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Abstract: Somatic embryogenesis (SE) is a complex biological process regulated by several factors,
such as the action of plant growth regulators, namely auxins, of which the most physiologically
relevant is indole-3-acetic acid (IAA). In tamarillo, an optimized system for induction of SE creates,
after an induction process, embryogenic (EC) and non-embryogenic callus (NEC). In this work the
endogenous levels of auxin along the induction phase and in the calli samples were investigated
using chemical quantifications by colorimetric reactions and HPLC as well as immunohistochemistry
approaches. Differential gene expression (IAA 11, IAA 14, IAA 17, TIR 1, and AFB3) analysis during
the induction phase was also carried out. The results showed that the endogenous IAA content is
considerably higher in embryogenic than in non-embryogenic calli, with a tendency to increase as the
dedifferentiation of the original explant (leaf segments) evolves. Furthermore, the degradation rates
of IAA seem to be related to these levels, as non-embryogenic tissue presents a higher degradation
rate. The immunohistochemical results support the quantifications made, with higher observable
labeling on embryogenic tissue that tends to increase along the induction phase. Differential gene
expression also suggests a distinct molecular response between EC and NEC.

Keywords: auxins; embryogenic calli; gene expression; HPLC; IAA; immunohistochemistry

1. Introduction

Tamarillo, Solanum betaceum (Cav.) Sendt. (syn. Cyphomandra betacea) is a small (2–4 m
high) solanaceous tree indigenous to South America, specifically to the Andean regions
of Argentina, Bolivia Chile, Ecuador, and Peru, and currently cultivated around the globe,
namely in California and New Zealand [1]. In its natural environment, tamarillo is found
between 700 and 2000 m, preferring lower altitudes in colder climates [2]. It is grown for its
edible fruits, which can be consumed fresh, incorporated in recipes [3], or used to prepare
jams or other types of processed foods or drinks [4]. Moreover, the fruit presents low caloric
and high vitamin content, as well as several natural antioxidants with potential therapeutic
activities, making it a possible source of interesting secondary metabolites [5,6].

Conventional means such as seeds, cuttings, or grafting into wild Solanum mauritianum
trees can be used for propagation of tamarillo [4]. However, these techniques present prob-
lems such as the genetic variability of seeds, the low interspecific hybridization rate in
grafting, and phytosanitary problems [7,8]. In this context, biotechnological tools have
been an alternative for plant breeding with several in vitro methodologies described for
tamarillo cloning such as micropropagation through axillary shoot proliferation [9], organo-
genesis [10,11], and somatic embryogenesis (reviewed in [12]).

Somatic embryogenesis (SE) can be defined as a process by which a somatic cell or
tissue creates a structure that resembles an embryo (somatic embryo) without fecunda-
tion [13]. This structure has embryonic characteristics, such as bipolar organization, lack
of vascular contact with the parental tissue and, through a series of developmental stages
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similar to a zygotic embryo, germinates into a plant [14,15]. The first successful attempt
of SE in tamarillo was reported in mature zygotic embryos and hypocotyls [16]. In this
protocol, embryogenesis was induced using the auxin 1-naphthaleneacetic acid (NAA) with
formation of a small callus mass followed by differentiation into somatic embryos in a “one-
step” system. On the other hand, if the auxin used was either 2,4-Dichlorophenoxyacetic
acid (2,4-D) or picloram, the zygotic embryos and young leaf explants produced an embryo-
genic callus that could be successfully maintained by successive subcultures in the same
auxin-containing medium [12,17]. Interestingly, on this type of system a second type of
callus without embryogenic competence (non-embryogenic) is also obtained. Additionally,
in both induction systems, the embryogenic yield was greatly increased by the addition of
high levels of sucrose (26 mM) to the culture medium [18].

Auxins, particularly 2,4-D, are the main plant growth regulators (PGRs) used in
somatic embryogenesis experiments, with most protocols starting with an induction phase
in an auxin supplemented medium followed by an embryo maturation phase on auxin-
free or auxin-reduced medium [19]. This typical induction scheme, varying the types of
synthetic auxins depending on the original explant, has been followed in tamarillo [6,12].

The level of endogenous plant growth regulators (PGRs), namely auxins, is consid-
ered one of the most important embryogenic controlling factors [20,21]. Auxin gradients
are related with the establishment of bilateral symmetry necessary for proper embryo
development in both zygotic and somatic embryos [15]. External stimulation by auxin-like
molecules is believed to cause an increase in the endogenous levels of this PGR; thus
initiating the cell reprograming stages necessary for embryogenesis [13,22]. Specifically,
with the increase in endogenous levels of indole-3-acetic acid (IAA), particularly in the
early stages of SE, induction has been extensively reported in several model species, such
as carrot (Daucus carota L.) and Arabidopsis thaliana [23]. The auxin mechanism of action
has been related with gene expression modulation, and several proteins have been closely
linked to this regulation pathway, namely in embryogenesis [20]. The auxin-responsive
protein family (Aux/IAAs), auxin response factors (ARFs), and the transport inhibitor re-
sponse 1 protein (TIR1) have been identified as the main response factors active during
embryogenesis induction [23].

The aim of this work was to analyze the endogenous levels of auxins, namely indole-
3-acetic acid (IAA), the main natural auxin, during somatic embryogenesis and in embryo-
genic and non-embryogenic callus of tamarillo, by chemical quantification of this PGR.
Furthermore, quantitative studies were applied along the induction protocol to establish
the evolution of auxin concentration. In addition, the distribution of IAA in the tissue was
investigated through immunofluorescence microscopy. Finally, the expression of the main
genes related to auxin response in embryogenesis was investigated along the induction path
in order to relate the genetic effects of this regulator with its endogenous concentrations.

2. Results
2.1. Somatic Embryogenesis Induction and Callus Proliferation

In order to obtain enough tissue during the induction phase, leaf segments were
culture in the presence 20 µM of picloram, presenting and an embryogenic yield of 44%.
The IAA levels were investigated on the final stages of induction starting at 8 weeks until
12 weeks (Figure 1A). Additionally, established embryogenic and non-embryogenic calli
was also used with embryogenic tissue forming a characteristic white compact structure
and non-embryogenic forming a mucilaginous, friable callus. For the study of embryogenic
competence, previously established embryogenic callus (EC) and non-embryogenic callus
(NEC) of both leaf segments (EC1 and NEC1) and zygotic embryos were used (EC2, NEC 2,
and EC3) (Figure 1B).
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Figure 1. Plant material. (A) Time course of leaf explant SE induction; leaves from in vitro established 
plantlets were used. EC 2 and NEC 2 are the embryogenic and non-embryogenic calli resulting from 
the induction process. (B) EC 2 and NEC 2 were previously established from zygotic embryos and 
used in the IAA quantifications. The bars in each figure represent 1 mm with exception of the leaves 
in which the length is 1 cm. 

To confirm the embryogenic competence, embryogenic and non-embryogenic tissue 
were transferred to development medium, with the embryogenic tissue forming somatic 
embryos after 4 weeks, whereas the non-embryogenic tissue became necrotic. In this 
phase, the influence of auxin polar transport was also assayed as described, with the em-
bryogenic callus exposed to different concentrations of 2,3,5-Triiodobenzoic acid (TIBA) 
(Table 1). In the maturation assay, proliferation of proembryogenic mass was observed in 
all treatments, while concentrations of TIBA higher than 5 µM show a statistic significant 
decrease in the formation of normal somatic embryos, while the number of abnormally 
formed embryos shows no specific trend in relation to TIBA concentration.  

Table 1. Results of the auxin polar transport inhibitors assay. Values are presented as mean ± SD (n 
= 4); values in the same column with different letters are statistically different by Tukey test (p < 
0.05) in the case of the mass increment, while for abnormal embryo formation the letters refer to 
Dunn’s multiple comparison test. 

TIBA (µM) Mass Increment (g) 
Embryo Formation (Number/g of Tissues) 

Normal Abnormal 
0 1.057 ± 0.140 a,b  22.16 ± 9.58 a  9.08 ± 8.02 b  

0.5 1.140 ± 0.201 a  17.42 ± 1.99 a 3.86 ± 1.18 b,c 
1 1.132 ± 0.102 a 14.4 ± 3.45 a 1.71 ± 0.20 c 
5 1.045 ± 0.217 b 7.77 ± 2.90 b 10.13 ± 2.62 a,b 

10 0.695 ± 0.190 b  2.08 ± 1.50 b 1.51 ± 0.744 c 

2.2. IAA Location on the Induction of SE 
The later stages of embryogenic induction were taken from the 8th week onward. All 

the samples presented some autofluorescence observed in the controls without the anti-
body labeling (Figure 2A); however, it is possible to observe distinct labeled spots on the 
proembryogenic tissue, increasing in frequency along the induction phase. The embryo-
genic tissue follows this pattern with diffuse spots with marked presence of IAA. The 
presence of IAA appears in the cell peripheral zone. With respect to the non-embryogenic 
tissue, the labeling is less frequent and even absent in some parts of the tissue.  

Figure 1. Plant material. (A) Time course of leaf explant SE induction; leaves from in vitro established
plantlets were used. EC 2 and NEC 2 are the embryogenic and non-embryogenic calli resulting from
the induction process. (B) EC 2 and NEC 2 were previously established from zygotic embryos and
used in the IAA quantifications. The bars in each figure represent 1 mm with exception of the leaves
in which the length is 1 cm.

To confirm the embryogenic competence, embryogenic and non-embryogenic tissue
were transferred to development medium, with the embryogenic tissue forming somatic
embryos after 4 weeks, whereas the non-embryogenic tissue became necrotic. In this phase,
the influence of auxin polar transport was also assayed as described, with the embryogenic
callus exposed to different concentrations of 2,3,5-Triiodobenzoic acid (TIBA) (Table 1). In
the maturation assay, proliferation of proembryogenic mass was observed in all treatments,
while concentrations of TIBA higher than 5 µM show a statistic significant decrease in the
formation of normal somatic embryos, while the number of abnormally formed embryos
shows no specific trend in relation to TIBA concentration.

Table 1. Results of the auxin polar transport inhibitors assay. Values are presented as mean ± SD
(n = 4); values in the same column with different letters are statistically different by Tukey test
(p < 0.05) in the case of the mass increment, while for abnormal embryo formation the letters refer to
Dunn’s multiple comparison test.

TIBA (µM) Mass Increment (g)
Embryo Formation (Number/g of Tissues)

Normal Abnormal

0 1.057 ± 0.140 a,b 22.16 ± 9.58 a 9.08 ± 8.02 b

0.5 1.140 ± 0.201 a 17.42 ± 1.99 a 3.86 ± 1.18 b,c

1 1.132 ± 0.102 a 14.4 ± 3.45 a 1.71 ± 0.20 c

5 1.045 ± 0.217 b 7.77 ± 2.90 b 10.13 ± 2.62 a,b

10 0.695 ± 0.190 b 2.08 ± 1.50 b 1.51 ± 0.744 c

2.2. IAA Location on the Induction of SE

The later stages of embryogenic induction were taken from the 8th week onward. All
the samples presented some autofluorescence observed in the controls without the antibody
labeling (Figure 2A); however, it is possible to observe distinct labeled spots on the proem-
bryogenic tissue, increasing in frequency along the induction phase. The embryogenic
tissue follows this pattern with diffuse spots with marked presence of IAA. The presence of
IAA appears in the cell peripheral zone. With respect to the non-embryogenic tissue, the
labeling is less frequent and even absent in some parts of the tissue.
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genic and embryogenic calli, respectively, similar to EC 1 and NEC 1 represented in Figure 1. (A) 
Immunohistochemistry observations. Fluorescence, transmission, and composed image of the dif-
ferent tissues, unlabeled tissue samples from EC were used as control (C—control; 8 w—8 weeks 
induction; 10 w—10 weeks induction; 12 w—12 weeks induction; NEC—non-embryogenic callus; 
EC—embryogenic callus). (B) Raw integrated intensity for each sample. (C) IAA quantification by 
HPLC. Results are presented as mean ± SD. Different letters are significantly different according to 
Tukey test (p < 0.05). 

In terms of quantification (Figure 2B), the integrated density of the samples showed 
an increasing tendency along the induction phase, although not statistically significant. 
The embryogenic tissue, however, presents a higher level of labeling in comparison to the 
non-embryogenic tissue. 

IAA quantification by High Performance Liquid Chromatography (HPLC) (Figure 
2C) shows tendency of IAA increase in the induction phase starting with a small, statisti-
cally insignificant difference between the 8th and 10th weeks of induction (0.004 ± 0.001 
and 0.013 ± 0.004 µg IAA/mg.f.w for EC3, respectively), and a marked increase by the 12th 
week (0.496 ± 0.001 µg IAA/mg.f.w). These values are still comparatively lower to those 
presented by embryogenic callus sub cultivated in the same media.  

  

Figure 2. IAA assays in time courses from leaf segment induction. NEC and EC are non-embryogenic
and embryogenic calli, respectively, similar to EC 1 and NEC 1 represented in Figure 1. (A) Im-
munohistochemistry observations. Fluorescence, transmission, and composed image of the dif-
ferent tissues, unlabeled tissue samples from EC were used as control (C—control; 8 w—8 weeks
induction; 10 w—10 weeks induction; 12 w—12 weeks induction; NEC—non-embryogenic callus;
EC—embryogenic callus). (B) Raw integrated intensity for each sample. (C) IAA quantification by
HPLC. Results are presented as mean ± SD. Different letters are significantly different according to
Tukey test (p < 0.05).

In terms of quantification (Figure 2B), the integrated density of the samples showed
an increasing tendency along the induction phase, although not statistically significant.
The embryogenic tissue, however, presents a higher level of labeling in comparison to the
non-embryogenic tissue.

IAA quantification by High Performance Liquid Chromatography (HPLC) (Figure 2C)
shows tendency of IAA increase in the induction phase starting with a small, statistically
insignificant difference between the 8th and 10th weeks of induction (0.004 ± 0.001 and
0.013 ± 0.004 µg IAA/mg.f.w for EC3, respectively), and a marked increase by the 12th
week (0.496 ± 0.001 µg IAA/mg.f.w). These values are still comparatively lower to those
presented by embryogenic callus sub cultivated in the same media.

2.3. IAA Levels Increment in EC

The previously induced callus lines were assayed for IAA by Ehrlich method and
HPLC quantification. When assayed by the Ehrlich reaction and statistically analyzed based
on type of synthetic auxin present (Figure 3A), the difference between the endogenous
auxin levels in NEC 1 and EC 1 is statistically significant, with EC 1 showing the highest
values of IAA (10.49 ± 2.51 µg IAA/mg f.w.). In the case of picloram-induced calli, the
difference between embryogenic (EC2 and EC3) and non-embryogenic callus (NEC2) is
statistically relevant (p < 0.05), with EC2 showing higher IAA values than EC3, although
not statistically different at the confidence interval used. Further statistic comparison
between embryogenic calli (Figure 3B) indicated a significant statistical difference between
the embryogenic tissues induced with different synthetic auxins, with 2,4-D apparently
leading to a marked increase in the endogenous level of IAA. A similar statistical test on
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the non-embryogenic tissue (Figure 3C) showed no differences between non-embryogenic
tissues, regardless of biological origin.
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 Figure 3. IAA quantification on induced embryogenic (EC) and non-embryogenic (NEC) calli, where
EC 1 and NEC 1 are induced from zygotic embryos in 2,4-D supplemented medium and NEC 2, EC 2,
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and EC 3 are from leaf segments in a picloram-supplemented medium. (A) IAA quantifica-
tion by Ehrlich reaction. (B) Statistical analysis of IAA in embryogenic calli assayed by Ehrlich
reaction. (C) Statistical analysis of IAA in non-embryogenic calli assayed by Ehrlich reaction. (D) IAA
degradation measured by discontinuous assay. (E) IAA quantification by HPLC. (F) Statistical analy-
sis of IAA in embryogenic calli assayed by HPLC. (G) Statistical analysis of IAA in non-embryogenic
calli assayed by HPLC. (H) Comparison of IAA measurement Ehrlich reaction and HPLC comparison
between HPLC and Ehrlich reaction. Results of HPLC quantification (x axis) were plotted against
the results of Ehrlich quantification (y axis) for each callus tissue tested. The linear fit equation is
y = 4.818x − 0.3963 (R2 = 0.969). Results are presented as mean ± SD. Different letters are signifi-
cantly different according to Tukey test or by the unpaired t-test in the case of non-embryogenic calli
analysis (p < 0.05; n = 3).

IAA degradation analysis (Figure 3D) was carried out in the calli samples, through
the quantification of the amount of auxin degraded over a known and fixed period of
time (60 min). The results are presented in terms of total intracellular protein to have
a specific rate of degradation that can be readily compared between samples (Table 2).
This quantification shows no clear distinction in the protein content of embryogenic tissue
in relation to the auxin used in the induction phase (0.693 ± 0.075 mg/mL for 2,4-D
and 0.625 ± 0.071 mg/mL for picloram). Similarly, the non-embryogenic tissue is also
not significantly different between 2,4-D and picloram treatments (0.112 ± 0.029 and
0.290 ± 0.067 mg/mL, respectively). However, the comparison of embryogenic and non-
embryogenic callus shows a significant difference. Interestingly, EC3 shows an intermediary
value between embryogenic and non-embryogenic callus.

Table 2. Total protein content in the different calli. Results are presented as mean ± SD (n = 3).
Different letters are significantly different according to Tukey test (p < 0.05).

Tissue Protein Concentration (mg/mL) ± SD

NEC1 0.112 ± 0.029 c

NEC2 0.290 ± 0.067 c

EC1 0.693 ± 0.075 a

EC2 0.625 ± 0.071 a

EC3 0.388 ± 0.290 a,b

In the case of 2,4-D-induced tissue (Figure 3D), there were significantly higher rates
of degradation in the non-embryogenic tissue (NEC 1 = 1.80 × 10−3 ± 1.088 × 10−3 µg
IAA/mg protein.min), a tendency also observed in the case of picloram-induced tissue
where the non-embryogenic presented the highest value of IAA degradation
(NEC 2 = 3.21 × 10−3 ± 3.06 × 10−4 µg IAA/mg protein.min). In this case, EC2 and
EC3 showed a statistically similar degradation of IAA.

IAA content in this case was also analyzed by HPLC (Figure 3E). The IAA was
identified via UV-visible spectrum and retention time (Figure 4A–C) and quantified taking
into account a calibration curve (Figure 4D). In general, the data obtained by this analysis
shows the same trends found when the tissue was subjected to IAA quantification by
Ehrlich: EC callus lines present significantly higher levels of IAA (2.280 ± 0.303 and
0.621 ± 0.175 µg IAA µg IAA/ mg.f.w for EC1 and EC2, respectively) when compared to
the respective NEC line. Furthermore, a separate comparison between the embryogenic
calli (Figure 3F) revealed statistically higher value in 2,4-D-induced calli while in non-
embryogenic tissues (Figure 3G) the amounts of auxin were not significantly different.
Finally, the results obtained for both analytic methods were compared (Figure 3F) showing
a good linear fit (R2 = 0.9694) and a systematic higher value of concentration given by
Ehrlich quantification.
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in IAA 11 and IAA 17, although statistically insignificant, there appears to be a trend in 
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Figure 4. HPLC quantification parameters. (A) Retention time of IPA (peak 1, Rt = 5.34 min)
and IAA (peak 2, Rt = 6.00 min) in a sample. (B) IAA standard (Rt = 5.98 min). (C) UV-
spectrum of IAA. (D) Calibration curve used in the quantification of IAA with the linear equation
Area = 2.633 × 107[IAA] + 2.094 × 106 (R2 = 0.9984).

2.4. Auxin-Related Gene Expression Relates with IAA Levels during SE Induction

In terms of gene expression, 3 Aux/IAA genes and 2 auxin intracellular receptors
were analyzed. In terms of the first group, there is a general trend of decrease in gene
expression along the induction course, with statistically significant differences between
the initial explant (leaf segment) and non-embryogenic calli. (Figure 5A–C). Furthermore,
in IAA 11 and IAA 17, although statistically insignificant, there appears to be a trend in
higher expression in EC when compared to NEC. Both auxin response genes assayed, TIR 1
and AFB3 (Figure 5D,E), show a higher expression in the initial induction explants (leaf
segments) and a statistically insignificant variation along the induction period and between
EC and NEC.
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Figure 5. Relative gene expression. Relative expression was calculated in relation to reference
genes previously validated for tamarillo. Results are presented as mean ± SD. Different letters are
significantly different according to Tukey test (p < 0.05).

3. Discussion
3.1. IAA Distribution Is Important for Somatic Embryo Conversion

Indirect in vitro SE induction protocols can be divided in two stages, one in which
somatic cells enter in a dedifferentiated cell state and acquire embryogenic potential and
another in which these cells evolve into somatic embryos [24]. These two stages are usually
applied in vitro by changing the external stimuli, usually stress or PGR [25]. Tamarillo
is one of these cases, where the SE process is induced in an auxin-rich medium, and the
proembryogenic masses formed during this stage transform into somatic embryos upon
transference to an auxin-free medium [12].

Early studies have shown, in both zygotic and somatic embryos, that the endogenous
auxin content is important to the developmental program of embryos as well as their
germination [26,27]. Therefore, the auxin polar transport inhibitor assays made in this work
aimed to test whether somatic embryo development of tamarillo was also affected by the
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mechanism of polar auxin transport, when the proembryogenic masses are transferred to
a medium without auxins. In this stage of embryo development, the endogenous auxin
is greatly responsible for the organized division and specification of cells, or embryo
patterning [28].

Previous studies have shown that TIBA can inhibit somatic embryogenesis even in the
presence of strong auxins such as 2,4-D [29]. Several other studies have also demonstrated
that TIBA affects the maturation of somatic embryos, particularly in the earlier stages of
globular and heart-shaped embryos [26].

The TIBA mechanism of action is based on blocking auxin transport by binding to PIN
regulator efflux carriers [30] without directly antagonizing the response cascade triggered
by the auxin, with the auxin polar transport being fundamental for the effective response
of the tissue. In fact, several studies seem to support the idea that the polarity of cells is
achieved by cell-to-cell communication, greatly influenced by auxins [28,31].

The results here presented support this hypothesis, that the cell-to-cell communication
mediated by auxins is fundamental for the development of somatic embryos, as the high
concentrations of TIBA affected the number of somatic embryos formed.

3.2. IAA Quantification through SE Induction

Endogenous levels of PGRs are extremely important in the regulation of plant devel-
opment [32]. Consequently, their quantification has been extensively carried out in several
contexts to understand the biochemical and molecular mechanisms underlying different
aspects of morphogenesis [33]. In particular, experiments carried out with different species,
such as Coffea canephora [34] and Cunninghamia lanceolate [35], have shown that the levels of
IAA or other auxins strongly affect somatic embryo formation and development.

The Ehrlich reagent has been used to measure several indole-containing molecules,
from tryptamines to ergoloid compounds [36], and has been optimized for colorimetric
quantifications of IAA [37] and, in specific conditions, IAA and indole-3-butyric acid
(IBA) [38], also allowing a discontinuous method for determination of IAA degradation
as colorimetric reactions can be applied to protein solutions, in specified conditions, to
measure auxin degradation and, therefore, indirectly determine the catalytic activity of
the enzymes involved in its oxidation, namely IAA oxidase and peroxidases. This type
of discontinuous assay to determine the activity of these enzymes has been previously
reported [39].

Auxins are enzymatically degraded by either oxidation of the side chains by peroxi-
dases or the oxidation of the indole ring by indole-3-acetaldehyde oxidase (EC 1.2.3.7) or
IAA oxidase [40]. This degradation is physiologically important because it leads to the
permanent inactivation of IAA [41].

The results showed the endogenous level of IAA inversely related to the degradation
rate, i.e., tissues with lower IAA levels presented the highest levels of IAA degradation
(NEC1 and NEC2), while the tissues with high values of endogenous auxin presented
the lowest degradation rate. Data have also indicated that the degradation of IAA in
the non-embryogenic callus is at least partially responsible for the low concentration of
endogenous auxin in this tissue, caused by a higher biotransformation rate. In this context,
the homeostasis of auxin in embryogenic and non-embryogenic calli of tamarillo seems
to be related to the degradation pathway of the complex auxin metabolism. This type
of attenuation of the auxin signaling system has been described in A. thaliana, where the
oxidation of auxin by enzymatic systems was unable to generate the activation of certain
auxin-responsive genes [42].

The quantifications made by HPLC differed, in absolute values, from those made by
the Ehrlich reaction. However, the overall relationship between the two types of callus was
similar, with the embryogenic callus displaying a higher endogenous IAA concentration
than the non-embryogenic one.

Overall, the endogenous IAA level was dependent on the induction phase and the
embryogenic competence of the tissue. These differences have been observed in other
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SE plant models such as carrot (Daucus carola L.) [43] and alfalfa (Medicago sativa) [44],
systems where 2,4-D is also the auxin used to trigger somatic embryogenesis. 2,4-D
appears to be necessary not only for initiation of the somatic embryogenesis process but
for the maintenance of embryogenic competence in vitro. The mechanism of action is
not completely understood, but clearly involves the expression modulation of several
genes related to the metabolism of auxins, mainly IAA biosynthesis, degradation, and
transport [24]. The role of 2,4-D as an auxin (directly or indirectly) is still in dispute, with
some authors hypothesizing that the dedifferentiation process that the cells experience is a
response to the stress caused by the herbicide action of this compound [45].

After the recognition of the differences between embryogenic and non-embryogenic
calli, the auxin kinetics was investigated along with the induction phase of SE in leaf
segments. These have shown a greater embryogenic yield than zygotic embryos, the other
explant commonly used on induction protocols [2]. Another important factor to consider
is that the leaves were gathered from in vitro cloned plants sharing the same genotype,
and because of this the genetic variability factors were less determinant, although genetic
variations in plants regenerated from embryogenic embryos have been reported [18].
However, by the 12th week the IAA concentration was still about five times lower than
that of the embryogenic calli. These results are in accordance with other studies of auxin
variation during the SE process, namely those of Yang and co-workers [24] who found, in
the somatic embryogenesis process of cotton, a profile of endogenous IAA concentration
that decreased in the first stages of cell dedifferentiation and increased in the end of the
induction phase, with the final embryogenic tissue presenting values 11-fold higher than
the initial explants. In the present work, the endogenous level of IAA in the early cell
dedifferentiation periods was not possible to determine; however, the results indicated
that the induction phase is characterized by a lower level of IAA, while the maintenance
of embryogenic competence is largely dependent on high concentrations of IAA. In fact,
tissues with minor embryogenic competence (such as the callus tissue EC 3) presented a
significantly lower concentration of IAA.

Several studies have shown that the endogenous auxins are responsible for the activa-
tion of a complex pathway, which leads to the activation of several genes, either related
with the metabolism of auxin or metabolic pathways, such as basic metabolic pathways,
and the biosynthesis of secondary metabolites [46]. Additionally, Yang and co-workers
(2012) [24] also found distinct transcription profiles in embryogenic and non-embryogenic
tissues, related with the auxin signal pathway. Comparative proteomic studies in tamarillo
have also shown differently expressed proteins in embryogenic and non-embryogenic
callus, despite the type of auxin used for induction [47].

Given the results presented here, and the analogy to other species, it can be assumed
that the endogenous auxin level is influencing the proteome of the different cell lines.

3.3. Immunolocalization of IAA during SE Induction

The distribution of auxin in the tissue is an important factor for somatic embryogenesis
with several signaling events related with this hormone linked to early somatic embryogen-
esis [48]. Furthermore, the induction process for tamarillo SE applied in this work gives rise
to both embryogenic and non-embryogenic tissue, a result that could be, at least partially,
related to the distribution of IAA in the proembryogenic tissue along the induction phase.
Our results point to an increase in this level along the induction phase consistent with the
chemical quantifications, and a distribution seems to be ubiquitous in the proembryogenic
masses and the embryogenic tissue. The only significant distinction can be seen when
the embryogenic and non-embryogenic tissue is compared. Similar differences have been
reported in other woody plants [49]. Overall, these results seem to indicate that distribution
of IAA in the tissues is directly related to the embryogenic competence, with a similar result
described for other model species such as Arabidopsis thaliana [50].
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3.4. Auxin-Related Gene Differential Expression Is Influenced by IAA Endogenous Levels

The differential genetic expression triggered by auxin or auxin-like stimulation is
considered central to almost all plant development processes, namely SE [23]. In this work,
as the endogenous IAA levels were shown to be different along the induction process
and between EC and NEC lines, gene expression assays were carried out to elucidate
some of the molecular aspects of cell response to the embryogenic trigger. Several similar
studies have been carried out and show that certain genes are over- or under-expressed
in SE protocols and can be related to embryogenic competence [23,51]. The molecular
mechanism of auxin regulation mediated by these genes is partially known: in the absence
of auxin, the Aux/IAA gene family interacts with Auxin Responsive Factor (ARF), inhibiting
its activity and decreasing auxin response, whereas in auxin presence they are targeted for
ubiquitin-mediated degradation [52,53]. These genes, namely IAA 17, have been shown to
be over-expressed in initial SE stages of A. thaliana [53]. In this work the Aux/IAA genes
(IAA 11 and IAA 17) were found over-expressed in several stages of SE when compared to
non-embryogenic calli. As these genes are repressors of auxin-induced gene expression [54],
it is possible that their higher relative expression is linked with a proper cell response
to the highly auxin enriched culture medium resulting in embryogenic competence [55].
Furthermore, the low expression values of NEC calli might directly explain the low em-
bryogenic competence that this tissue presents. Previous studies have hinted to this type
of response by studying the genetic expression profile of highly responsive cultivars of
Gossypium hirsutum in comparison to recalcitrant ones [56]. However, these expression
levels can also be related to the low concentration and high degradation rates of IAA
that have been found in NEC calli. In fact, the presence of synthetic auxins has increased
the endogenous concentration of IAA in EC calli. Therefore, it is possible that a distinct
molecular mechanism is responsible for the low concentration of auxins in NEC and this
factor is influencing the low expression of Aux/IAA. This hypothesis should be further
investigated in future works.

Lastly, the ubiquitin ligase complex responsible for degradation of Aux/IAA contains
the TIR1- and AFB-encoded genes and these proteins are considered auxin receptors [57].
These genes were found under-expressed in all tissues when compared to the initial explant
used in the induction protocol (leaf segments). Again, this fact might hint to a “low auxin
sensitive” environment that is effectively suppressed in EC by a higher level of endogenous
IAA that does not exist in NEC; therefore critically influencing the embryogenic competence
of both calli. This hypothesis, along with the precise molecular mechanism of auxin increase
in EC, should be further investigated.

4. Materials and Methods
4.1. Somatic Embryogenesis Induction from Leaf Segments of In Vitro Propagated Shoots

Tamarillo plants (red variety) were used for SE induction, were micropropagated
from previously established shoot cultures from in vitro germinated seeds in MS [58]
propagation medium supplemented with 8.6 mM sucrose, 0.88 µM of 6-benzylaminopurine
(BAP), and 6 g/L of agar (Sigma-Aldrich, St. Louis, MI, USA) and pH was adjusted to
5.6–5.8 before autoclaving. The plants were segmented (1–1.5 cm) and subcultured monthly
in the same medium and kept in a growth chamber at 25 ◦C, in a 16 h photoperiod, at
25–35 µmol m−2 s−1 (white cool fluorescent lamps). The apical leaves from the clones (2–4
for each plantlet) were aseptically removed, after one month in propagation medium, and
used for SE inductions as previously described [12,17]. Briefly, the leaves were segmented
(area of approximately 0.25 cm2), randomly punctured on the abaxial side and placed on
test tubes (15 cm × 2.2 cm) containing approximately 12.5 mL of MS medium supplemented
with 26 mM sucrose and a synthetic auxin, 20 µM of picloram. The pH was adjusted to
5.6–5.8 before autoclaving and 2.5 g/L of phytagelTM (Sigma-Aldrich, St. Louis, MI, USA)
was added as the gelling agent. All the culture media used were autoclaved at 121 ◦C for
20 min.
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4.2. Embryogenic and Non-Embryogenic Calli Subcultures and Maintenance

The induction of proembryogenic calli as previously described and its subculture
were carried out in the same culture medium in dark conditions in a growth chamber at
a temperature of 24 ± 1 ◦C for 12 weeks. During the later stages of the induction stage
(8–12 weeks), samples of dedifferentiating explants from leaf segments were periodically
(every 2 weeks) removed from the induction medium and frozen in liquid nitrogen for
further analysis. Additionally, for genetic analysis, samples of early-stage dedifferentiation
(2 weeks) were also removed from the culture medium and immediately frozen. Unless
otherwise stated, all samples were made in triplicate.

At the end of the induction period (12 weeks), masses of EC were transferred to Petri
dishes (90 mm in diameter and 15.9 mm in height) containing 30 mL of a hormone-free
embryo development MS medium, supplemented with 11.6 mM sucrose and 2.5 g/L of
phytagelTM (Sigma), to evaluate embryogenic competence by the development of somatic
embryos. Based on their embryogenic ability two lines of EC were selected: EC2 (high
embryogenic ability) and EC3 (low embryogenic ability). Furthermore, to study the influ-
ence of auxin gradients in somatic embryo conversion, TIBA was added to the embryo
development medium in a concentration between 0.5 and 10 µM. The TIBA solution was
sterilized by filtration with a 0.2 µm filter and added to the medium at a temperature of
about 60 ◦C to avoid thermal degradation. An initial mass of about 200 mg of callus tissue
was used and after 4 weeks of growth in dark conditions at a temperature of 24 ± 1 ◦C the
final mass was registered and number of somatic embryos (morphologically normal and
abnormal) counted. The results are presented as a percentage of mass increment ((final
mass − initial mass)/initial mass × 100) and number of somatic embryos per gram of
tissue. The conversion assays were carried out in quadruplicate.

Additionally, to access the endogenous auxin levels of embryogenic and non-embryogenic
masses from other tissues (particularly in terms of the synthetic auxin used), previously
induced EC and NEC calli form zygotic embryos were used. These were maintained in
test tubes (15 × 2.2 cm2) containing approximately 12.5 mL of MS medium supplemented
with MS medium with 26 mM sucrose and 9 µM of 2,4-D with and 2.5 g/L of phytagelTM

(Sigma). These were termed EC 1 and NEC 1, respectively.

4.3. Quantification of IAA
4.3.1. Ehrlich Reaction

In a first approach, the IAA content in the established calli lines (from zygotic embryos,
EC 1 and NEC 1, and leaf explants, EC 2, EC 3, and NEC 3) was assayed using the
colorimetric method described by Anthony and Street [37]. This methodology was applied
to broadly evaluate the IAA endogenous concentration in the proembryogenic masses and
evaluate the IAA degradation rates of these calli to access if the embryogenic competence
and culture medium influenced the endogenous levels of auxins in the same patterns.
Ehrlich reagent was prepared by dissolving 2 g of p–dimethylaminobenzaldehyde (PDAB,
Sigma-Aldrich, St. Louis, MI, USA) in 100 mL HCl 2.5 M. The plant material, on average
600 mg of fresh mass, was ground in a sterilized mortar with K-phosphate buffer 0.01 M
(pH 6.0) (1 mL/500 mg.f.w) and centrifuged (4800 g; 20 min). After centrifugation, the
supernatant was used for the quantification. The reaction was initiated with successive
addition of 2 mL of TCA (100%) (Sigma) and Ehrlich reagent to 1 mL of sample. After an
incubation period of 30 min, the absorbance at 530 was measured against a blank solution
of K-phosphate in a Jenway 7305 spectrometer. A calibration curve was prepared using
buffered solutions of IAA with concentrations between 2 and 50 µg/mL. The results are
presented as µg of IAA per mg of fresh tissue (µg/mg.f.w).

To measure the degradation of IAA by the tissue, callus samples were treated as before
and incubated in IAA solution (0.02 mM IAA; 0.02 mM MnCl2, K-phosphate buffer) for
90 min before the Ehrlich reaction was carried out. The results are presented as µg of IAA
degraded per mg of protein per minute (µg IAA/mg protein.min).
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The total protein was assayed using Bio-Rad Protein Assay based on Bradford’s
reaction (Bradford, 1976) in a 96-well microplate. A calibration curve was constructed
using concentrations of BSA between 5 and 40 µg/mL. All measurements were made
simultaneously and in triplicate at 595 nm in a SPECTRAmax PLUS 384 spectrophotometer
(Molecular Devices, Sunnyvale, CA, USA).

4.3.2. HPLC

The colorimetric quantifications showed differences in both endogenous levels of auxin
and degradation rates; however, this quantification method is described as less sensitive
than other methods, namely chromatographic methods such as HPLC, and proved less
precise in dedifferentiating leaf segments. Therefore, to have a more sensitive approach that
also allowed the analysis of time courses, HPLC analysis was employed. The quantification
of IAA by HPLC was based on the method described by Kim and co-workers [59] with
modifications. Briefly, the plant material (8, 10, and 12 weeks of induction as well as
EC1EC2, EC2, NEC 1, and NEC 2) was extracted in 100% methanol (2.5 mL per gram of
fresh weight tissue), IPA was added as an internal standard (10 µg/g.f.w.), and the resulting
extract was cleared by centrifugation (16,000× g, 10 min) at 4 ◦C. Before the next steps, the
polarity of the extract was increased by adding one volume of pure water. The sample was
then extracted by two steps of serial partition against 100% ethyl acetate. In the first, the
pH of the aqueous phase was adjusted to higher than 9 (1 M KOH) and after separation
of phases by centrifugation (16,000× g, 10 min), the aqueous phase was transferred to
a new tube and the pH was reduced to less than 3 and again partitioned against ethyl
acetate. After separation of phases by centrifugation (16,000× g, 10 min), the organic
phase was collected, completely dried in vacuum, and dissolved in a minimal volume of
100% methanol, micro-filtered, and injected in the HPLC apparatus.

The samples were then analyzed in an HPLC system composed of a Gilson 234 injector,
Gilson 305 pumps, and Waters Spherisorb® 5 µm ODS2 (C18) 4.6 × 250 mm column and a
Gilson 170 diode array detector (Gilson, Madison, WI, USA). The compounds were resolved
with an isocratic elution similar to that used by Nakurte and co-workers [60], consisting
of 56% methanol and 44% water and orthophosphoric acid (pH = 2.3) with a flow rate of
1 mL/min. The system used the control and analysis software Gilson Unipoint v 5.11. The
detector wavelength was set at 282 nm. Calibration curves of standard concentrations of
both IAA and IPA between 0.5 and 25 µg were prepared in triplicate. Additionally, the
resolving power of the isocratic elution was tested with mixtures of both the components
in different concentrations.

4.4. Immunohistochemistry IAA Localization

The total quantification of IAA during late induction phase was complemented with
IAA immunolocalization studies. For the localization of IAA in specific cells/tissues during
SE induction, samples were collected from several time-points during induction from leaf
explants (8, 10, and 12 weeks) and from embryogenic and non-embryogenic callus tissue
previously induced (EC2 and NEC2) also from leaf explants and in the presence of picloram.
The samples were subjected to a fixation protocol with an overnight fixation step in cold
ethanol:acetic acid 3:1 (v:v) followed by successive incubations in solutions with increasing
amounts of sucrose in PBS buffer (0.01 M, pH 7.4): 10% sucrose for 3 h, 15% sucrose for
3 h, and finally 34% sucrose and 0.01% safranin overnight. Before each incubation the
samples were vacuum infiltrated for 15 min. After the fixation process, the samples were
frozen in optimal temperature cutting compound (OCT, Sakura® Finetek, Torrance, CA,
USA), cut in a cryostat microtome into 14 µm thick sections that were mounted into poly-L-
Lysine-coated slides. The sections were then digested in a 2% driselase® (Fluka) solution
for 30 min at 37 ◦C and washed with PBS. After the digestion, the samples were blocked
with a 10% (w:v) bovine serum albumin (BSA, Thermofisher, Waltham, MA, USA) in PBS
buffered solution for 1 h. The samples were then stained with 0.01% indole-3-acetic acid
polyclonal antibody in 0.3% (w:v) BSA/PBS buffer for 24 h, washed three times with PBS,
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and labeled with the secondary antibody 0.002% (v:v) Alexa fluor® 633 goat anti-rabbit
(Thermofisher, Waltham, MA, USA). Sections were then mounted in DakoCytomation
fluorescent mounting medium (Abcam, Cambridge, UK) and examined under a confocal
microscope (Zeiss LSM510 META; Carl Zeiss, Jena, Germany).

4.5. Expression of Auxin-Related Genes

Total RNA was extracted from multiple samples during the SE induction and from main-
tained calli, using the kit NucleoSpin® RNA Plant (MACHEREY-NAGEL GmbH & Co. KG,
Duren, Germany) following the manufacturer’s instructions. The final concentration of
RNA of each sample was measured using a spectrophotometer (NanoDropTM, Thermo
Scientific, MA, USA). RNA quality was confirmed with the A260/A280 and A260/A230
ratios and in an agarose gel electrophoresis. cDNA was produced from 1 µg of total RNA
from each sample using NZY First-Strand cDNA Synthesis Kit (NZYTech, Lda.—Genes
and Enzymes, Lisbon, Portugal) according to the manufacturer’s instructions.

Quantitative PCR gene expression analysis of three genes coding Aux/IAA proteins
(IAA11, IAA14, and IAA17) and two auxin receptors (TRANSPORT INHIBITOR RESPONSE
1, TIR1 and AUXIN SIGNALING F-BOX 3, AFB3) was made using NZYSpeedy qPCR Green
Master Mix (2x) (NZYTech, Lda.—Genes and Enzymes, Lisbon, Portugal), following the
instructions provided with the samples diluted 50 times. Samples with the mix were
pooled in a 96-well qPCR plate and measured in C1000 TouchTM Thermal Cycler (Bio-Rad
Laboratories, Lda., Amadora, Portugal). For reliable quantitative PCRs, two reference
genes were also chosen in order to normalize the data of Ef1α and IRON SUPEROXIDE
DISMUTASE, FeSOD [61]. All the primers (Table 3), with the exception of TIR1 gene primers
(designed for Solanum lycopersicum GQ370812.1), were designed for Solanum betaceum
transcript sequences obtained from embryogenic cell RNAseq libraries (data not published),
using the NCBI primer design tool.

Table 3. Primers used for the gene expression assay.

Gene Forward Primer Reverse Primer Amplicon Length (bp)

Ef1α ACAAGCGTGTCATCGAGAGG TGTGTCCAGGGGCATCAATC 183
FeSOD TCACCATCGACGTTTGGG AG GACTGCTTCCCATGACACCA 114
IAA11 AGGAAGGGTGCCTAGTTAGC TGACACCCCTCGAGTAAGGA 631
IAA14 AGTTTTCCGACGAAGAGGGT GTTGGCCACCAGTGAGATCAT 332
IAA17 TTGATGAAGAGCTCGGAGGC CCCCGTGGCCTTATTTACGA 335
TIR1 AGATGGCTGTCCAAAGCTCC GAGCCTTGTCTCCAAACGGA 389
AFB3 CTGTACGGAAATGGGGTGCT GCAGAGTACGGGGAACCAAA 284

The expression values (Cq) obtained were first normalized using the mean Cq values
for the reference genes used. The method used to analyze the qPCR data was the relative
quantification method, or 2−∆∆CT method, where the ∆∆CT value = (CQ Target—CQ
Reference) [62].

4.6. Statistical and Data Analysis

The homogeneity of variances was tested with the Brown–Forsythe test (p < 0.05). In
the case of homogeneity of variances, the data was analyzed with a one-way analysis of
variance (ANOVA) and, where necessary, the means were compared by Tukey test (p < 0.05).
In the case non-homogenous variances, a Kruskal–Wallis one-way analysis of variance was
used and the means compared by Dunn’s multiple comparison test (p < 0.05).

To compare outputs between the two IAA quantification methods, a linear interpola-
tion was used with a 95% confidence interval using the program GraphPad® Prism version
6.1 for windows.

Immunofluorescent results were analyzed using Fiji software [63], taking the control
without antibody labeling for threshold determination and computation of the integrated
density of fluorescents.
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5. Conclusions

Somatic embryogenesis is complex biological process mediated and regulated by
several molecular mechanisms. One the most important aspects is the level of endogenous
auxin present in the explants. The present work aimed to further study the influence of
auxins, namely IAA, in the induction of SE and the conversion of the proembryogenic
masses into somatic embryos in indirect somatic embryogenesis of tamarillo, a system that
has been extensively optimized and studied. As such, several quantification assays were
carried out along the induction phase and on both embryogenic and non-embryogenic calli,
as well as some differential gene expression studies.

The results in this work show the kinetics of the endogenous IAA content as increasing
along the induction phase and a higher concentration of EC over NEC, as well as a decreased
IAA degradation rate in EC. Some changes in gene expression level have also been found
in some of the main auxin response genes. Furthermore, an assay with TIBA, an auxin
polar transport inhibitor, has shown indirectly that IAA is important of the conversion of
EC into somatic embryos.

Altogether, the results hint that IAA endogenous concentration is important in induc-
tion of proembryogenic masses as it tends to increase along the dedifferentiation process.
Additionally, it appears to be relevant for the acquisition and maintenance of embryogenic
competence as EC systematically presented a higher concentration of NEC. The genetic
expression results presented a general difference between the initial explants of SE and the
final proembryogenic masses. Interestingly, the expression values are not quantitatively
different between both types of calli assayed, a fact that might suggest a different molecular
mechanism, either at the biosynthetic or degradation steps in the complex metabolic path-
way of auxin homeostasis. Therefore, future studies should aim to further characterize the
biosynthetic of IAA in the calli as well as a deeper molecular characterization.
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