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Abstract: The variation in sodium concentrations in waters of natural fens and marshes on the
western Canadian landscape provides a background for choosing the appropriate plants for wetland
reclamation. Broad tolerances to salinity are especially important for reclamation trials on saline-rich
‘in-pits’ that were left from open-pit oil sands mining. One such species, Carex aquatilis, has been
identified as a key species in early reclamation attempts; however, at the Sandhill Wetland on the
Syncrude Canada oil sands lease, this species has aggressively colonized, dominating parts of the
wetland and limiting species diversity. A second species, also widespread on natural lake shores and
marshes, is Carex atherodes, with field observations suggesting a broad tolerance to salinity. Here,
we examine the responses of this species to a series of sodium concentrations and compare these to
those of C. aquatilis. In particular, we addressed three questions: (1) How do structural attributes
of C. atherodes respond to a series of Na+ concentration treatments? (2) Are different structural
responses related to the functional attributes of photosynthesis, stomatal conductance, and/or
transpiration rate? (3) How do these responses compare to those of C. aquatilis? We implemented a
phytotron experiment to test the responses of these two species to either five or six concentrations
of sodium, ranging from 20 to 3000 mg Na+ L−1. In general, structural responses of C. atherodes
did not differ between 50 and 789 mg Na+ L−1, while performances of all attributes were reduced
at 1407 mg L−1. Physiological attributes had high variation, but also had reduced performances
at similar treatment levels. In comparison, a clear threshold was present for structural attributes
in Carex aquatilis between 1650 and 2148 mg Na+ L−1, while physiological attributes were reduced
between 1035 to 1650 mg Na+ L−1. These responses from C. aquatilis were similar to those previously
reported. Na+ concentrations in porewater at the Sandhill Wetland in 2019 reached as high as
1200 mg Na+ L−1, with natural subsaline and sodic sites ranging much higher. Although all of the
plants in the treatments remained viable at the end of the experiment, these results indicate that
Na+ concentrations above 1500–2000 mg Na+ L−1 may inhibit the growth of these two species and
decrease their competitive abilities.

Keywords: Alberta; boreal; Carex aquatilis; Carex atherodes; oil sands reclamation; Sandhill Wetland;
sodium tolerance; wetland

1. Introduction

Oil sand deposits lie under 141,000 km2 of the landscape of Alberta, Canada and in
1967, commercial oil sands mining began in northeastern Alberta [1]. Over the past 50 years
or so, mining has continued to increase, reaching an oil sands production of 171,084,241 m3

(1.1 billion bbl) in 2019 [2]. One method of oil sands extraction is open-pit mining, which
accounts for about 20% of mining operations and involves the removal of vegetation and
surficial deposits in order to access the oil sands deposits containing bitumen [3]. After
mining operations are concluded, these large-scale depressions, or in-pits, are refilled
with a variety of tailings and process waters that have relatively high concentrations of
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cations and anions [4–6]. Reclamation of in-pit deposits is legislatively mandated to a
return to equivalent land capability [7], and these sites include areas of upland and wetland
vegetation that provide a new physical landscape [8].

Peatlands (bogs and fens) cover about 27% of the Oil Sands Administrative Area [9],
with nonpeat-forming wetlands (marshes and swamps) being only a minor component [10].
Most abundant on the landscape are rich fens that have pore water chemistries dominated
by divalent cations, with Na+ concentrations less than 10 mg L−1 and Ca2+ concentrations
less than 100 mg L−1 [11]. Brackish and saline marshes are less frequent on the land-
scape, with these sites having quite different water chemistries (Na+ ranging from 654
to 2831 mg L−1 and Ca2+ from 35 to 224 mg L−1) [12–16]. Currently, there are wetland
reclamation projects in the Athabasca Oil Sands Region, but the difficulties and novelty
of creating new complex systems that emulate natural systems have hindered concrete
protocols and methods [3,17]. In early plant establishment, site wetness and chemistry were
recognized as the most important limiting factors, and early experimental wetland sites
such as Sandhill Wetland were engineered to mitigate these variables [18]. However, the
salinity (especially Na+) of oil sands landscapes is considerably higher than what is typical
of both bogs and fens [12,16], and depending on its severity, high Na+ concentrations can
provide a harsh limiting environment for many plants [19,20]. Understanding how desired
plants will respond to increased Na+ concentrations is crucial to successful reclamation.

Purdy et al. [13] described the plant communities of Alberta’s boreal landscape along
salinity gradients as potential models for oil sands reclamation. Plant species that had
an affinity for flooded and wet meadow communities as well as for strongly to slightly
saline soils included Carex atherodes, Scolochloa festucacea, Scirpus paludosus, and Triglochin
maritima [13]. Furthermore, Carex atherodes was not impacted by the process water of
oil sands activity in northwestern Canada after two growing seasons of irrigation in a
greenhouse, with up to approximately 569 mg Na+ L−1 [21].

Carex atherodes is circumpolar in distribution, occurring from the arctic and ranging as
far south as Arizona and New Mexico in the west, and Missouri and Virginia in the east [22].
It frequently occurs in wet meadows, lake shores, fens, ponds, and marshes [23,24]. Trites
and Bayley [16] reported this species from a number of slightly brackish (sites with electrical
conductance (EC) between 0.5 and 2.0 mS) to moderately brackish (sites with EC from 2.0
to 5.0 mS) marshes in Alberta, including sites with EC from 0.5 to 5.7 mS cm−1. The species
did not occur in brackish (sites with EC 5.0–15.0 mS) or subsaline sites (those with EC
15–45.0 mS) [25]. The natural occurrences of C. atherodes in marshes and lake shores [26,27],
many with brackish water chemistries [28,29], suggest that this species may provide a key
component to the vegetation of sites with moderate to high concentrations of Na+, and
for sites where Na+ levels exceed those tolerated by other sedges (e.g., C. aquatilis). Just as
widespread but occurring commonly in fens is C. aquatilis, a species previously examined
for habitat limitations [30] and tolerances to Na+ [31]. Compared to C. aquatilis, C. atherodes
is taller (up to 1.2 m tall vs. 1.0 m for C. aquatilis, with more numerous, broader leaves
(3–12 mm wide vs. 2.5 mm for C. aquatilis) [24].

Three years after wet-up, Vitt et al. [32] described three plant assemblages as dominant
on Sandhill Wetland. The plant assemblage that occurs in areas with both intermediate
water levels and salinity continues to be dominated by C. aquatilis, to the extent of excluding
many sub-dominant plant species, including ground layer bryophytes. After seven years
of plant development, it is apparent that future reclamations should include additional
species that are of similar size and aggressiveness to C. aquatilis. Based on field observations,
Carex atherodes might serve this purpose if it has similar responses to salinity as C. aquatilis.
The objectives of this study was to further understand the responses to increasing Na+

concentrations of C. atherodes. In particular, we addressed these three questions:

1. How do the structural attributes of C. atherodes respond to a series of Na+ concentra-
tion treatments that are present or expected at future in-pit reclamation sites in the
Alberta oil sands region?
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2. Are different structural responses related to functional attributes of chlorophyll,
photosynthesis, stomatal conductance, and/or transpiration rate?

3. How do these responses compare to those of C. aquatilis?

2. Results
2.1. Structural Attributes
2.1.1. Biomass

Aboveground biomass was different among treatments. The highest biomass was pro-
duced by C. atherodes exposed to 789 mg Na+ L−1 (averaging 4.32 g), which decreased dra-
matically with increasing sodium exposure (Figure 1A). Plants exposed to 789 mg Na+ L−1

produced 1.8 times more aboveground biomass than plants exposed to 1407 mg Na+ L−1

and 5.6 times more aboveground biomass than plants exposed to 2731 mg Na+ L−1.
Belowground biomass production was also different among treatments. The highest

biomass was produced by C. atherodes exposed to 60 mg Na+ L−1 (averaging 2.59 g), then
decreased, most dramatically after 789 mg Na+ L−1, with increasing sodium exposure
(Figure 1B). Plants exposed to 60 mg Na+ L−1 produced 1.36 times more belowground
biomass than plants exposed to 789 mg Na+ L−1; however, the latter produced 2.08 times
more below ground biomass than plants exposed to 1407 mg Na+ L−1.

The belowground:aboveground biomass ratio was different among treatments. The
lowest treatment, 60 mg Na+ L−1, had the greatest belowground:aboveground ratio, with
the 1407 and 2074 mg Na+ L−1 treatments having the lowest ratio. Although all treat-
ments produced a greater amount of aboveground biomass than belowground biomass
(Figure 1C).

2.1.2. Longest Leaf Length

Among the six treatments, the summed lengths of the longest leaves from the original
plant and its ramets varied from 61.1 cm to 401 cm. Sodium treatments had an effect on
the longest leaf length, with a steady decrease in length in the 60 to 2731 mg Na+ L−1

treatments (Figure 1D). Carex atherodes leaves were 2.1 to 6.6 times greater in the treatment
with 60 and 789 mg Na+ L−1 than in the 2731 mg Na+ L−1 treatment.

2.1.3. Ramet Count

Carex atherodes produced between one and eleven ramets per individual plant. Sodium
treatments had an effect on the number of ramets produced, steadily decreasing with
increased sodium (Figure 1E). On average, the plants produced about one less ramet for
each treatment increase in sodium (60 mg Na+ L−1 = 9 ramets; 789 mg Na+ L−1 = 7.3;
1407 mg Na+ L−1 = 7; 2074 mg Na+ L−1 = 6; 2363 mg Na+ L−1 = 4.2; 2731 mg Na+ L−1 = 2.6).

2.2. Chlorophyll Content

Chlorophyll content ranged from 17 to 38 and was different among sodium treatments
(df = 5, H = 35.482, p < 0.001). Plants of 60, 789, 1407, 2074, and 2363 mg Na+ L−1 treatments
were similar; plants of 2731 mg Na+ L−1 were different from those of 60, 789, and 2074 mg
Na+ L−1 treatments.

2.3. Functional Attributes
2.3.1. Photosynthetic Rate

Photosynthetic rate was different among the sodium treatments, decreasing with
increased sodium exposure. Carex atherodes exposed to 60 mg Na+ L−1 had photosynthetic
rates five times greater than those exposed to 2731 mg Na+ L−1 (Figure 2A).
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Figure 1. Responses (as mean ± S.E.) of Carex atherodes to concentrations of sodium. (A) aboveground biomass (F = 67.54, 
p < 0.001), (B) belowground biomass (F = 63.46, p < 0.001), (C) ratio of belowground biomass to aboveground biomass (F = 
16.81, p < 0.001), (D) sum of longest leaves (H = 29.81, p < 0.001), (E) number of ramets (F = 27.00, p < 0.001). Different letters 
indicate significantly different values between treatments (F = Tukey’s pairwise post hoc test at p ≤ 0.05 or H = Dunn’s 
pairwise post hoc comparison at p ≤ 0.05). All data from end of experiment. 

  

Figure 1. Responses (as mean ± S.E.) of Carex atherodes to concentrations of sodium. (A) aboveground biomass (F = 67.54,
p < 0.001), (B) belowground biomass (F = 63.46, p < 0.001), (C) ratio of belowground biomass to aboveground biomass
(F = 16.81, p < 0.001), (D) sum of longest leaves (H = 29.81, p < 0.001), (E) number of ramets (F = 27.00, p < 0.001). Different
letters indicate significantly different values between treatments (F = Tukey’s pairwise post hoc test at p≤ 0.05 or H = Dunn’s
pairwise post hoc comparison at p ≤ 0.05). All data from end of experiment.
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Figure 2. Responses (as mean ± S.E.) of Carex atherodes to concentrations of sodium. (A) photosynthetic rate (H = 18.80,
p = 0.002), (B) transpiration rate (H = 30.18, p < 0.001), (C) stomatal conductance (H = 31.31, p < 0.001, (D) sodium in
aboveground tissue (F = 35.91, p < 0.001), (E) sodium in belowground tissue (F = 54.02, p < 0.001); (F) ratio of belowground
to aboveground tissue concentration of sodium (H = 21.06, p < 0.001). Different letters indicate significantly different values
between treatments (F = Tukey’s pairwise post hoc test at p ≤ 0.05 or H = Dunn’s pairwise post hoc comparison at p ≤ 0.05).
All data from end of experiment.
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2.3.2. Transpiration Rate

Transpiration rate was different among the sodium treatments. The two lowest treat-
ments (60 and 789 mg Na+ L−1) had plants with rates 4.9 times greater than the two highest
treatments (2363 and 2731 mg Na+ L−1) (Figure 2B). Stomatal conductance was correlated
with the transpiration rate (p < 0.001, R2 = 0.99) and the photosynthesis rate (p < 0.001,
R2 = 0.79).

2.3.3. Stomatal Conductance

Stomatal conductance was different among the sodium treatments. The two lowest
treatments (60 and 789 mg Na+ L−1) had plants with rates 5.8 times greater than the
two highest treatments (2363 and 2731 mg Na+ L−1) (Figure 2C).

2.3.4. Concentration of Na in Aboveground and Belowground Biomass

The concentration of Na in aboveground biomass was different among treatments.
Plants exposed to the 789 mg Na+ L−1 sodium treatment had five times the concentration
of Na than the lowest concentration (60 mg Na+ L−1), 10.6 mg Na g−1, and 2.1 mg Na g−1.
The greatest concentration was in C. atherodes exposed to 2731 mg Na+ L−1 (averaging
27.16 mg g−1) (Figure 2D).

The concentration of Na in belowground biomass was different among treatments
(Figure 2E). The Na concentration increased two-fold from the lowest treatment (60 mg
Na+ L−1) to the next three treatments (789 mg Na+ L−1, 1407 mg Na+ L−1, and 2074 mg
Na+ L−1), three-fold in the 2363 mg Na+ L−1 treatment, and six-fold for the highest treat-
ment (2731 mg Na+ L−1).

The concentration of Na in the belowground:aboveground biomass ratio was different
among treatments. Only the lowest treatment, 60 mg Na+ L−1, had a higher concentration
of Na in the roots than the shoots. The 1407 and 2074 mg Na+ L−1 treatments were about
one-fourth the ratio of the lowest treatment (Figure 2F).

2.3.5. Comparison to Carex aquatilis

Under control conditions (40 mg Na+ L−1), the aboveground biomass of Carex aquatilis
averaged 2.1 g, belowground biomass was at 2.3 g, about 36% and 12%, respectively,
lower than those of C. atherodes (Table 1). In the 1035 mg Na+ L−1 treatment, C. aquatilis’
aboveground biomass decreased by 28% and its belowground biomass decreased by
43%. Comparatively, in the 789 mg Na+ L−1 treatment, the aboveground biomass of
C. atherodes increased by 24% with a decrease of 27% for its belowground biomass. Photo-
synthesis of C. aquatilis under control conditions averaged 7.2 µmol m−2 s−1, compared
to 9.7 µmol m−2 s−1 for C. atherodes; stomatal conductance was 68 mmol m−2 s−1 for
C. aquatilis and 96 mmol m−2 s−1 for C. atherodes. Photosynthesis and stomatal conduc-
tance both decreased dramatically at 1035 mg Na+ L−1 (37% and 59%, respectively, with
significant differences at 1650 mg Na+ L−1). Comparatively, photosynthesis of C. atherodes
decreased only by 20% (with no change for stomatal conductance) at 789 mg Na+ L−1. At
1407 mg Na+ L−1, photosynthesis had decreased by 71% and stomatal conductance by 71%.
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Table 1. Responses for Carex aquatilis to five concentrations of Na+.

Carex aquatilis Results 40 mg Na+ L−1 1035 mg Na+ L−1 1650 mg Na+ L−1 2148 mg Na+ L−1 2792 mg Na+ L−1

Aboveground biomass (g) 2.07 ± 0.18 a 1.49 ± 0.22 ab 1.29 ± 0.13 ab 0.96 ± 0.34 b 0.78 ± 0.17 b
Belowground biomass (g) 2.34 ± 0.23 a 1.60 ± 0.27 ab 1.35 ± 0.31 ab 0.84 ± 0.39 b 0.54 ± 0.09 b
Longest leaf length (cm) 265.88 ± 35.68 a 145.84 ± 15.64 ab 146.38 ± 8.79 ab 91.75 ± 23.84 b 77.83 ± 11.47 b

Ramet count 5.66 ± 1.54 a 3.25 ± 0.55 a 5.67 ± 0.67 a 3.17 ± 0.98 a 3.17 ± 0.83 a
Below:aboveground biomass 1.15 ± 0.08 a 1.04 ± 0.12 a 0.99 ± 0.16 a 0.71 ± 0.18 a 0.75 ± 0.11 a

Na in aboveground biomass (mg g−1) 1.57 ± 0.10 a 6.87 ± 0.74 a 9.01 ± 1.04 ab 16.66 ± 2.65 b 15.83 ± 1.95 b
Na in belowground biomass (mg g−1) 2.46 ± 0.21 a 8.13 ± 0.49 ab 10.27 ± 1.22 b 13.01 ± 1.57 b 13.50 ± 1.20 b
Na in belowground:aboveground ratio 1.57 ± 0.14 a 1.27 ± 0.10 ab 1.17 ± 0.13 ab 0.91 ± 0.13 b 0.88 ± 0.16 b

Chlorophyll content 34.31 ± 0.60 a 32.64 ± 0.88 a 31.05 ± 1.37 ab 24.66 ± 1.44 c 26.31 ± 1.85 bc
Photosynthetic rate(µmol m−2 s−1) 7.18 ± 0.82 a 4.52 ± 0.36 ab 3.63 ± 0.55 bc 4.15 ± 0.91 ac 2.35 ± 0.55 c
Transpiration rate(mmol m−2 s−1) 1.87 ± 0.19 a 0.90 ± 0.05 ab 0.648 ± 0.08 bc 0.46 ± 0.05 c 0.50 ± 0.04 c

Stomatal conductance(mmol m−2 s−1) 67.85 ± 7.79 a 28.14 ± 1.74 ab 19.96 ± 2.65 bc 15.10 ± 1.81 c 15.85 ± 1.19 c

Values are means ± S.E. Different letters indicate significantly different values between treatments from either Tukey’s pairwise post hoc
test at p ≤ 0.05 or H = Dunn’s pairwise post hoc comparison at p ≤ 0.05). All data from end of experiment.

3. Discussion
3.1. Variation in Sodium at Natural Sites and at Sandhill Wetland

The natural rich fens of boreal Alberta are dominated by a small suite of Carex species,
including C. aquatilis, C. chordorrhiza, C. diandra, C. lasiocarpa, and/or C. limosa [12,33–35].
Associated with these species is porewater chemistry that is relatively high in divalent
cations (Ca2+, Mg2+) and low in Na+. Considerable variation in electrical conductance (EC)
results from variation in divalent cations, with Na+ providing only a small fraction of charge
influencing EC (Figure 3A). In comparison, shallow marshes (both fresh and brackish),
lake shores, open riparian zones, and meadows have a flora composed of Carex aquatilis,
C atherodes, C. rostrata (s.l.), the grass Calamagrostis canadensis, and/or Typha latifolia [36].
The porewater chemistry of these site types is comparatively higher in Na+, leading to
brackish and eventually to saline and sodic wetlands. Sodium concentrations along the
brackish-saline-sodic gradient are strongly associated with EC and can attain high values
(Figure 3). Porewater chemistry at Sandhill Wetland has sodium concentrations that have
increased steadily over the first seven years since wet-up, with the highest concentrations
of Na+ recorded in 2019 at 1646 mg L−1 and an overall site mean of 496 mg L−1 [37]. These
concentrations of sodium far exceed those present in natural fens of the region (Figure 3).
The selection of foundation species that respond to brackish/saline water chemistries is a
key component in the reclamation of in-pit deposits.

3.2. Carex atherodes—Responses of Structural and Functional Attributes

Carex atherodes responded with decreased performance in most structural attributes
above a treatment of 789 mg Na+ L−1, with significant differences manifested at a treatment
of 1407 mg Na+ L−1. Structural attributes deceased between 35 and 75% at 1407 mg Na+ L−1.
In comparison, functional attributes were different only at higher treatments, almost
certainly due to high variation in the 60 and 789 mg Na+ L−1 treatments and the lack of
variation in the higher treatments. Functional attributes above 1407 mg Na+ L−1 were
remarkably stable with consistently low responses. Photosynthetic rates were strongly
associated with the transpiration rate and stomatal conductance, and all of these attributes
decreased over four times at a treatment of 1407 mg Na+ L−1; however, significant decreases
were not present until a treatment of 2383 or 2731 mg Na+ L−1. Sodium in belowground
tissues were similar until a treatment level of 2383 mg Na+ L−1, but above ground tissue
concentrations increased steadily over the six treatments. Sodium concentrations in both
belowground and aboveground tissues steadily increased as treatment levels rose, with
a strong decrease in below-to-aboveground ratios at a treatment of 1407 mg Na+ L−1,
suggesting the saturation of the belowground biomass that resulted in higher aboveground
Na tissue concentrations.
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brackish (EC = 2000–5000), B—Brackish (EC = 5000–15,000), SS—Subsaline (EC = 15,000–45,000) [25]. 
Regression: Na+ = 0.22*EC − 10.73. (A) Inset shows surface water samples from natural fens ex-
panded. Data from natural sites taken from 2017 to 2018 from [12], and from Sandhill Wetland from 
2019 [36]. 
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Figure 3. Relationship of Na+ to electrical conductance for surface water samples taken from natural subsaline
and saline wetlands (blue), samples from Sandhill Wetland (yellow), mean ± S.E. values of concentrations from
the six Na+ treatments in this study (red triangles). Boxes are wetland classifications: FW—Freshwater (EC < 500),
SB—Slightly brackish (EC = 500–2000), MB—Moderately brackish (EC = 2000–5000), B—Brackish (EC = 5000–15,000),
SS—Subsaline (EC = 15,000–45,000) [25]. Regression: Na+ = 0.22*EC − 10.73. (A) Inset shows surface water samples from
natural fens expanded. Data from natural sites taken from 2017 to 2018 from [12], and from Sandhill Wetland from 2019 [36].

3.3. Comparison to Carex Aquatilis

Carex atherodes produced about 34% more overall biomass than C. aquatilis under
control conditions; likewise, the photosynthesis rate was 37% higher for C. atherodes. Un-
der field conditions, C. atherodes is a much more robust plant, both in terms of height
and leaf width. At the lowest treatment level (789 mg Na+ L−1), C. atherodes increased
aboveground biomass and decreased belowground biomass, suggesting some tolerance of
aboveground tissue to increased Na+ concentrations. Comparatively, at a slightly higher
treatment (1035 mg Na+ L−1), the biomass of C. aquatilis decreased by 30%, with significant
differences in responses only present above the 2148 mg Na+ L−1 treatment. Chlorophyll
contents (measured using a SPAD meter) of the two species were similar (in the range of
17–38 for C. atherodes and 26–34 for C. aquatilis), both exhibiting reduced numbers above ca.
2000 mg Na+ L−1. All three functional responses produced a reduced performance above
the 1035 mg Na+ L−1 treatment. Although our objectives did not include an examination
of the mechanisms of salt tolerance, the concentrations of Na in both the aboveground and
belowground tissues of C. atherodes suggest a different mechanism from that of C. aquatilis.
In this mechanism, there is some evidence of salt being concentrated in the root tissue until
very high concentrations, where root biomass is much reduced. Previous experiments con-
cluded that C. aquatilis had reduced performance above a treatment of 1079 mg Na+ L−1,
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which manifested in a treatment of 2354 mg Na+ L−1, with significant differences in the
same structural and functional characteristics [38]. Similar to C. aquatilis [38], the transpi-
ration rates of C. atherodes are highly correlated with stomatal conductance, indicating a
similar relationship to reduced photosynthesis in the two species. The current trials suggest
that we can refine the tolerance of C. aquatilis to Na+, with reduced performance above a
1650 mg Na+ L−1 treatment and evident at 2148 mg Na+ L−1. Comparatively, C. atherodes
showed reduced performance in most attributes above 789 mg Na+ L−1, with significant
differences manifested at a treatment of 1407 mg Na+ L−1. In similar trials, Koropchak and
Vitt [39] found decreased survivorship and biomass of T. latifolia at 600 mg Na+ L−1, while
Glaeser et al. [40] found decreased performances and biomass of Beckmannia syzigachne
after 850 mg Na+ L−1. The higher tolerances of both species of Carex indicate that these
two species may provide the key ingredients to the vegetative recovery of oil sands sites
with brackish waters.

4. Materials and Methods

We used water chemistry collected at Sandhill Wetland in 2019 to explore in-pit
reclamation conditions seven years post-wet-up. The 58 ha Sandhill Watershed is an
experimental site on a formerly mined-out in-pit located on Syncrude Canada Ltd. oil
sands lease at 57.040◦ N, 111.596◦ W at 310 m elevation [18]. Its construction consisted of
backfilling the 60–100 m deep in-pit with composite and pure sand tailings between 1999
and 2008. Ten meters of sand were mechanically placed, which shaped the present-day
watershed. The 17 ha central wetland was completed by placing half a meter of clay soil
designed to reduce hydraulic conductivity and covered by 0.5–1.0 of salvaged peat obtained
from a peatland with both fen and bog site types. The wetland was seeded in winter 2011
with a mix composed largely of Carex aquatilis [31]; however, other Carex species, including
C. atherodes, have been growing at the study site (first recorded in 2015). Water from a
nearby lake was introduced to the study area in late summer 2012. Currently, the wetland
has a nearly complete cover of graminoid vegetation. In 2013, mean Na+ concentrations
across the entire wetland were at 84.2 ± 7.2 mg L−1. Sodium concentrations increased
in 2016 to 389 ± 21.7 mg L−1, and in 2019 to 494.2 ± 9.7 mg L−1. In 2019, sites on the
wetland had Na+ concentrations as high as 1646.1 mg Na+ L−1 [36]. In 2017, Carex aquatilis
dominated large portions of the wetland, with scattered populations of C. atherodes [32].

4.1. Experimental Design

To determine how Carex atherodes responds to increasing levels of sodium, a phytotron
experiment was conducted from 24 August 2020 to 11 December 2020 (110 days) using
plants grown from seeds collected at Sandhill Wetland (SHW). Carex atherodes was exposed
to solutions containing one of six sodium concentrations: 60, 789, 1407, 2074, 2363, and
2731 mg Na+ L−1. We used treatments that contained Na+ concentrations naturally occur-
ring in slightly brackish (1), moderately brackish (1), and brackish (4) wetlands (Figure 3).
These Na+ treatment concentrations are the mean values calculated from the concentrations
of Na+ utilized in the experiment. The 60 mg Na+ L−1 treatment was used as a control,
representing the absolute highest concentration of Na+ expected in natural fens of the
region [11].

Carex atherodes seeds were collected on 19 September 2019 at SHW. Seeds were wet
stratified at 2 ◦C on moist paper towels, enclosed in plastic bags for 30 days, and germinated
on moist peat at 20 ◦C [38]. Germination occurred four months after stratification. Seedlings
(2–4 cm high) were transplanted to pots with a mixture of 1/3 perlite−2/3 vermiculite on
8 July 2020. Each pot was placed in individual polypropylene containers that were filled
with a minimum of 400 mL of distilled water. The water contained Jack’s Professional®

Water-Soluble Fertilizer (20-3-19 Petunia FeED PlusMg, Allentown, PA; (140.3125 ppm
N)) to ensure that the plants had adequate nutrients. Seedlings grew for 47 days after
transplant before exposure to sodium treatments, and after excluding the control treatments,
subsequently exposed to 1000 mg Na+ L−1 for one week before treatments.
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Carex aquatilis seeds were treated in the same manner and grown under treatments of
40, 1035, 1650, 2148, and 2792 mg Na+ L−1 in order to better define the response between
1056 and 2000 mg Na+ L−1 [38].

The experiment was performed in the Southern Illinois University Carbondale
(37◦42’51.9′′ N 89◦13’21.7′′ W) temperature-controlled phytotron facility with ambient
sunlight. Thirty-three C. atherodes seedlings were randomly assigned to one of six sodium
treatments, each with six replicates (for C. atherodes, there were four replicates for the
789 mg Na+ L−1 treatment, while the 1407 mg Na+ L−1 treatment had five replicates).
In a similar fashion, 30 seedlings of C. aquatilis were randomly assigned to one of five
sodium treatments, each with six replicates. Individual plants of both species were ran-
domly rearranged and moved to a different location every two weeks. The 18.4 cm round
polypropylene containers, each containing one plant, were monitored each week using
an electrical conductance (EC) meter to ensure plants were not exposed to higher sodium
concentrations. If EC was outside its accepted range (20% higher or lower than its in-
tended sodium concentration in the stock water), the water was emptied and refilled
from stock water. Stock water solutions were prepared for each sodium treatment and
contained 7 mg L−1 magnesium, 4 mg L−1 potassium, and 10 mg L−1 calcium to mimic
natural fen water conditions [38]. Solutions contained 17 L of distilled water, magnesium
sulfate (MgSO4), potassium bicarbonate (KHCO3), calcium oxide (CaO), and sodium sul-
fate (Na2SO4) as well as 1/4 teaspoon of the 20-3-19 fertilizer (140.3125 ppm N). Due to
calcium oxide’s water-insoluble nature, hydrochloric acid and MES buffer were added to
get CaO into the solution in order to bring the stock solution pH to a neutral level (average:
7.38 ± 0.03 S.E.). Sodium was added as a sulfate as it is the dominant anion at Sandhill
Wetland [12].

Water samples from the round polypropylene containers were collected each week
and concentrations were analyzed for sodium, magnesium, calcium, and potassium on
a Varian 220 FS atomic absorption spectrometer; concentrations were also analyzed for
EC—using Orion 4 Star EC meter, and for pH—using an Accumet AB15 pH meter. The
water in the polypropylene containers was replaced each week with the appropriate stock
solutions to maintain treatment water chemistry. To avoid an excessive concentration of
sodium in the polypropylene containers, distilled water was used for watering between
stock water replacements.

For each C. atherodes and C. aquatilis plant and ramets produced within each treatment,
the following metrics were quantified at the end of the experiment: (1) longest leaf length
(sum of longest single leaf from each shoot), (2) number of ramets, (3) chlorophyll content,
(4) stomatal conductance, (5) transpiration rate, (6) photosynthesis rate, and (7) dried
aboveground and belowground biomass. To estimate the effects of sodium on the amount
of chlorophyll present in photosynthetic tissues, a Minolta SPAD 502 chlorophyll meter
(Konica Minolta Sensing, Inc., Osaka) was used to measure relative chlorophyll content
(no units) at the beginning and end of the experiment after plants reached a sufficient size
(3 mm leaf width for C. atherodes, 1.5 mm for C. aquatilis). A CI-340 handheld photosynthesis
system (CID Bio-Science, Inc., Camas, WA) was used to quantify stomatal conductance,
transpiration rate, and photosynthesis rate, with three measurements taken for each plant
at the end of the experiment (day 100). After the breakdown of the experiment, plants
were rinsed with DI water to remove the soil and dried at 60 ◦C for at least 72 h before
measuring aboveground and belowground biomass. Sodium uptake levels in C. atherodes
roots and shoots were determined using a standard extraction protocol [41].

4.2. Statistical Analyses

The responses to sodium concentrations were characterized using an analysis of
variance performed in SigmaPlot [42]. For analysis, the six Na+ treatment concentrations
for C. atherodes were 60 (±1.23) mg L−1, 789 (±71.59) mg L−1, 1407 (±85.66) mg L−1, 2074
(±171.95) mg L−1, 2362 (±97.62) mg L−1, and 2731 (±102.04) mg L−1. Similarly, the final
Na+ treatment concentrations for C. aquatilis were 40 mg L−1, 1035 mg L−1, 1650 mg L−1,
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2148 mg L−1, and 2792 mg L−1. The cationic chemistry of the six treatments closely
followed the relationship of Na+ to EC found at natural brackish and sodic sites (Figure 3),
indicating that our treatment chemistry reflected that of natural Na+-dominated wetlands.

Physiological responses (stomatal conductance, transpiration rate, photosynthesis
rate) of the final month, leaf length (longest leaf length of original plant and longest leaf of
any ramets at the end of the experiment), aboveground and belowground biomass, and
sodium tissue concentrations were examined for sodium-treatment level differences using
a one-way analysis of variance (ANOVA) and Tukey’s pairwise post hoc comparisons when
data passed the Shapiro–Wilks test for normality (p < 0.05 failure and visual inspection
of residuals). If tests for normality and/or equal variance failed, data were square-root
transformed or log transformed. If neither transformation improved normality or equal
variance, the untransformed data were analyzed using the Kruskal–Wallis one way analysis
of variance on ranks, followed by Dunn’s pairwise post hoc comparison.

5. Conclusions

Natural wetland site types with either fresh or brackish porewaters are often habitats
for species of Carex, including C. atherodes and C. aquatilis. Both species tolerate porewaters
with relatively high concentrations of sodium. Sandhill Wetland currently has many areas
with moderately brackish to brackish salinity, including some sites with concentrations up
to 1600 mg L−1 of sodium. The structural attributes of C. atherodes demonstrated reduced
performance in phytotron trials above 789 mg Na+ L−1 and apparent at 1407 mg Na+ L−1,
while C. aquatilis had a reduced performance above 1650 mg Na+ L−1 and apparent at
2148 mg Na+ L−1; these results provide evidence that either of these species tolerate levels
of sodium presently recorded at Sandhill Wetland. Although functional attributes for
both species become significant at somewhat higher treatments, the large decrease in
performance in photosynthesis, transpiration rate, and stomatal conductance in treatments
parallel to the structural attributes may suggest responses similar to those in structural
attributes. These species, with their high tolerances of brackish concentrations of sodium,
may be key ingredients for successful in-pit reclamation designs. The presence of additional
high concentrations of divalent cations [43] at reclamation sites may enhance the tolerance
of these species to high concentrations of sodium; however, this aspect has not been
investigated in wetland species.
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