the gene(s) located on chromosome 4Hch of H. chilense (reviewed by [20]). The
evaluation of resistance to STB on naturally infected trials allows the identification of
genes effective against the local isolates, but they may not be effective if diversity at
avirulence loci exists [21]. Field trials evaluation in the Czech Republic confirmed the
high average resistance of tritordeums for Septoria leaf blotch [22]. The confirmation of
the resistance of tritordeum to septoria leaf blotch in a completely different environment
from Córdoba (Spain), where the initial resistance tests were conducted, is a good sign
showing the potential of the resistance against this pathogen. Substitution lines for H.
chilense chromosome 4Hch into durum wheat have been obtained [23]. Although their
performance against STB was not evaluated, they were considered a valuable tool for
durum wheat breeding [23]. Similarly, many examples of successful introgression of H.
chilense into wheat genetic background are available [24–34]. H. chilense-wheat translocation
lines have been developed (Table 2). Nevertheless, to our knowledge, the transference of
these introgressions into elite wheat material is still pending.

In addition, tritordeum is also considered a potential source to introgress genes for the
combined stress of drought and salinity, as well as to each of these stresses separately [35]
and for the development of hybrid wheat using a cytoplasm male sterility (msH1 sys-
tem) [26,27,36]. The utilization of msH1 system for the production of hybrid bread [37]
and durum wheat [38] is a clear example of the benefits of tritordeum for the improvement
of wheat.
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Table 2. Translocation lines (TL) of H. chilense in bread wheat (BW) and durum wheat (DW).

Genetic Stock Chromosome Main Traits

TL in BW [25] 2Hch Carotenoid [39] and PPO1 and PPO2 genes [40];
TL in BW [30] 3Hch eLcy [39]; carotenoid content [41]
TL in DW [23] 4Hch STB and greenbug resistance [20]; salinity [42]

TL in BW [43] 5Hch
Mildew and greenbug resistance [20];
Hordeoindolines [43]; Salt tolerance [42]; Carotenoid
genes [39]

TL in BW [27]; TL in DW [38] 6Hch Fertility restoration [27,34,37,38]

TL in BW [28,29,31] 7Hch
Carotenoid content [31,44,45]; carotenoid
esterification [45,46]; mildew and greenbug
resistance [20]; waxy protein [47]

3. Impact of Molecular Markers in Genetics and Breeding

The properties of tritordeum are influenced to a great extent by H. chilense genome. In
this context, the development of genetic studies and the characterization of plant breeding
materials, including introgression lines, could benefit from the application of molecular
markers. Progress in genomics during the last two decades have made possible the geno-
typing with thousands of markers with a low cost per data and in a short time. However,
the situation was very different two decades ago. No DNA markers were available for
H. chilense at the early stages of tritordeum breeding [3]. Thus, a considerable effort was
employed for the development of molecular markers suitable for genetic studies in H.
chilense and for the development of marker assisted introgression of H. chilense chromatin
into wheat background using RAPDs, AFLP, SSR and RFLP (reviewed by [48]. RAPDs and
AFLP markers allowed the first mapping studies in H. chilense [49–51]. However, the lack of
enough markers for comparative studies among species, such as SSR of RFLP, constituted a
serious drawback in order to exploit the knowledge generated in related cereals. Genomic
studies in barley allowed the development of EST markers in a much larger scale than
previously known. The transferability of these markers to H. chilense [51–53] constituted a
qualitative jump for the identification of H. chilense chromosomes in wheat background.
Indeed, these markers have been successfully used for the identification of H. chilense
chromosomes in tritordeum [13] and for the identification of H. chilense chromosomes
during the development of wheat-H. chilense genetic stocks for chromosomes 1Hch [24];
2Hch [25]; 3Hch [30]; 4Hch [23,32], 6Hch [27] and 7Hch [28,29].

The synthesis of new allopolyploids results in the elimination of chromosome- and
genome-specific sequences contributing to the diploid-like meiotic behaviour [54]. Further-
more, this elimination is non-random and directional, and contributes to the diploid-like
behaviour of the amphiploids [54]. The existence of these rearrangements was studied
in tritordeum with different types of markers including inter-retrotransposon amplified
polymorphism (IrAP), retrotransposon-microsatellite amplified polymorphism (REMAP)
and Start Codon Targeted (SCoT) polymorphisms [55,56]. The elimination of H. chilense
sequences, as deduced from the fact that the majority of SCoT markers were derived from
wheat instead of from H. chilense, reinforced the potential of tritordeum as a new crop [55].

Despite the progress in the application of molecular markers, advances in sequenc-
ing techniques and microarray-based markers constituted another qualitative change for
genetic studies in H. chilense and tritordeum. In particular, DArT markers allowed the
development of thousands of markers widely distributed throughout H. chilense genome.
These markers were used for the construction of a genetic map with a good coverage [57]
and for the genetic characterization of tritordeum breeding lines [58]. Furthermore, this
new genetic map was completed with barley ESTs [59] and COS markers [60], providing the
bases for preliminary macro-synteny studies of H. chilense with other Triticeae species. The
genomic coverage obtained with this genetic map made possible the location of candidate
genes including carotenoid and polyphenol oxidase genes [39,40] and the mapping of
the fertility restoration locus in chromosome 6Hch [33] in the wheat-msH1 cytoplasmic
male sterility system useful for hybrid wheat production [27]. The correspondence of
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the location of all these genes in H. chilense with their homoeologues in other Triticeae
species, suggested a good degree of collinearity between H. chilense and the rest of the tribe
members. After this, the development of DArTSeq markers in H. chilense, along with the
availability of the barley genome sequence in public repositories [61], made it possible
to study the synteny relations between H. chilense and barley in detail [62]. In general,
H. chilense shows a good degree of collinearity with barley with the exception of a major
rearrangement in chromosome 7Hch, where H. chilense carries a reciprocal translocation be-
tween the distal part of this chromosome [62]. The break of synteny at 7Hch was suspected
since the main locus for endosperm carotenoid content in H. chilense has been located in
chromosome 7HchS [44], while the orthologous was located in chromosome 7BL in durum
wheat [63]. DArTSeq markers have been used for Genome-Wide Association Scan studies
in H. chilense [62] and they have also contributed to the study of the cytoplasmic male steril-
ity msH1 system [27] for the production of hybrid wheat. In particular, DArTSeq markers
allowed the characterization of an acrocentric chromosome carrying the restorer-of-fertility
gene [33] as a previous step for the identification of the candidate gene [37].

4. Progress in Quality and Potential for the Development of New Innovative
Food Products

Although durum wheat is the male parent of hexaploid tritordeum, the grain texture
of tritordeum is similar to that of bread wheat [64]. This quality parameter is controlled in
wheat by the puroindoline genes (Pina-D1 and Pinb-D1) located on chromosome 5D [65]
and the homoeologue hordoindoline genes Hina and Hinb in barley. Hina-Hch1 and Hinb-
Hch1 genes in H. chilense are very similar to Pin genes of bread wheat [66], which may
explain the soft grain texture of tritordeum. Indeed, the addition of chromosome 5Hch to
bread wheat resulted in the enhancement of grain softness [67]. This makes tritordeum flour
more adequate for the production of products similar to those obtained from bread wheat.
Accordingly, High Molecular Weight (HMW) glutenin subunits were considered a primary
target for tritordeum breeding due to their high influence on breadmaking quality [68].
Two alternative approaches were applied: transgenic and conventional breeding. The
transgenic alternative allowed the development of tritordeum lines expressing HMW genes
1Ax1 and 1Dx5 [69,70]. On the other hand, chromosome substitution or translocation lines
with the HMW glutenin subunits Dx5 + Dy10 were obtained by conventional methods [71].
The chromosome substitution lines obtained showed a similar agronomic performance than
the euploid tritordeum, but they had a much higher gluten strength due to the addition of
HMW glutenin subunits 1D [72].

The breadmaking quality of tritordeum is also influenced to a great extent by the H.
chilense genome (reviewed by [3]). This promoted the study of the variability for endosperm
storage proteins in the H. chilense accessions used to develop primary tritordeums [73–75],
along with the diversity in the natural populations of the species [76]. Further studies
focused on the effect of these proteins in breadmaking quality in tritordeums [77,78]. In
summary, these studies revealed a wide diversity for storage proteins potentially useful for
both tritordeum and wheat breeding, which could provide new functionalities not found
in other cereals. Indeed, tritordeum has significantly lower levels ofω-gliadins in flour and
levels of gluten around 50% lower than wheat [79]. Accordingly, tritordeum is considered
an interesting choice to people wishing to reduce their gluten intake, although it is not
suitable for patients suffering coeliac disease [79]. Furthermore, tritordeum bread has been
recommended for a subset of non-celiac wheat sensitivity patients who do not need strict
exclusion of gluten from their diet [80].

The increasing demand of healthier foods, including whole grain-derived foods, has
promoted the investigation of other health related traits in tritordeum. Phenolic compounds
are the main group of phytochemicals in barley grain and their main interest is due to
their strong antioxidant power and their association to certain diseases prevention [81].
Considering that tritordeum expresses the properties of both barley and wheat, its phenolic
content and profile was investigated [82]. A great variability for phenolic compounds
content was reported, ferulic acid being the main one that happens in wheat [82]. However,
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comparative studies with wheat and barley showed that advanced lines of tritordeum have
a similar total phenolic content to wheat but much lower than barley [83]. Phenolic content
has not been a target in tritordeum breeding program and, thus, it might be possible that
valuable diversity for this trait remains hidden in pre-breeding materials or in H. chilense
accessions. However, total phenolic content in tritordeum was around half the reported in
barley [83] and, thus, it is not likely that tritordeum could outperform barley as a natural
source for these compounds.

Accumulation of compounds such as tocols [84] or polysaccharides (arabinoxylans
and β-glucans) [85] has been also studied in tritordeum, along with the potential for
accumulation of micronutrients as Selenium in grain [86]. Furthermore, the essential role
of Selenium in animal and human nutrition promoted the evaluation of selenium fertilized
tritordeum in relation to conventional dietary supplements of this micronutrient in laying
hens [87]. The improvement of egg quality due to Se-enriched tritordeum suggests that
selenium-fertilized tritordeum may be an interesting alternative for animal feeding [87].

Tritordeum can be also used for cake [88] and beer production [89]. Indeed, tritordeum
and barley malts yielded comparable values for the majority of technological parameters
including alcohol content, although tritordeum malts produced a slight acidification ef-
fect, a lower level of glucose and a higher amount of free amino nitrogen [89]. Besides,
tritordeum malt did not cause any technological problem during the different stages of
beer production and, thus, it is considered that it has a high potential for the brewing
industry [89]. Furthermore, the utilization of brewers’ spent grain from tritordeum, the
major by-product of the brewing industry, may increase the nutritional potential of durum
wheat pasta [90], by improving total antioxidant capacity, total dietary fibre and β-glucans
and without compromising the sensory aspects of pasta [90]. All these findings show the
potential of tritordeum for the development of food products with new functionalities.

Regarding health-related compounds, carotenoid content has been the most exten-
sively studied due to its importance on the appearance of tritordeum products. The
intensive yellow colour of tritordeum flour constitutes an important differential charac-
teristic compared to bread wheat derived products [3]. This trait could be perceived as
detrimental since white flour is usually preferred for breadmaking from bread wheat. As a
consequence, initial studies confirmed the lack of effect of yellow colour in relation with
the baking performance [3]. The high carotenoid content in the endosperm is responsi-
ble for the golden coloration of tritordeum products and it confers a clear differentiation
from standard bread wheat products. Instead of a detrimental trait, the high carotenoid
content was considered a potential commercial advantage. This motivated the study of
the genetic bases of carotenoid content, which resulted in the identification of a QTL in
chromosome 2Hch [50], the selection of new genotypes with high carotenoid content such
as HT621 [91] and the development of selection tools useful for the breeding program [92].
The genes responsible for carotenoid content in tritordeum and wheat were unknown at
the time although they have been located in chromosomes 7Hch [44] and 7B [63]. Thus,
a candidate gene approach using rice as a model species and the gene Phytoene synthase
1 was performed. Our results proved that Psy1 was located in chromosome 7HchS in H.
chilense and 7A and 7B in durum wheat [93]. Furthermore, the diagnostic marker devel-
oped for Psy1_Hch [93] was successfully used for marker assisted selection of Psy1_Hch in
bread wheat-H. chilense genetic stocks [28,45]. The cloning and heterologous expression in
bacteria of Psy1_Hch confirmed the functionality of this gene [94] and its potential for the
enhancement of carotenoids in wheat.

Further transcriptomic experiments showed that both Psy1 and e-Lcy (Lycopene ep-
silon cyclase) were upregulated between 18 and 25 days after anthesis in tritordeum, while
their homoeologue genes in durum wheat were downregulated [41]. The differences in
the expression profile between tritordeum and durum wheat were associated with the
differences in carotenoid content between both species [41]. The development of translo-
cation lines of H. chilense 7HchS into bread wheat resulted, as expected, in the increase in
endosperm carotenoid content due to the presence of Psy1_Hch [31].
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In addition, tritordeums have a high proportion of carotenoid esters in contrast with
durum wheat [95]. Esterification is a common way to accumulate carotenoids in plants [96].
Thus, it was hypothesized that the activation of the carotenoid pathway in tritordeum
during grain development may be associated with the synthesis of carotenoid esters and
the production of a metabolic sink. However, this hypothesis was not confirmed since
no lutein esters are produced before 36 days after anthesis [97]. Nevertheless, carotenoid
esterification can contribute to the accumulation of lutein in tritordeum endosperm by
limiting carotenoid degradation in later stages [97].

The importance of esterified carotenoids goes beyond their role in carotenoid accumu-
lation since they have a higher stability than free carotenoids [98,99]. Higher carotenoid
retention has been observed during post-harvest storage due to esterification [98,100–102]
and, thus, the increase in carotenoid esterification is a good target for the improvement of
carotenoid retention in the food chain. This is relevant for tritordeum since this species has
a high proportion of carotenoids in the esterified form in the endosperm [95,97,103], with a
3-fold higher content in the endosperm compared to the germ [104].

The potential of esterification for the improvement of carotenoid retention through the
food chain has increased the interest on this trait despite these results are not confirmed at
high-temperature regimes [105]. The identification of the xanthophyll acyl transferase (XAT-
7D), responsible for carotenoid esterification in common wheat, opens new possibilities
for marker assisted selection [106]. In fact, this gene is being transferred from common
to durum wheat at present [107]. In tritordeum, carotenoid esterification is due to the H.
chilense genome [108]. In particular, candidate genes at chromosome 7Hch were identified
by physical mapping and DArTSeq markers [109]. Recently, a GDSL esterase/lipase
(XAT-7Hch), orthologue of XAT-7D, has been identified as the main responsible for lutein
esterification in H. chilense/tritordeum [46]. As happens with XAT-7D, this gene can be
used for wheat breeding through a marker assisted selection strategy with a diagnostic
marker already available [46].

Table 3 summarizes the main quality attributes of tritordeum grain.

Table 3. Grain quality parameters in tritordeum.

Trait Value Relative Performance Over Control 1 Reference

Carotenoid content (µg/g) (Primary tritordeums) 5.8 4.8-fold increase (DW) [95]
Carotenoid content (µg/g) (Breeding lines) 9.14 2.8-fold increase (DW) [41]
Carotenoid content (Bread) (µg/100 g) 357.6 6.5-fold increase (BW) [19]
Carotenoid esterification (%) 33.8 not detected (DW) [41]
Gluten content n.a. 51% reduction (BW) [79,80]
γ-gliadin epitopes n.a. 59% reduction (BW) [79,80]
α-gliadin epitopes n.a. 77% reduction (BW) [79,80]
Total tocols (µg/g) 30.2 Similar to BW [84]
Beta-glucans (% dry matter) 0.6 Similar to BW; 90% reduction (B) [85]

1 DW = durum wheat; BW = Bread wheat; B = Barley.

The high carotenoid content of tritordeum has been used to widen the interest in
this ‘Golden Cereal’ (https://www.tritordeum.com/?lang=en#whatis, accessed on 20 May
2021). Agrasys S.L., Barcelona, Spain, a spin-off of the Spanish High Council for Scientific
Investigations (CSIC), has benefited from the commercial exploitation of tritordeum, as it
has held the exclusive commercial rights of tritordeum since 2006. The registration of the
tritordeum varieties ‘Aucan’ and ‘Bulel’ at the Community Plant Variety Office, along with
the commercialization effort developed by Agrasys, has made the expansion of tritordeum
possible to many countries (https://www.tritordeum.com/ww/?lang=en, accessed on 20
May 2021); more importantly, it has made tritordeum products available to consumers. At
present, there is a complete food chain comprised of farmers, millers, bakers and sellers for
the development of tritordeum products.

https://www.tritordeum.com/?lang=en#whatis
https://www.tritordeum.com/ww/?lang=en
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5. Final Remarks

The success of tritordeum as a crop offers important lessons. In the first place, it
shows the importance of the effective utilization of plant genetic resources, including wild
species, for the development of innovative products for agriculture and food industry. The
utilization of plant genetic resources must be encouraged and promoted, since they hold
the key for further success in the current scenario of climate change, and to provide the
food industry with new products to meet the consumer’s preferences. Considering that the
use of wild germplasm, without any adaptation to agriculture, has been used to develop
a new crop, plant genetic resources conserved in germplasm banks have huge potential
for plant breeding that goes beyond being sources of resistance to pest and diseases.
The development of introgressions of H. chilense into common and durum wheat genetic
backgrounds holds potential for the improvement of wheat. However, the transference of
these introgressions into elite wheat material is still pending.

In second place, the development of innovative products is not enough to produce a
significant impact in the food industry. In this context, the efforts carried out by Agrasys
S.L. have promoted the interest of producers, millers and consumers in tritordeum, through
adequate commercialization strategies and demonstrative experiences, which have allowed
the consumption of tritordeum in an ever-growing list of countries around the world.
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