
plants

Article

Foliar Application of Sodium Nitroprusside Boosts Solanum
lycopersicum L. Tolerance to Glyphosate by Preventing Redox
Disorders and Stimulating Herbicide Detoxification Pathways

Cristiano Soares 1,*,† , Francisca Rodrigues 1,† , Bruno Sousa 1 , Edgar Pinto 2,3 , Isabel M. P. L. V. O. Ferreira 2,
Ruth Pereira 1 and Fernanda Fidalgo 1

����������
�������

Citation: Soares, C.; Rodrigues, F.;

Sousa, B.; Pinto, E.; Ferreira,

I.M.P.L.V.O.; Pereira, R.; Fidalgo, F.

Foliar Application of Sodium

Nitroprusside Boosts Solanum

lycopersicum L. Tolerance to

Glyphosate by Preventing Redox

Disorders and Stimulating Herbicide

Detoxification Pathways. Plants 2021,

10, 1862. https://doi.org/10.3390/

plants10091862

Academic Editors: Mohammad

Golam Mostofa, Gopal Saha,

Swarup Roy Choudhury and

Chien Van Ha

Received: 3 August 2021

Accepted: 4 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department,
Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
franciscamrodrigues98@gmail.com (F.R.); bruno.filipe@fc.up.pt (B.S.); ruth.pereira@fc.up.pt (R.P.);
ffidalgo@fc.up.pt (F.F.)

2 LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences,
Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira nº 228,
4050-313 Porto, Portugal; ecp@ess.ipp.pt (E.P.); isabel.ferreira@ff.up.pt (I.M.P.L.V.O.F.)

3 Department of Environmental Health, School of Health, P.Porto (ESS-P.Porto),
Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal

* Correspondence: cfsoares@fc.up.pt
† These authors contributed equally to this work and, therefore, should be both considered as first co-authors.

Abstract: Strategies to minimize the effects of glyphosate (GLY), the most used herbicide worldwide,
on non-target plants need to be developed. In this context, the current study was designed to
evaluate the potential of nitric oxide (NO), provided as 200 µM sodium nitroprusside (SNP), to
ameliorate GLY (10 mg kg−1 soil) phytotoxicity in tomato plants. Upon herbicide exposure, plant
development was majorly inhibited in shoots and roots, followed by a decrease in flowering and fruit
set; however, the co-application of NO partially prevented these symptoms, improving plant growth.
Concerning redox homeostasis, lipid peroxidation (LP) and reactive oxygen species (ROS) levels
rose in response to GLY in shoots of tomato plants, but not in roots. Additionally, GLY induced the
overaccumulation of proline and glutathione, and altered ascorbate redox state, but resulted in the
inhibition of the antioxidant enzymes. Upon co-treatment with NO, the non-enzymatic antioxidants
were not particularly changed, but an upregulation of all antioxidant enzymes was found, which
helped to keep ROS and LP under control. Overall, data point towards the benefits of NO against
GLY in tomato plants by reducing the oxidative damage and stimulating detoxification pathways,
while also preventing GLY-induced impairment of flowering and fruit fresh mass.

Keywords: herbicides; non-target toxicity; redox homeostasis; stress alleviation; antioxidant system

1. Introduction

Glyphosate (GLY; N-(phosphonomethyl)glycine), the active compound of several
commercial herbicides, was introduced on the pesticide market by Monsanto Company
(S.A., Belgium, Europe) in the mid-1970s and has been in a leading position since then [1–3].
As a broad-spectrum herbicide, GLY’s use was initially restricted for weed removal from
cultivated fields, meadows and non-crop areas [2]. However, since 1996, the introduction of
transgenic GLY-resistant crops has led to a general upward trend of GLY-based herbicides
application [1]. Indeed, currently, GLY is the most applied herbicide worldwide, accounting,
in 2014, for more than 90% of the total herbicide market targeting the agricultural sector [4].

Paired with this increasing popularity, emerging concerns on GLY accumulation
across the environment have begun to arise. With effect, it has been reported that this
agrochemical can accumulate in soil due to leaching losses through the action of rain and/or
wind during and after foliar application [3,5,6]. Moreover, once applied to weeds foliage,
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GLY can be translocated to the roots and gradually released, leading to its accumulation in
the rhizosphere [6,7]. When in soil, residual amounts of GLY can then affect non-target plant
species [8,9] since, even upon its metabolization by microorganisms and/or adsorption to
soil components, the byproduct of its degradation, aminomethylphosphonic acid (AMPA),
is also a recognized phytotoxin [3,8].

Once taken up by plants, GLY is promptly transported to meristems, young roots and
leaves, storage organs and any other actively growing tissues through xylem and phloem
loading [1]. In terms of action, GLY acts by inhibiting the activity 5-enolpyruvylshikimate-
3-phosphate synthase (EPSPS; EC 2.5.1.19), consequently blocking the shikimate pathway
involved in the biosynthesis of phenolic compounds and essential aromatic amino acids,
such as phenylalanine, tyrosine and tryptophan [3]. Moreover, aside from its primary
target effect, increasing evidence has suggested that this herbicide can induce oxidative
bursts in plant cells, while also affecting the uptake of essential nutrients [3]. Thus, as there
is a high demand for agriculture to exponentially increase food production, it is imperative
to develop sustainable approaches to increase crops’ tolerance to GLY contamination.

Nitric oxide (NO), due to its small size and ability to easily diffuse across biological
membranes, is recognized as a remarkable signalling molecule involved in the response
of plants to different environmental constraints [10]. In fact, numerous studies conducted
with several plant models have been pointing towards the important role of NO as an
ameliorative agent against abiotic stresses [10–15]. Accordingly, the exogenous application
of NO may result in an enhanced crop yield under adverse conditions, due to its role in
regulating mechanisms related to increased tolerance to abiotic stress [14]. One of the
most commons ways to study NO-mediated effects on plants is through the exogenous
application of chemical donors, such as sodium nitroprusside (SNP). Chemically, it is
an inorganic molecule composed of Fe (II) and NO+, being a derivate from iron-nitrosyl
compounds [16,17]. When in solution, SNP releases NO+, Fe (II) and cyanide (CN−),
which can sometimes mask the effects of NO [18]. Either way, this molecule, compared
to others, has a relatively lower cost and is recognized for allowing a continuous and
enduring production of NO [17,19]. Even though NO is a gaseous reactive nitrogen species
(RNS), it has the ability to limit reactive oxygen species (ROS)-induced damages by acting
as a chain breaker and by activating gene expression of antioxidant enzymes [10–12]. The
involvement of NO in enhancing the antioxidant network in plants is well described in the
literature and strongly suggests that NO-mediated increase of plant abiotic stress tolerance
is related to a greater ROS detoxification by defence mechanisms [15]. Additionally, NO
itself is known to have antioxidant properties, being involved in ROS detoxification and
subsequently helping in the inhibition of lipid peroxidation (LP) and protein oxidation [20].
Despite the role of NO is relatively well understood in situations of drought, salinity
and metal contamination [15,21–23], its involvement in herbicide-induced phytotoxicity,
including GLY, remains poorly explored. Regarding this matter, only a recent study
conducted by Singh et al. [24] is available, in which the potential of this RNS to alleviate
GLY-induced stress in Pisum sativum L. was evaluated. In spite of the positive outcomes,
this study only focused on the early development of seedlings (7 days old) and applied a
high concentration of GLY (40 mg L−1) under a hydroponic system, not mimicking a real
scenario of soil contamination. Moreover, the precise involvement of NO on the interplay
between plant growth and productivity, GLY bioaccumulation and the modulation of
antioxidant and detoxification pathways is yet to be uncovered.

Within this perspective, and as previous studies from our research group have
shown that soil contamination by GLY can negatively affect the growth and physiol-
ogy of non-target plant species, such as tomato (Solanum lycopersicum L.) [8,25] and barley
(Hordeum vulgare L.) [9], the main objectives of this study were (i) to evaluate the potential
protective role of NO in counteracting GLY-induced stress in crops; and (ii) to pinpoint the
main physiological and biochemical mechanisms behind NO action in GLY-exposed plants.
Since S. lycopersicum (tomato) is one of the most important species worldwide and has been
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widely used as a model organism for fleshy-fruited plants [26], this species was selected
for this study.

2. Results
2.1. Biometric Analysis—Fresh Biomass and Root Length

The presence of soil residues of GLY inhibited plant growth, as evidenced by a signifi-
cant decrease in root length (49%), and fresh biomass of roots and shoots (73% and 48%,
respectively), in relation to the CTL (Figure 1). However, after co-exposure to NO, GLY
phytotoxic effects were partially prevented in all growth-related parameters, especially
when root fresh biomass (107% increase when compared to the GLY treatment) is concerned.
This NO-mediated increase in root growth was also noticed when plants were treated only
with this molecule, with significant rises up to 65% in relation to the CTL.
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CTL—control plants, grown in the absence of GLY and foliar sprayed with dH2O once a week (black); NO—plants grown 
in the absence of GLY and foliar sprayed with SNP once a week (dark grey); GLY—plants grown in the presence of GLY 
(grey); GLY + NO—plants grown in the presence of GLY and weekly sprayed with SNP (light grey). Results are presented 
as mean ± standard deviation (SD) and result from the evaluation of at least three experimental replicates (n ≥ 3). Different 
letters above bars indicate significant differences between groups (CTL, NO, GLY and GLY + NO) at p ≤ 0.05, according to 
the one-way ANOVA followed by Tukey’s post hoc test. 
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exposed to GLY alone, respectively (Tables 1 and 2). 

  

Figure 1. Growth traits of Solanum lycopersicum L. cv. Micro-Tom grown for 28 days in an artificial soil contaminated by
GLY (10 mg kg−1) and/or foliar sprayed with SNP (200 µM): (a) root length; (b) root fresh biomass; (c) shoot fresh biomass.
CTL—control plants, grown in the absence of GLY and foliar sprayed with dH2O once a week (black); NO—plants grown
in the absence of GLY and foliar sprayed with SNP once a week (dark grey); GLY—plants grown in the presence of GLY
(grey); GLY + NO—plants grown in the presence of GLY and weekly sprayed with SNP (light grey). Results are presented
as mean ± standard deviation (SD) and result from the evaluation of at least three experimental replicates (n ≥ 3). Different
letters above bars indicate significant differences between groups (CTL, NO, GLY and GLY + NO) at p ≤ 0.05, according to
the one-way ANOVA followed by Tukey’s post hoc test.

2.2. Soluble Protein and Nitrate Reductase (NR) Activity

Results concerning total protein content and NR activity are shown in Tables 1 and 2. As
can be observed, in the shoots, GLY led to a significant increase in protein levels (27%),
regardless of the co-exposure to NO. Nevertheless, in the roots, herbicide treatment resulted
in decreased protein levels by 50%, in relation to the CTL, being this effect significantly
counteracted by the foliar application of NO (Table 2). Concerning NR, its activity signifi-
cantly decreased in shoots among treatments, with inhibition values up to 40% compared
to the CTL; in the roots, only plants co-exposed to GLY and NO showed a decline in the
activity of this enzyme by 24% and 37%, in relation to the CTL and to the plants exposed to
GLY alone, respectively (Tables 1 and 2).
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Table 1. Biochemical parameters (total protein, nitrate reductase (NR) activity, proline, total ascorbate, ascor-
bate:dehydroascorbate (AsA/DHA) ratio, glutathione (GSH), total antioxidant capacity (TAC), total phenols and flavonoids)
of shoots of Solanum lycopersicum L. cv. Micro-Tom grown for 28 days in an artificial soil contaminated by GLY (10 mg kg−1)
and/or foliar sprayed with SNP (200 µM). CTL—control plants, grown in the absence of GLY and foliar sprayed with dH2O
once a week; NO—plants grown in the absence of GLY and foliar sprayed with SNP once a week; GLY—plants grown in the
presence of GLY; GLY + NO—plants grown in the presence of GLY and weekly sprayed with SNP. Results are presented as
mean ± standard deviation (SD) and result from the evaluation of at least three experimental replicates (n ≥ 3). Different
letters indicate significant differences between groups (CTL, NO, GLY and GLY + NO) at p ≤ 0.05, according to the one-way
ANOVA followed by Tukey’s post hoc test.

Parameter CTL NO GLY GLY + NO

Total protein (mg g−1 f.m.) 3.03 ± 0.20 b 3.47 ± 0.19 ab 3.85 ± 0.14 a 3.68 ± 0.21 ab
NR (mmol NADH min−1 mg−1 protein) 41.67 ± 3.18 a 26.67 ± 1.76 b 28.33 ± 3.18 b 25 ± 2.88 b
Proline (µg g−1 f.m.) 110 ± 8 b 88 ± 11 b 587 ± 87 a 163 ± 26 b
Total ascorbate (µmol g−1 f.m.) 1.52 ± 0.09 bc 1.29 ± 0.18 c 2.05 ± 0.18 ab 2.27 ± 0.21 a
AsA/DHA 2.94 ± 0.66 a 0.37 ± 0.10 b 1.47 ± 0.22 a 2.120 ± 0.40 a
GSH (nmol g−1 f.m.) 288 ± 21 b 310 ± 20 b 454 ± 9 a 426 ± 20 a
TAC (µg AsA equivalents g−1 f.m.) 1067 ± 141 a 928 ± 133 a 717 ± 84 a 895 ± 112 a
Total phenols (µg gallic acid equivalents g−1 f.m.) 960 ± 27 a 381 ± 10 c 542 ± 28 bc 652 ± 54 b
Flavonoids (µg quercetin equivalents g−1 f.m.) 424 ± 43 a 217 ± 14 b 298 ± 8 b 326 ± 16 ab

f.m.: fresh mass.

Table 2. Biochemical parameters (total protein, nitrate reductase (NR) activity, proline, total ascorbate, ascor-
bate:dehydroascorbate (AsA/DHA) ratio, glutathione (GSH), total antioxidant capacity (TAC), total phenols and flavonoids)
of roots of Solanum lycopersicum L. cv. Micro-Tom grown for 28 days in an artificial soil contaminated by GLY (10 mg kg−1)
and/or foliar sprayed with SNP (200 µM). CTL—control plants, grown in the absence of GLY and foliar sprayed with dH2O
once a week; NO—plants grown in the absence of GLY and foliar sprayed with SNP once a week; GLY—plants grown in the
presence of GLY; GLY + NO—plants grown in the presence of GLY and weekly sprayed with SNP. Results are presented as
mean ± standard deviation (SD) and result from the evaluation of at least three experimental replicates (n ≥ 3). Different
letters indicate significant differences between groups (CTL, NO, GLY and GLY + NO) at p ≤ 0.05, according to the one-way
ANOVA followed by Tukey’s post hoc test.

Parameter CTL NO GLY GLY + NO

Total protein (mg g−1 f.m.) 5.09 ± 0.55 a 3.66 ± 0.21 b 2.53 ± 0.10 c 4.91 ± 0.14 a
NR (mmol NADH min−1 mg−1 protein) 110 ± 12 a 122 ± 11 a 132 ± 15 a 83 ± 10 a
Proline (µg g−1 f.m.) 46.44 ± 1.98 b 46.38 ± 3.73 b 95.74 ± 10.68 a 58.17 ± 7.52 b
Total ascorbate (µmol g−1 f.m.) 0.40 ± 0.05 b 0.64 ± 0.05 a 0.41 ± 0.04 b 0.38 ± 0.03 b
AsA/DHA 0.77 ± 0.05 bc 0.68 ± 0.12 c 1.02 ± 0.07 ab 1.11 ± 0.07 a
GSH (nmol g−1 f.m.) 68.96 ± 1.31 b 65.69 ± 4.67 b 139.1 ± 9.53 a 58.49 ± 2.88 b
TAC (µg AsA equivalents g−1 f.m.) 422 ± 35 a 362 ± 14 a 309 ± 21 b 315 ± 20 b
Total phenols (µg gallic acid equivalents g−1 f.m.) 243 ± 9 a 273 ± 32 a 280 ± 38 a 273 ± 17 a
Flavonoids (µg quercetin equivalents g−1 f.m.) 19.2 ± 0.9 a 21.0 ± 0.2 a 24.1 ± 2.8 a 24.3 ± 4.4 a

f.m.: fresh mass.

2.3. Biomarkers of Oxidative Stress
2.3.1. Superoxide Anion (O2

•−) and Hydrogen Peroxide (H2O2)

O2
•− levels were enhanced in shoots (75%) and roots (81%) of plants exposed to GLY

(Figure 2a,d), compared to CTL. With the simultaneous application of NO, the levels of
this ROS showed a significant decrease of 74% in shoots and 55% in roots, in relation to the
GLY treatment; in shoots, O2

•− content from GLY + NO plants were even lower than those
found in the CTL (decrease of 55%). Regarding H2O2, differences were detected only in the
roots, where plants grown in GLY-contaminated soil, but treated with NO, experienced a
sharp reduction over the CTL (44%) and GLY (36%) groups (Figure 2b,e).
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Figure 2. Redox status of Solanum lycopersicum L. cv. Micro-Tom grown for 28 days in an artificial soil contaminated by GLY
(10 mg kg−1) and/or foliar sprayed with SNP (200 µM): (a,d) superoxide anion (O2

•−) content; (b,e) hydrogen peroxide
(H2O2) content; (c,f) malondialdehyde (MDA) levels. CTL—control plants, grown in the absence of GLY and foliar sprayed
with dH2O once a week (black); NO—plants grown in the absence of GLY and foliar sprayed with SNP once a week (dark
grey); GLY—plants grown in the presence of GLY (grey); GLY + NO—plants grown in the presence of GLY and weekly
sprayed with SNP (light grey). Results are presented as mean ± standard deviation (SD) and result from the evaluation of
at least three experimental replicates (n ≥ 3). Different letters above bars indicate significant differences between groups
(CTL, NO, GLY and GLY + NO) at p ≤ 0.05, according to the one-way ANOVA followed by Tukey’s post hoc test.

2.3.2. Malondialdehyde (MDA) Content

LP, evaluated in terms of MDA content, was diminished by 37% in roots and increased
by 33% in shoots upon GLY single exposure. In response to NO co-application, MDA levels
were restored back to the levels found in the CTL (Figure 2c,f).

2.4. Evaluation of the Non-Enzymatic Antioxidant Response
2.4.1. Ascorbate (AsA), Glutathione (GSH) and Proline

Total AsA levels in shoots exhibited a tendency to increase in response to GLY, espe-
cially under NO co-exposure, where a significant rise of 49% compared to the CTL was
recorded (Tables 1 and 2). In roots, total AsA levels did not vary among treatments, with
the exception of NO-treated plants, which showed an increment of 59% in relation to the
CTL (Tables 1 and 2). Concerning the ratio between AsA and DHA, in shoots, only NO
promoted a significant decrease (87%) of this parameter, though GLY-treated plants also
showed a tendency to have reduced values of AsA/DHA by 50%; in the roots, a significant
increase of 44% of this ratio was found, over the CTL, when plants were exposed to GLY
but simultaneously treated with NO (Tables 1 and 2).

The results of GSH accumulation are presented in Tables 1 and 2. As shown, GLY-
treated plants present increased levels of this antioxidant in shoots (58%) and roots (102%),
in relation to the CTL. The co-application of NO did not significantly alter this response in
the shoots; however, in the roots, the GSH content was restored to that found in the CTL.

Concerning proline levels, plants’ response to GLY was similar in shoots and roots
(Tables 1 and 2). As can be observed, proline was severely increased in both organs (1-fold
in roots and 4.3-fold in shoots), but the co-treatment with NO was able to inhibit this effect,
since no significant differences were registered in relation to the CTL (Tables 1 and 2).
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2.4.2. Total Phenolic Content (TPC), Flavonoids and Total Antioxidant Capacity (TAC)

In shoots, all treatments led to significantly lower levels of total phenolics, in compari-
son to the CTL (Table 1); in roots, however, their content did not vary among treatments
(Table 2). Flavonoids, as shown in Tables 1 and 2, followed the same trend of TPC, being
overall diminished in response to GLY and/or NO, in shoots, and showing no variations in
roots. The TAC values, compiled in Tables 1 and 2, presented a similar pattern to that found
for TPC with a general decrease in the roots of tomato plants exposed to GLY (inhibition
around 33%), regardless of the co-application of NO, and with no major changes in the
shoots. Even so, when GLY-exposed plants were sprayed with NO, TAC was only 16%
lower than the CTL (Tables 1 and 2).

2.5. Antioxidant Enzymes Activity (Superoxide Dismutase (SOD, EC 1.15.11); Glutathione
S-Transferase (GST, EC 2.5.1.18); Catalase (CAT, EC 2.5.1.18); Ascorbate Peroxidase
(APX, EC 1.11.1.11))

Data reporting SOD, GST, APX and CAT total activities are presented in Figures 3 and 4.
As shown, SOD was only significantly altered in the roots by exposure to GLY alone, where
a 41% inhibition was found in relation to the CTL plants (Figure 3a,c). GST activity was
also substantially reduced in both shoots (30%) and roots (58%) upon exposure to the
herbicide. In response to the co-application of NO, GLY-exposed plants exhibited higher
activity values of this enzyme in the roots and, especially, in the shoots, without differences
from the CTL situation (Figure 3b,d).
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Figure 3. Activity of antioxidant enzymes of Solanum lycopersicum L. cv. Micro-Tom grown for 28 
days in an artificial soil contaminated by GLY (10 mg kg−1) and/or foliar sprayed with SNP (200 µM): 
(a,c) superoxide dismutase (SOD) and (b,d) glutathione-S-transferase (GST). CTL—control plants, 
grown in the absence of GLY and foliar sprayed with dH2O once a week (black); NO—plants grown 
in the absence of GLY and foliar sprayed with SNP once a week (dark grey); GLY—plants grown in 
the presence of GLY (grey); GLY + NO—plants grown in the presence of GLY and weekly sprayed 
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Figure 3. Activity of antioxidant enzymes of Solanum lycopersicum L. cv. Micro-Tom grown for
28 days in an artificial soil contaminated by GLY (10 mg kg−1) and/or foliar sprayed with SNP
(200 µM): (a,c) superoxide dismutase (SOD) and (b,d) glutathione-S-transferase (GST). CTL—control
plants, grown in the absence of GLY and foliar sprayed with dH2O once a week (black); NO—plants
grown in the absence of GLY and foliar sprayed with SNP once a week (dark grey); GLY—plants
grown in the presence of GLY (grey); GLY + NO—plants grown in the presence of GLY and weekly
sprayed with SNP (light grey). Results are presented as mean ± standard deviation (SD) and result
from the evaluation of at least three experimental replicates (n ≥ 3). Different letters above bars
indicate significant differences between groups (CTL, NO, GLY and GLY + NO) at p ≤ 0.05, according
to the one-way ANOVA followed by Tukey’s post hoc test.
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of around 33% in comparison with plants grown in the presence of GLY alone. AMPA 
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Figure 4. Activity of antioxidant enzymes of Solanum lycopersicum L. cv. Micro-Tom grown for
28 days in an artificial soil contaminated by GLY (10 mg kg−1) and/or foliar sprayed with SNP
(200 µM): (a,c) ascorbate peroxidase (APX) and (b,d) catalase (CAT). CTL—control plants, grown
in the absence of GLY and foliar sprayed with dH2O once a week (black); NO—plants grown in
the absence of GLY and foliar sprayed with SNP once a week (dark grey); GLY—plants grown in
the presence of GLY (grey); GLY + NO—plants grown in the presence of GLY and weekly sprayed
with SNP (light grey). Results are presented as mean ± standard deviation (SD) and result from
the evaluation of at least three experimental replicates (n ≥ 3). Different letters above bars indicate
significant differences between groups (CTL, NO, GLY and GLY + NO) at p ≤ 0.05, according to the
one-way ANOVA followed by Tukey’s post hoc test.

APX activity suffered a significant decrease in shoots (34%) and roots (66%) of plants
exposed only to GLY; once again, the exogenous application of NO increased APX activity,
re-establishing its values to those found in the CTL (Figure 4a,c). Regarding CAT, GLY
led to a significant inhibition of its activity in both shoots (53%) and roots (63%), in
comparison with the CTL. However, in response to the co-treatment, these negative effects
were efficiently counteracted, since no differences were recorded between GLY + NO and
CTL plants in shoots and an even higher catalytic activity (1.2-fold increase over the CTL)
was found in roots (Figure 4b,d).

2.6. Bioaccumulation of GLY

As can be observed in Figure 5, GLY was only detected in roots of tomato plants
exposed to the herbicide, regardless of the co-treatment with NO. Actually, results show
that the application of SNP enhanced the root uptake of GLY, with a significant increase of
around 33% in comparison with plants grown in the presence of GLY alone. AMPA was
not detected in neither roots nor shoots (data not shown).
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Figure 5. Bioaccumulation of GLY in roots of Solanum lycopersicum L. cv. Micro-Tom grown for
28 days in an artificial soil contaminated by GLY (10 mg kg−1) and/or foliar sprayed with SNP
(200 µM). CTL—control plants, grown in the absence of GLY and foliar sprayed with dH2O once
a week (black); NO—plants grown in the absence of GLY and foliar sprayed with SNP once a
week (dark grey); GLY—plants grown in the presence of GLY (grey); GLY + NO—plants grown
in the presence of GLY and weekly sprayed with SNP (light grey). Results are presented as mean
± standard deviation (SD) and result from the evaluation of at least three experimental replicates
(n ≥ 3). Different letters above bars indicate significant differences between groups (CTL, NO, GLY
and GLY + NO) at p ≤ 0.05, according to the one-way ANOVA followed by Tukey’s post hoc test;
n.d.: non-detected, which means below the detection limit.

2.7. Productivity-Related Traits

The appearance of the first flower buds occurred upon around 40 days of growth,
independent of the presence of GLY in the substrate (data not shown). However, as shown
in Table 3, the total number of produced flowers was significantly diminished (51%) by
the herbicide, when compared to the CTL. As expected, this reduction in the number of
flowers also translated into a decreased fruit set (<55%), whose development was delayed
by one week. However, the foliar application of NO prevented some of these effects, as no
differences from the CTL were observed for the total number of flowers. Yet, concerning
average fruit production, NO was unable to counteract GLY-mediated effects (Table 3),
showing values 46% lower than the CTL. Lastly, although no statistical relevance was
achieved for the average fresh mass of fruits, a clear tendency can be observed, in which
plants exposed to the herbicide alone tend to produce smaller tomatoes in terms of fresh
mass (Table 3).

Table 3. Productivity-related characteristics of Solanum lycopersicum L. cv. Micro-Tom grown for 28 days in an artificial soil
contaminated by GLY (10 mg kg−1) and/or foliar sprayed with SNP (200 µM). CTL—control plants, grown in the absence
of GLY and foliar sprayed with dH2O once a week; NO—plants grown in the absence of GLY and foliar sprayed with SNP
once a week; GLY—plants grown in the presence of GLY; GLY + NO—plants grown in the presence of GLY and weekly
sprayed with SNP. Results are presented as mean ± standard deviation (SD) and result from the evaluation of at least three
experimental replicates (n ≥ 3). Different letters indicate significant differences between groups (CTL, NO, GLY and GLY +
NO) at p ≤ 0.05, according to the one-way ANOVA followed by Tukey’s post hoc test.

Parameter CTL NO GLY GLY + NO

Number of flowers per plant 13.3 ± 2.3 a 10 ± 3.4 ab 6.5 ± 1.0 b 10.0 ± 2.3 ab
Number of fruits per plant 8.0 ± 0.9 a 3.7 ± 1.2 b 3.6 ± 0.4 b 4.3 ± 0.8 b
Fruit fresh mass (g) 3.7 ± 1.1 a 3.0 ± 0.2 a 2.3 ± 0.2 a 3.2 ± 0.8 a
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2.8. Principal Component Analysis (PCA)

In order to determine how all analysed variables explained the differences among
experimental groups, PCA was performed (Figure 6). Results showed that the first com-
ponent accounted for 43 and 53% of variance in shoots and roots, respectively, and the
second for 19% in both organs. Moreover, as can be seen, for roots, CTL and NO plants
were clearly grouped together (first quadrant), suggesting that NO alone did not majorly
change the growth and physiological status of the plants. In shoots, however, CTL and
NO plants were located in distinct quadrants, namely in the second (CTL) and in the
third (NO). On the other side, plants exposed to GLY alone were distinctly separated from
all other experimental groups, with sample scores being found in the first and second
quadrants in shoots and roots, respectively. According to the figure, the parameters that
most contributed for this behaviour were the accumulation of proline and GSH, along with
ROS overproduction. When plants were grown in the presence of the herbicide, but treated
by foliar spraying with NO, an evident effect was also noticed, as this group remained
distant from GLY, but closer to the CTL and NO treatments, being the sample scores located
in the first/second and third/fourth quadrants in shoots and roots, respectively.
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Figure 6. Principal component analysis (PCA) (xx axis—first component, yy axis—second component)
of all evaluated endpoints (biometrical and biochemical) in (a) shoots and (b) roots of Solanum
lycopersicum L. cv. Micro-Tom grown for 28 days in an artificial soil contaminated by GLY (10 mg kg−1)
and/or foliar sprayed with SNP (200 µM). CTL—control plants, grown in the absence of GLY and
foliar sprayed with dH2O once a week (green points); NO—plants grown in the absence of GLY
and foliar sprayed with SNP once a week (blue points); GLY—plants grown in the presence of GLY
(purple points); GLY + NO—plants grown in the presence of GLY and weekly sprayed with SNP
(brown points).
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3. Discussion

Given the practical and economical relevance of GLY-based herbicides, more than
understanding its non-target phytotoxicity, it is also of particular interest to develop new
ecofriendly ways to mitigate its risks to agroecosystems and, in particular, to economically
important crops. Yet, work focusing on the implementation of mitigation strategies are still
in the beginning. By applying a set of ecophysiological and biochemical endpoints, we
show that the foliar application of SNP, a NO donor, can boost S. lycopersicum’s tolerance to
GLY-contaminated soils (10 mg kg−1), improving plant growth by actively controlling the
cell redox hub.

3.1. GLY Disrupted Tomato Plants’ Growth, but NO Partially Reduced Its
Macroscopic Phytotoxicity

Here, it was hypothesized that the exogenous application of NO could protect tomato
plants from GLY-induced phytotoxicity. In fact, and in accordance with the before men-
tioned studies, our results suggest that NO neutralizes, at least to some extent, the negative
effects caused by GLY contamination, as shown by a less pronounced growth inhibition
in comparison to the CTL. The registered growth inhibition of plants grown in GLY con-
taminated soil, largely reported by several authors in different plant models [8,9,24,27–29],
can result from the ability of GLY to decrease the levels of endogenous indole-3-acetic acid
(IAA), consequently perturbing cell enlargement and root nodulation [3]. In addition, it
can be a consequence of its influence on the synthesis of NR and/or nitrate availability,
causing a reduction of the enzyme’s activity [24,28,30,31], as it was reported in roots.

Aligned with this, data from bioaccumulation studies showed tomato plants were
capable of absorbing GLY from the soil solution, and that roots were the preferential organ
for GLY storage in plant cells, independent of the NO co-exposure. Despite several studies
having detected GLY in the aerial parts of plants grown under herbicide exposure [29], our
data strongly suggest a very limited rate of GLY translocation and/or an efficient detoxifi-
cation mechanism of GLY. Unexpectedly, when SNP was foliar applied to GLY-exposed
tomato plants, endogenous levels of the herbicide were increased in roots. Although no
report is available concerning NO-mediated effects on GLY uptake and partition in plant
tissues, a study aimed at evaluating the phytoremediation potential of Pistia stratiotes L.
to atrazine (150 µg L−1) showed that NO supplementation, via SNP (0.05 mg L−1), con-
tributed for a lower phytotoxicity but enhanced the bioaccumulation of this compound [32].
Thus, it appears that NO ameliorative features are most likely related to its function as a
signalling molecule, capable of inducing coordinated crosstalk of distinct metabolic chains,
rather than inhibiting herbicide uptake and accumulation.

3.2. GLY Disrupted the Cellular Redox State, but NO Managed to Keep ROS under Control

Despite being a RNS, the exogenous application of NO to plants exposed to a wide
variety of abiotic stresses has been found to prevent the occurrence of oxidative stress [15].
Corroborating the data obtained for biometric analysis, we show that foliar treatment with
NO of GLY-exposed plants results in better ROS management, as evidenced by generally
reduced levels of O2

•− (in shoots and roots) and H2O2 (in roots), when compared to
plants only exposed to GLY. Indeed, increased ROS accumulation in response to GLY
exposure has been largely documented in different plant species (reviewed by Gomes
et al. [3]). Despite the maintenance of H2O2 levels in the shoots, the MDA content, which
reflects the degree of LP in the cellular membranes, was significantly increased upon
GLY single treatment, revealing the occurrence of oxidative damage in the aerial parts of
tomato plants. This finding, paired with the enhanced accumulation of O2

•−, suggests that
downstream-formed ROS can be mediating the occurrence of LP. Although O2

•− radicals
are described as moderate oxidizing agents and cannot be easily diffused through cellular
and organelle membranes, evidence suggest that excess of this ROS can indirectly induce
substantial oxidative damage by giving rise to more powerful oxidant agents, including the
hydroxyl radical (OH.) and the hydroperoxyl (HO2

., a very reactive and stable compound),
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both able to cross biological membranes and involved in the peroxidation of membrane
phospholipids [33–35].

Due to its lipophilic features, NO can interact with O2
•− ions, leading to the sub-

sequent formation of peroxynitrite (ONOO), a less toxic compound, thus limiting the
downstream production of other ROS capable of inducing LP. Moreover, as reviewed by
Arora et al. [22], the reaction between NO and superoxide radicals is far faster than the
action of O2

•−-degrading enzyme SOD. In accordance, the increased levels of this ROS in
response to GLY were restored back to CTL levels upon co-exposure to NO, and actually
decreased to lower values in the shoots. Furthermore, the NO co-treatment even promoted
a reduction of H2O2 content in roots of GLY-exposed plants. In fact, two recent studies
by Vieira et al. [32] and Singh et al. [24] have shown that SNP application (0.05 mg L−1

(168 µM) and 250 µM) lead to decreased ROS content in Pista stratiotes treated with atrazine
and P. sativum exposed to 0.25 mM GLY, respectively.

Following the same trend observed for ROS, in the shoots, where the herbicide caused
a higher proportion of lipid peroxides, the treatment with NO restored MDA values
back to those found in the CTL group. The positive role of NO in LP prevention is most
likely related to its ability to act as an antioxidant agent, breaking the reactive chains
involved in the LP process [23], which involves activation, propagation and termination
steps [34]. In a work conducted with soybean (Glycine max L.) plantlets, Ferreira et al. [36]
demonstrated that lactofen (0.7 L ha−1) boosted the production of lipoperoxides, suggesting
the occurrence of LP, but the co-application of SNP (50, 100 and 200 µM SNP; two foliar
sprays with a 24 h interval) managed to revert this effect, reducing the accumulation of
these subproducts. Curiously, in the roots, data suggested that GLY was not inducing major
oxidative damages since MDA levels were diminished; however, it should be stressed
out that the decrease of MDA levels does not necessarily equal redox homeostasis. In
fact, it is known that ROS, especially OH., which is formed by the Haber–Weiss reaction
via O2

•−, H2O2 and transition metals (e.g., copper–Cu), are dangerous for all kinds of
biomolecules, namely proteins and nucleic acids [34]. Accordingly, when looking to the
protein content of roots, a major reduction was found in response to GLY. Moreover, plants
simultaneously treated with GLY and NO did not present any significant differences from
the CTL in what concerns MDA and total protein content, indicating the re-establishment
of homeostasis-promoting conditions.

3.3. Antioxidant Metabolites Are Not Directly Related to NO-Mediated Restoration of the Redox
Balance Disrupted by GLY

According to the data of the current study, a decrease in the antioxidant capacity of
plants subjected to GLY was perceived, with NO treatment not being able to neutralize
this effect. Thus, it appears that the non-enzymatic antioxidant system is not actively
involved in the alleviation of GLY-induced stress by NO, although a more detailed ap-
proach was followed in order to pinpoint the specific response and interaction of different
non-enzymatic antioxidants. Due to the nature of phenols biosynthetic process, i.e., the
shikimate pathway—the main target of GLY toxicity—it is not surprising that total phenol
content was diminished when plants were exposed to this herbicide. In fact, GLY-mediated
reduction in phenolic compounds has already been documented by some authors [37,38].
Curiously, we report that NO application, with or without GLY co-presence, also led to a
decrease in plant phenols and flavonoids in shoots, in contrast to what has been found in
the literature. Proline and GSH, two important players in the non-enzymatic component of
the antioxidant system, have already been shown to be strongly induced in plants exposed
to GLY [8,9,27], in accordance with what is herein reported for both analysed organs. How-
ever, despite the observed increases in GSH and proline levels, ROS accumulation took
place in shoots and roots, revealing that the modulation of their redox state is not able to
limit the toxic effects of GLY on tomato’s oxidative status. In opposition, plants exposed
to GLY but simultaneously treated with NO presented proline and GSH levels similar to
the CTL, this being accompanied by a better growth performance. The reduction of free
GSH levels in GLY + NO treated plants, in comparison to GLY plants, can be related to
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GSH ability to chemically react with different ROS or its use as a substrate in the enzymatic
regeneration of AsA. Indeed, it is known that GSH can eliminate ROS excess, such as
O2
•−, which were clearly reduced in plants co-exposed to GLY and NO. Moreover, and

confirming our previous hypothesis raised in Fernandes et al. [39], it becomes apparent that
proline may not be a key player in modulating tolerance to this herbicide, and the reduction
of its levels in NO-treated plants can be a consequence of stress alleviation through other
mechanisms. Additionally, it is also important to highlight that the exacerbated accumu-
lation of proline in GLY-exposed plants could also have prevented a disbalance in the
cellular osmotic potential, as the water status of plants was not altered by the herbicide, as
previously reported in tomato plants exposed to 10 mg kg−1 GLY [25]. Following the trend
recorded for proline and GSH, the accumulation of AsA in response to the co-treatment
with NO was somewhat distinct from that of plants exposed to the herbicide alone. Indeed,
the higher AsA/DHA ratio found in shoots and roots of co-treated plants suggest that,
upon application of NO, AsA is being actively recruited by APX, as there appears to be
an upregulation of the AsA–GSH cycle, possibly pointing towards a tightly regulated
enzymatic regeneration mechanism focused on maintaining a sufficient AsA pool to fulfil
the antioxidant needs of S. lycopersicum plants. In fact, the stimulation of AsA production
when plants were treated with NO during the exposure to different contaminants, such as
metals [21,40,41] and herbicides [42,43], has been extensively reported

3.4. NO-Mediated Alleviation of GLY Phytotoxicity Involves the Upregulation of the Main
Antioxidant Enzymes

For both organs, there was a striking pattern that shows GLY acting as a powerful
inhibitor of enzyme activity, as SOD, CAT and APX action were severely hindered when
S. lycopersicum plants were grown in GLY-contaminated soils. Up to now, distinct findings
have been published concerning the effects of GLY on the performance of the plant antiox-
idant system [3]. Here, the inhibition of SOD is tightly related to the observed increase
in O2

•− in both shoots and roots of tomato plants grown in GLY-treated soils. However,
CAT- and APX-reduced activity did not result in an overaccumulation of H2O2, reinforcing
the idea that tomato plants depend primarily on their non-enzymatic defences to deal
with GLY toxic levels intracellularly. Despite the overall inhibition of the main antioxidant
enzymes in response to GLY, when exogenous NO was supplied, all enzymes (SOD, CAT
and APX) were restored, or even increased. Accordingly, the upregulation of several
enzymatic antioxidant players by the exogenous application of NO has been reported by
different authors and studies [21,40,42–45], including in plants exposed to metals such as
cadmium [41] and copper [46], and herbicides, for example, atrazine, glufosinate [43] and
even GLY [24]. In this sense, it is possible to hypothesize that NO-induced redox balance
of GLY-treated plants is tightly related to a stimulation or a restoration of the enzymatic
component of the antioxidant system. Moreover, taking into account the possible impact
of GLY on the activity of metalloenzymes, by chelating their important co-factors, it is
possible that not only NO could be acting by enhancing the efficiency of the enzymatic
antioxidant system, but also by stimulating GLY detoxification pathways, protecting the
protein structure of SOD, CAT and APX. Nonetheless, to further prove this hypothesis,
subsequent studies to be done should use native polyacrylamide gel electrophoresis to
disclose the activity of specific isoenzymes [9,47,48]. This is especially important for SOD,
since its various isoforms differ in their metallic co-factors, which are known to be affected
by GLY [3].

3.5. Detoxification Pathways Impaired by GLY Are Stimulated by the Exogenous Application
of NO

Throughout evolution, plants have developed an efficient xenobiotic detoxification
system [49,50], which involves the conjugation of the transformed compound to GSH or
glucose, through the action of GST or glucosyl-transferases (EC 2.4.-.-), respectively. This
process depends on the original characteristics of the xenobiotic, but GST-mediated GLY
conjugation has already been suggested by several authors [51,52]. Curiously, our results
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show an opposite effect, in which plants grown under GLY contamination had a marked
decrease in GST activity in both organs. Thus, it appears that, under GLY exposure, roots
of tomato plants failed to employ efficient detoxification systems. From what it appears, it
is possible that GLY can be interfering with the structure and activity of GST, which results
in a poor detoxification process and increased phytotoxic potential, reflected by the severe
impairment of plant growth when exposed to this herbicide. A similar finding was also
reported in Lemna minor L. exposed to diclofenac [53]. In shoots, surprisingly, activity levels
of GST were also decreased in GLY-exposed plants, even though GLY was not detected in
this organ. However, following the same trend recorded for the other antioxidant enzymes,
this finding can reflect the harsh oxidative status that shoots underwent. In fact, it is
known that GST can be highly inactivated by ROS, including O2

•− [54]. In response to the
co-application of NO, GST activity in roots was restored back to CTL levels, even though a
higher bioaccumulation of GLY has been found. This improved, or at least re-established
detoxification process made use of the existing GSH pool, to conjugate this thiol with
GLY, forming fewer toxic metabolites. Through this process, NO-treated S. lycopersicum
plants seemed to have been able to reduce GLY toxicity and to improve their growth and
performance under these adverse conditions. In fact, increased GST activity in plants
treated with this molecule has been reported after exposure to paraquat [42] and several
metals [15], which share a common detoxification mechanism with xenobiotics.

3.6. GLY-Mediated Effects on Crop Productivity Are Partially Prevented by the Co-Application
of NO

In addition to affecting plant growth and biomass production, soil residues of GLY
(10 mg kg−1) have also resulted in a declined number of flowers and fruits, impacting
the fresh mass of the produced tomatoes. Accordingly, a recent study conducted by
Strandberg et al. [55] concluded that, while GLY spray-drift had no effect on flowering
time, it adversely affected the cumulative number of flowers of native non-target species
(Trifolium pratense L. and Lotus corniculatus L.). Yet, the assessment of Brassica sp. reproduc-
tive responses to a GLY-based herbicide (Roundup®) pointed towards the occurrence of
major changes in the flowering time and reproductive function, especially male gameto-
phytes [56]. Actually, it is known that even GLY-resistant crops can experience substantial
changes in their reproductive traits, with major consequences on fruit production [57].
Aligned with this significant reduction in the number of flowers, fruits from GLY-exposed
plants were fewer and smaller than those produced from CTL plants, revealing that soil
residues of this herbicide also negatively impact the overall productivity of the plant [58].
Up to now, studies dealing with the possible effects of GLY soil contamination on fruit
production of non-target crops are scarce [58,59], this being one of the first records explor-
ing this issue. Based on the data herein collected, one can hypothesize that GLY-mediated
impacts on tomato plants productivity mostly arise as a consequence of the physiological
disturbances induced by the herbicide, rather than the effects of GLY itself, since no bioac-
cumulation was found in shoots. In accordance to our hypothesis, recent findings suggest
that composts obtained from earthworms exposed to GLY can disrupt tomato development
and ability to flower [60], especially due to GLY-mediated chelation of essential nutrients,
which become unavailable for plant growth.

The overall positive effects of NO against GLY-mediated toxicity on the growth and
antioxidant response of tomato plants were also evident in the flowering process. As
reviewed by Sun et al. [61], NO was already proved to benefit plant reproductive traits,
inducing the expression of several flowering-related genes. Moreover, although the total
number of produced tomatoes was still lower than that of the CTL, fruits’ average fresh
mass was improved and remained identical to unexposed plants. Indeed, NO application
has been found to modulate fruit quality features, contributing for a better firmness and to
delay fruit ripening, by inhibiting ethylene biosynthesis [61].



Plants 2021, 10, 1862 14 of 21

4. Materials and Methods
4.1. Chemicals and Test Substrate

Roundup® UltraMax (Monsanto Europe, S.A., Belgium), whose active compound is
GLY (360 g GLY L−1, potassium salt), was acquired from a local supplier. This formulation
was diluted in deionized water to prepare a stock solution of 1 g GLY L−1, later used for
obtaining the required amount of GLY to be added to the soil (10 mg GLY kg−1). Sodium
nitroprusside (SNP; Sigma-Aldrich®), used as NO donor, was diluted in deionized water
to obtain a solution of 200 µM. An artificial soil (pH 6.0 ± 0.5), composed by sphagnum
peat, quartz sand (<2 mm) and kaolin clay (5:72.5:22.5), prepared according to OECD
(Organisation for Economic Co-operation and Development) standards [62], was used in
this study.

4.2. Plant Material, Plant Growth Conditions and Experimental Design

Seeds of S. lycopersicum cv. Micro-Tom were surface disinfected for 7 min with 70%
(v/v) ethanol, followed by 5 min with 20% (v/v) commercial bleach (5% active chloride)
mixed with 0.02% (w/v) Tween-20, and then rinsed several times with deionized water.
Afterwards, seeds were germinated in Petri dishes (10 cm diameter) with 0.5×Murashige
and Skoog (MS) medium [63] solidified with 0.625% (w/v) agar, in a growth chamber
(temperature: 25 ◦C; photoperiod: 16 h light/8 h dark; photosynthetic active radiation
(PAR): 60 mmol m−2 s−1). After 10 days, seedlings were selected and transferred to
plastic pots (5 seedlings per pot) filled with 200 gdry OECD soil, which was moistened
with deionized water to obtain 40% of its maximum water holding capacity (WHCmax),
previously determined according to ISO [64]. To acquire a homogenous mixture, the soil
was manually mixed. For GLY-contaminated soils, the amount of herbicide needed to
obtain a 10 mg kg−1 concentration was taken from the stock solution of 1 g L−1. The
selection of the GLY concentration was based on our previous work, the recommended
dosage used in agriculture and studies on soil contamination by GLY [8]. The first watering
was done with a half-strength Hoagland solution (pH 5.8) [65] in order to avoid nutrient
deficiency. Deionized water was then added as needed to maintain soil moisture.

With the purpose of understanding the potential ameliorative role of NO against
GLY-induced toxicity, the following experimental groups were considered: CTL—control
plants, grown in the absence of GLY and foliar sprayed with dH2O once a week (negative
control); NO—plants grown in the absence of GLY and foliar sprayed with SNP (200 µM)
once a week; GLY—plants grown in the presence of GLY (10 mg kg−1) (positive control);
GLY + NO—plants grown in the presence of GLY and weekly sprayed with SNP.

For each experimental group, 12 experimental replicates were prepared (8 pots each
one with 5 seedlings). After 28 days of growth in a growth chamber (PAR: 120 µmol m−2 s−1;
photoperiod 16 h light/8 h dark; temperature: 25 ◦C), plants were harvested and divided
into shoots and roots. Part of the biological material (4 replicates) was used immediately to
evaluate the biometric parameters, and to determine the levels of superoxide anion (O2

•−),
while the plant material from other 4 replicates was frozen with liquid nitrogen and kept at
−80 ◦C for further analyses. The remaining set of plants (n = 4) were grown until maturity
for the estimation of productivity traits (number of flowers, and number and fresh mass
of fruits). For all biometric, biochemical and productivity-related endpoints evaluated,
aliquots from at least three experimental replicates were used (n ≥ 3).

4.3. Biometric and Productivity-Related Analysis

After the growth period (28 days), the roots were washed with tap and deionized
water, and their length was measured. Following the separation of roots and shoots,
the fresh biomass of both organs (roots and shoots) was determined using a precision
balance (KERN© EWJ 300-3; KERN & SOHN GmbH, Balingen, Germany). Concerning
productivity-related traits, a set of plants was left until maturity, in order to monitor the
total number of flowers and fruits, and the total fresh mass of produced tomatoes.
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4.4. Total Protein Content and NR (EC 1.7.1.1) Activity

Total soluble protein and NR from shoots and roots were extracted in frozen aliquots
(ca. 200 mg) by homogenizing samples in an appropriate extraction buffer (50 mM HEPES-
KOH (pH 7.8), 1 mM phenylmethylsulfonyl fluoride (PMSF) and 10 mM magnesium
chloride (MgCl2)) under cold conditions. After centrifugation (25 min; 15,000× g; 4 ◦C),
the supernatants (SN) were collected and used for protein quantification [66] and for NR
activity measurements. The determination of NR activity was performed through enzyme
kinetics in accordance to Kaiser and Brendle-Behnisch [67]. The proposed procedure was
scaled-down to an UV microplate and the assays were performed in a microplate reader
(Thermo Scientific™ Multiskan™ GO Microplate Reader). Activity levels were expressed
as mmol min−1 mg−1 of protein, using the NADH extinction coefficient (6.22 mM−1 cm−1).

4.5. Biomarkers of Oxidative Stress
4.5.1. O2

•− and H2O2

The levels of O2
•− were quantified according to the method described by Gajewska

and Skłodowska [68], using fresh plant material of roots and shoots (200 mg). After a 1 h
reaction at dark conditions in a reaction mixture (2 mL), containing nitroblue tetrazolium
(NBT) and sodium azide (NaN3), an incubation period of 15 min at 85 ◦C was followed.
At the end, the absorbance (Abs) of the obtained solution was recorded at 580 nm and
O2
•− levels were expressed in Abs580nm h−1 g−1 fresh mass (f.m.). The quantification of

H2O2 levels was performed in frozen samples, following the spectrophotometric assay of
Alexieva et al. [69], which is based on the reaction between H2O2 and potassium iodide,
forming a yellowish complex, measurable at 390 nm. Its content was determined through a
standard curve, using known concentrations of H2O2 and later expressed in nmol g−1 f.m.

4.5.2. LP

LP was estimated by the evaluation of malondialdehyde (MDA) content, via spec-
trophotometry, following the procedure described by Heath and Packer [70]. Abs was
recorded at 532 and 600 nm. The difference between Abs532 and Abs600 was calculated to
eliminate non-specific turbidity. Considering the ε of 155 mM−1 cm−1, MDA content was
determined and expressed in nmol MDA g−1 f.m.

4.6. Evaluation of Antioxidant Metabolites
4.6.1. Quantification of AsA, GSH and Proline

The quantification of total, reduced and oxidized (dehydroascorbate; DHA) AsA was
accomplished by following the procedure proposed by Gillespie and Ainsworth [71]. This
method allows the quantification of reduced AsA, through the 2,2′-bipyridyl method. Total
AsA was determined via the same method, but with the addition of dithiothreitol (DTT)
to reduce DHA. After 1 h at 37 ◦C, the Abs of each sample was read at 525 nm and DHA
content was determined by the difference between total and reduced AsA levels. Results
were expressed as µmol AsA g−1 f.m. by comparison with a standard curve prepared with
stock solutions of AsA.

To determine free GSH levels, a spectrophotometric assay adapted from a commercial
kit was followed as described by Soares et al. [8]. After the extraction procedure (3% (w/v)
sulphosalicylic acid), samples were centrifugated at 4 ◦C and the SN was mixed with
5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB; 1.5 mg mL−1). After 10 min, the Abs at 412 nm
was registered and GSH levels were expressed as nmol GSH g−1 f.m. with the aid of a
calibration curve prepared with known GSH concentrations.

Proline levels were estimated through a colorimetric ninhydrin-based assay described
by Bates et al. [72]. Samples from shoots and roots (200 mg) were homogenised with 3%
(m/v) sulphosalicylic acid and centrifuged (500× g; 10 min). Then, an incubation of 1 h at
95 ◦C was performed, in which the SN reacted with ninhydrin in an acidic medium. In the
end, the Abs was recorded at 520 nm and the results were expressed in µg g−1 f.m., using
known concentrations of proline to establish a standard curve.



Plants 2021, 10, 1862 16 of 21

4.6.2. Determination of TPC, Total Flavonoids and TAC

The estimation of TPC, flavonoids and TAC was achieved by adapting the procedure
described by Zafar et al. [73]. For that, frozen samples were homogenised, on ice, with 80%
(v/v) methanol and centrifuged (10 min; 2500× g). Regarding TPC, the SN reacted with
Folin–Ciocalteu reagent and, after 5 min at room temperature (RT), 7.5% (w/v) sodium
carbonate (Na2CO3) was added. Samples were then incubated for 1 h in dark conditions
at RT. Lastly, the Abs was recorded at 725 nm and results were expressed in mg gallic
acid equivalents g−1 f.m., using a calibration curve prepared with standard solutions of
gallic acid. Concerning total flavonoids, the methanolic extracts were incubated with 10%
(m/v) aluminium chloride (AlCl3) and 1 M potassium acetate (CH3CO2K), for 30 min at RT.
Afterwards, the Abs of each sample was read at 415 nm and the levels extrapolated from
a linear calibration curve, prepared with quercetin standards. For TAC, the methanolic
extracts were properly diluted (1:3 in methanol) and added to a reagent solution containing
0.6 M sulphuric acid, 4 mM ammonium molybdate and 28 mM sodium phosphate, followed
by incubation for 90 min at 95 ◦C. Afterwards, the Abs was recorded at 695 nm. Results
were expressed in mg AsA equivalents g−1 f.m. (TAC), using a calibration curve prepared
with standard solutions of AsA.

4.7. Extraction of Antioxidant Enzymes

The main ROS-scavenging enzymes were extracted in accordance with the method
described by Soares et al. [8], using frozen aliquots of shoots (200 mg in 1.5 mL of extraction
buffer) and roots (200 mg in 1.2 mL of extraction buffer). Upon centrifugation (16,000× g;
25 min; 4 ◦C), SN was collected and transferred to new tubes for enzyme activity assessment
and soluble protein quantification [66].

4.8. Spectrophotometric Activity Quantification of SOD (EC 1.15.1.1), CAT (EC.1.11.1.6), APX
(EC.1.11.1.11) and GST (EC2.5.1.18)

Total activity of SOD was estimated through spectrophotometry (Abs at 560 nm),
based on the inhibition of the photochemical reduction of nitro blue tetrazolium (NBT),
according to Donahue et al. [74]. Results were expressed as units of SOD mg−1 of protein,
in which one unit of SOD corresponds to the amount of enzyme required to cause 50%
inhibition of the NBT photoreduction rate.

GST activity was estimated following the procedure described by Teixeira et al. [75],
measuring the increase of the GSH-2,4-dinitrochlorobenzene (CDNB) complex at 340 nm.
Results were expressed in nmol conjugated CDNB min−1 mg−1 of protein, using an ε of
9.6 mM−1 cm−1.

Both CAT and APX activity were determined by enzyme kinetics (Abs at 240 and
290 nm, respectively), as described by Aebi [76] and Nakano and Asada [77], following
the degradation of H2O2 (ε240 nm = 39.4 M−1 cm−1) and AsA (ε290 nm = 2.8 mM−1 cm−1),
respectively, and expressed as µmol H2O2 min−1 mg−1 of protein or µmol AsA min−1

mg−1 of protein, respectively. In either case, the reaction was started by the addition of
H2O2. The original protocols were adapted to UV microplates, based on the optimization
of Murshed et al. [78].

4.9. Analytical Quantification of GLY and AMPA

The extraction of GLY from roots and shoots of tomato samples was performed as
described elsewhere (AOAC official method 2000.05) and fully detailed by Soares et al.
(submitted). All subsequent analyses were performed based on Pinto et al. [79], with
some modifications: 1 mL of the extract (SN) was diluted with 1 mL of internal standard
(200 µg L−1 of glyphosate 1,2-13C2 15N and 200 µg L−1 of 13C,15N-AMPA), and then
added to 120 µL of 1% (m/v) NH4OH solution and 120 µL of FMOC-Cl (12,000 mg L−1 in
acetone). Afterwards, samples were vortexed and incubated for 30 min at RT. To stop the re-
action, 10 µL of 6 M HCl were added. The samples derived were filtered through a 0.45 µm



Plants 2021, 10, 1862 17 of 21

PTFE filters into LC vials. GLY and AMPA were determined by liquid chromatography
with tandem mass spectrometry (LC–MS/MS) using the internal standard method.

The LC–MS/MS system included a Waters 2695 XE separation module (Milford,
MA) interfaced with a triple quadrupole mass spectrometer (Quattro micro™ API triple
quadrupole, Waters Micro-mass, Manchester, UK). The LC separation was performed using
a Kinetex® EVO C18 core-shell column (2.6 µm; 100 × 2.1 mm; flow rate of 225 µL min−1).
A binary gradient was used: solvent A (10 mM ammonium bicarbonate) and solvent B
(methanol). The percentage of organic modifier (B) was gradually modified as follows:
0–0.5 min, 5%; 0.5–5.5 min, 90%; 5.5–6.5 min, 90%; 6.5–6.7 min, 5%; 6.7–14 min, 5%. A total
of 20 µL of each sample was injected and the analyses were performed at 40 ◦C. The mass
spectrometry parameters were as follows: ion mode, positive; capillary voltage, 3.00 kV;
source temperature, 130 ◦C; desolvation temperature, 450 ◦C; desolvation gas flow, 600 L/h;
and multiplier, 650 V. High purity nitrogen (>99.999%) and argon (>99.999%) were used
as the cone and collision gases, respectively. The precursor and product ions, along with
the cone voltage and collision energy for each GLY-FMOC, AMPA-FMOC and ILIS-FMOC,
were measured by flow injection analysis and the MRM transitions, cone voltages and
collision energies are listed in Table S1. Data acquisition was performed by the MassLynx
V4.1 software. Results were expressed as µg g−1 d.m.

4.10. Statistical Analysis

All biometric and biochemical analysis were performed considering at least three
experimental replicates (n≥ 3). Results were expressed as mean± standard deviation (SD).
After checking data homogeneity (Brown–Forsythe test), one-way ANOVA was performed
in conjunction with Tukey’s post hoc test, assuming 0.05 as a significance level (p). All
statistical analyses were performed in GraphPad Prism®8 (San Diego, CA, USA). In order
to execute a principal component analyses (PCA), all evaluated parameters (biometric and
biochemical) from each experimental group were plotted to investigate the main factors
behind the observed differences. These procedures were performed in the software XLSTAT
2021.2.2 (http://www.xlstat.com, accessed on 3 August 2021, Addinsoft USA, New York,
NY, USA). The statistical data reporting the results of ANOVA analyses can be found in
Tables S1–S3 of the Supplementary Material.

5. Conclusions

As can be seen in the PCA (Figure 6), tomato plants responded differentially to the
presence of GLY in the soil, undergoing a state of oxidative stress and impaired growth,
especially in the non-green tissues. However, the foliar application of NO successfully
improved tomato plant growth and development, with a clear separation from plants
exposed to the herbicide alone. According to the biochemical data, this NO-mediated
protection was mainly due to its features as radical scavenger and stimulator of antioxidant
mechanisms, contributing for the restoration of the cellular redox status and, consequently,
leading to an increased growth potential under herbicide co-exposure. Moreover, the
phytoprotective role of NO was also evident when reproductive and productivity traits
were evaluated, since the number of flowers and fresh mass of produced tomatoes was
increased in comparison with plants only exposed to the herbicide. Overall, this is the
first study exploring the benefits of NO supplementation for non-target crops growing in
GLY contaminated soils using an environmentally relevant approach, covering growth-
and productivity-related endpoints. In the future, in order to concretely assess if the
foliar application of NO, through its donor SNP, can represent an effective tool for plant
stress management, it would be of great interest i) to test other modes-of-application
and concentrations of this molecule throughout the plant’s life cycle (vegetative and
reproductive phases) and ii) to study the influence of GLY and NO co-exposure on tomato
nutritional and antioxidant profile to ensure food safety, quality and security.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10091862/s1, Table S1. Detailed ANOVA results for all evaluated parameters in roots

http://www.xlstat.com
https://www.mdpi.com/article/10.3390/plants10091862/s1
https://www.mdpi.com/article/10.3390/plants10091862/s1


Plants 2021, 10, 1862 18 of 21

of Solanum lycopersicum L. cv. Micro-Tom grown for 28 days in OECD soil contaminated by GLY
(10 mg kg−1) and/or foliar treated with SNP (200 µM). Parameters where significant differences
(p ≤ 0.05) were recorded are highlighted at bold. Table S2. Detailed ANOVA results for all evaluated
parameters in shoots of Solanum lycopersicum L. cv. Micro-Tom grown for 28 days in OECD soil
contaminated by GLY (10 mg kg−1) and/or foliar treated with SNP (200 µM). Parameters where
significant differences (p ≤ 0.05) were recorded are highlighted at bold. Table S3. Detailed ANOVA
results for productivity-related parameters of Solanum lycopersicum L. cv. Micro-Tom grown for
28 days in OECD soil contaminated by GLY (10 mg kg−1) and/or foliar treated with SNP (200 µM).
Parameters where significant differences (p ≤ 0.05) were recorded are highlighted at bold.
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