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Abstract: LC-HRMS-assisted chemical profiling of Zizyphus mauritiana fruit extract (ZFE) led to
the dereplication of 28 metabolites. Furthermore, wound healing activity of ZFE in 24 adult male
New Zealand Dutch strain albino rabbits was investigated in-vivo supported by histopathological
investigation. Additionally, the molecular mechanism was studied through different in-vitro investi-
gations as well as, studying both relative gene expression and relative protein expression patterns.
Moreover, the antioxidant activity of ZFE extract was examined using two in-vitro assays including
hydrogen peroxide and superoxide radical scavenging activities that showed promising antioxidant
potential. Topical application of the extract on excision wounds showed a significant increase in
the wound healing rate (p < 0.001) in comparison to the untreated and MEBO®-treated groups,
enhancing TGF-β1, VEGF, Type I collagen expression, and suppressing inflammatory markers (TNF-α
and IL-1β). Moreover, an in silico molecular docking against TNFα, TGFBR1, and IL-1β showed that
some of the molecules identified in ZFE can bind to the three wound-healing related protein actives
sites. Additionally, PASS computational calculation of antioxidant activity revealed potential activity
of three phenolic compounds (Pa score > 0.5). Consequently, ZFE may be a potential alternative
medication helping wound healing owing to its antioxidant and anti-inflammatory activities.

Keywords: Zizyphus; LC-MS profiling; wound healing; antioxidant; molecular docking

1. Introduction

Normally, successful wound healing process occurs in a proper sequence and time
frame. Complicated clinical difficulties usually rise-up upon impairing this process at any of
its four programmed phases (haemostasis, inflammation, proliferation, and remodelling) [1].
Many wound care products (MEBO®, Calmoseptine®, Boroline®, and others) and therapies
have been developed and/or investigated as wound-healing process stimulants [1]. Broadly,
traditional (especially herbal ones) and modern therapies are the two major classes that
are widely used as wound healing. Interestingly, traditional herbal therapies still the
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preferable wound-healing therapies in rural populations of developing countries not only
because of their availability and cheapness, but also because of their proven efficacy, clinical
acceptance and low or no side effects as wound remedies. Herbal extracts of many plant
species play a significant role in curing critical diseases [2–9] and have a great contribution
to the wound healing process [10], such as the leaf extract of Coccinia grandis [11], curcumin
obtained from the rhizomes of Curcuma longa [12], Aloe vera, aqueous extract of leaves
of Hippophae rhamnosides and Rosmarinus officinalis L. Furthermore, both Aloe vera and
Calendula officinal extracts have been reported to exhibit a good effect in the wound healing
process [13,14]. All these herbal extracts commonly have at least one or more of active
constituents (such as triterpenoids, flavonoids, phenols, polyphenols, vitamins, alkaloids,
and/or sterols) which known to help in promoting wound-healing process. Ziziphus
mauritiana, belongs to the family Rhamnaceae, is found in deserts and wild temperate
regions indigenous to India, Algeria, Egypt, and southern Africa [15]. Z. mauritiana is
known by other names such as Ber, Indian jujube, Jujube, Desert apple, Indian plum,
Malay apple, and Chinese apple [16]. Ziziphus mauritiana is a rich source of various
natural metabolites including triterpenoids [17], flavonoids, cardiac glycoside [18,19],
alkaloids [20], leucoanthocyanidins [21], and sterols [22]. Moreover, Ziziphus ripened fruits
are rich reservoirs of vitamins such as thiamine, riboflavin, niacin, and ascorbic acid [16].
Additionally, Z. mauritiana was used as a potent natural source for the treatment of different
diseases along with its nutritional value. The fruits of Z. mauritiana exert a myriad of
biological activities such as antioxidant [16], antidiabetic [23] activities. Z. mauritiana
bark extract exhibited anti-inflammatory [24], anticancer and anti-allergic potential [25].
Z. lotus and Z. jujuba alcoholic extracts were reported to have interesting wound healing
potential [26,27].

According to these proved and promising facts about wound-healing traditional herbal
therapies and on the wound healing potential of Ziziphus fruits species, we decided to
explore the wound healing potential and antioxidant capabilities of the Z. mauritiana fruits
(which are widely-distributed in Egypt). These capabilities will be explored in this study
through the following three avenues: (i) Investigating the antioxidant activity (in-vitro) and
wound-healing activity (in-vivo) of Z. mauritiana fruits; (ii) Examining the correlation be-
tween the phytochemicals of the fruit’s extract, which were putatively characterized by the
aid of LC-HRMS analysis, and their wound healing and antioxidant activities; and finally,
(iii) carrying out virtual molecular docking experiments against relevant wound-healing
proteins, in addition to theoretical prediction of antioxidant activity using predication of
activity spectra of substances (PASS) online platform.

2. Materials and Methods
2.1. Plants Material

The fruits of Z. mauritiana were collected in April 2021 from Minia Governorate, Egypt.
Samples were authenticated by Abdallah Salem, Minia, Egypt. A voucher specimen (ZM
1-2021) was archived at the Pharmacognosy Department, Faculty of Pharmacy, Deraya
University, Egypt.

2.2. In-Vitro Antioxidant Activity

Hydrogen Peroxide Scavenging and Superoxide Radical Scavenging Activities of
Z. mauritiana fruits crude extract were discussed in supplementary data in detail [3,28].

2.3. In-Vivo Wound Healing Activity

In this case, 24 adult male New Zealand Dutch strain albino rabbits (6 months with
an average body weight ranging between 1 to 1.2 kg) were used. Rabbits were kept in
separate cages at room temperature on standard diet with a 12 h dark and light cycle.
The anesthetized rabbits were divided into 3 groups: Group 1 (untreated or bare wound),
Group 2 (ZFE-treated), and Group 3 (MEBO® “pure herbal, natural in origin, containing
beta-sitosterol of Phellodendron amurense, Scutellaria baicalensis, Coptis chinensis, pheretima
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aspergillum, Beeswax and sesame oil” ointment-treated) and were depilated on the paraver-
tebral area before wound creation by biopsy punch standard protocol in both epidermis
and dermis layers (size and shape of wounds and other wound characteristics discussed in
details in supplementary part), and wound was covered with standard surgical dressing
and observed daily in the 3 groups for 14 consecutive days. The wound healing potency of
Z. mauritiana fruits crude extract was assessed utilizing the excision wound model; tissue
histopathology, gene expression, and western blotting in (see supplementary data).

2.4. LC-MS Analysis

LCMS was carried out using a Synapt G2 HDMS quadruple time-of-flight hybrid mass
spectrometer (Waters, Milford, CT, USA), the details of the metabolomics analysis were
discussed in the supplementary section [29–31].

2.5. Molecular Docking

In-Silico molecular docking of the identified compounds of ZFE against three different
wound-healing related proteins was performed. 2AZ5 (PDB deposited crystal structure
resolution was 2.10 Å) was used as a PDB entry for tumor necrosis factor-alpha (TNFα)
since it was co-crystallized with a small molecule inhibitor capable of inhibiting TNFα
activity in biochemical and cell-based assays. The second PDB used was 6B8Y (PDB
deposited crystal structure resolution was 1.65 Å) as an entry for transforming growth
factor-beta receptor (TGFBR1) co-crystallized with a heterobicyclic inhibitor, and finally
6Y8M (PDB crystal structure resolution was 1.90 Å) as an entry for interleukin 1 beta (IL-1ß)
co-crystallized with its potent inhibitor, SX2 (a heterocyclic succinamic acid derivative).
Structures of isolated compounds were prepared in ChemDraw Ultra (v. 8, 2013) and
were transferred as smiles to Builder software embedded in MOE 2014 software and their
energy was minimized. Proteins structures’ were also prepared according to MOE LigX
protocol and their structures were protonated at a cutoff value of 15 Å. Validation of
docking process of 3 co-crystallized ligands and all test compounds identified from ZFE
family were carried out by triangular placement method and London δG for rescoring 1
for only 10 retained docking poses of each compound. The resultant docking poses for
each compound were examined and arranged according to their free binding energy value
(kcal/mol) and docking accuracy resolution (RMSD; Å). Finally, 2D interactions for each
pose were inspected individually for binding interactions and arranged in tabular form.

2.6. Prediction of the Antioxidant activity

To predict the antioxidant activity of the dereplicated compounds, their structures were
virtually screened using PASS platform (http://way2drug.com/passonline/index.php
(accessed on 14 April 2022)) as smile codes. Thereafter, the generated activity predictions
were investigated for the antioxidant and/or radical scavenging activities. This neural
networking-based screening platform applies a large-scale pharmacophore-based virtual
screening using a huge number of compounds with more than 3000 different biological
activities. The generated results were provided as Pa scores (Probably Active scores), where
structures with Pa scores > 0.5 indicates a high probability to show antioxidant activity
in-vitro, while the reverse is true for compounds’ Pa scores < 0.5.

3. Results and Discussion
3.1. In Vitro Antioxidant Activity
3.1.1. Hydrogen Peroxide Scavenging Activity

Antioxidants are thought to manage wound oxidative stress and hence speed up the
wound healing process. They play a critical role in controlling the damage of biological
components such as DNA, protein, lipids, and body tissue that may sustain in the presence
of reactive species. The antioxidant activity of ZFE, as a scavenger against H2O2, was
investigated in this study. The maximal hydrogen peroxide radical scavenging activity of
ZFE was 50 percent at 1000 µg/mL concentration, according to the data. ZFE suppressed

http://way2drug.com/passonline/index.php
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the formation of hydrogen peroxide radicals in a dose-dependent manner, demonstrating
a consistent antioxidant activity with IC50 of 189.2 µg/mL (Table 1 and Figure 1) and
was compared with standard ascorbic acid (IC50 = 194.2 µg/mL). High levels of reactive
oxygen species (ROS) in the wound site can promote collagen breakdown and hence the
destruction of the extracellular matrix (ECM), which lead to marked reduction in processes
such as angiogenesis and re-epithelialization, which are crucial for wounds to heal [32,33].
Moreover, elevated ROS can induce inflammation, increase pro-inflammatory cytokines,
and hence prolong inflammation [34]. The antioxidant activity of ZFE that is attributed
to its SOD activity and H2O2 scavenging activity, which can eliminate ROS and hence
enhancing wound-healing process. These antioxidant properties found with ZFE extracts
could be attributed to its phenolic content.

Table 1. H2O2 radical scavenging activity of Z. mauritiana fruit extract.

Sample IC50

Zizyphus mauritiana extract 189.2 ± 1.6 µg/mL

Ascorbic acid 194.2 ± 0.8 µg/mL
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(1000, 500, 250, and 125 µg/mL). Bars represent mean ± standard deviation (SD). The significant
difference between test groups analyzed by a Two-way ANOVA test after normalization of variables
by the Shapiro Wilk test.

3.1.2. Superoxide Radical Scavenging Activity

Redox signaling and enhanced oxidative stress play an important role in normal
wound healing by encouraging hemostasis, inflammation, angiogenesis, granulation tissue
creation, wound closure, and extracellular matrix development and maturation [35]. As a
result, the superoxide scavenging activity of ZFE was evaluated, and the results revealed
the scavenging impact of both ascorbic acid and ZFE extract. As shown in Table 2 and
Figure 2, superoxide-scavenging activity rises almost linearly with concentration. Moreover,
ZFE extract showed 50% superoxide scavenging efficacy at concentration of 1000 µg/mL.
Finally, it worth mentioning that the concentration of ZFE needed for 50% inhibition (IC50)
was found to be 146.7 µg/mL (c.f. 154.4 µg/mL for ascorbic acid).
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Table 2. Superoxide radical scavenging activity of Z. mauritiana fruit extracts.

Sample IC50

Zizyphus mauritiana extract 146.7 ± 2.1 µg/mL

Ascorbic acid 154.4 ± 1.5 µg/mL
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Figure 2. Superoxide radical scavenging activity of Z. mauritiana fruit extract at different concentration
(1000, 500, 250, and 125 µg/mL). Bars represent mean ± SD (standard deviation). The significant
difference between test groups analyzed by a Two-way ANOVA test after normalization of variables
by the Shapiro Wilk test.

3.2. Wound Healing Activity
3.2.1. Wound Closure Rate Estimation

Wound healing is a complex process of repairing tissue structure in injured tissue and
it contains three phases: an inflammatory process owing to pro-inflammatory-mediators
secretion and immune system suppression, a proliferative phase via the proliferation of
fibroblasts, collagen growth, and fresh blood vessels development as well as a remodeling
phase that covers regeneration and injured tissue repair [35–37]. Wound closure can be
represented as the centripetal flow of the edges of a full-thickness wound to aid the closure
of the wound tissue [38–40]. Wound closure is thus an indicator of re-epithelialization,
granulation, angiogenesis, fibroblast proliferation, keratinocyte differentiation, and pro-
liferation [40]. MEBO® as an internationally and widely used wound and burns-healing
ointment have been proved to have anti-inflammatory and anti-microbial effect due to
the presence of β sitosterol and berberine, respectively. Many studies have reported that
MEBO provides suitable moist environment needed for burn wounds for optimal healing
and re-epithelialization without the need for wound closure by dressing. In addition,
some studies have proved the efficacy of MEBO in secondary healing of partial thickness
wounds, such as split thickness skin graft sites, with improved cosmetic results and better
scar quality.

Therefore, drugs that could accelerate wound repair with a potential input in all the
process phases are preferred for efficient therapy, especially cheap ones with fewer side
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effects. The results showed a time-dependent increase in wound closure flow within all
experimental groups. On the 3rd day post-injury, the wound closure rate was around
7 to 16% in each group, being the smallest in the untreated group and the highest in the
treated ones, with no significant difference (p > 0.001) between groups. On the 7th day after
treatment, the wound closure in the ZFE-treated group reached a 45%, which appeared
to be significantly higher (p < 0.001) than the corresponding untreated group as shown
in Figure 3.
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Figure 3. The excisional wounds on days 0, 3, 7, 10, and 14 post-wounding results of the activity
for Z. mauritiana fruit extract and MEBO® in wound of adult male New Zealand Dutch strain
albino rabbits: Group 1: untreated (Negative control), Group 2: ZFE-treated group, and Group 3:
MEBO®-treated group (Positive control).

In addition, the ZFE-treated group also showed faster wound closure rates compared
to the MEBO®-treated group (38%) (p < 0.001). Moreover, the wound closure rates on the
10th day post-burn were still significantly higher (p < 0.001) for the ZFE-treated group (70%)
compared to the untreated group (37% wound closure rate). Finally, on the 14th day post-
burn, the wounds in the ZFE-treated group were completely healed with a wound closure
rate touching a 96% (cf. only 91% for the MEBO®-treated group), as shown in Figure 4.
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treated group, Group 3: MEBO®-treated group (positive control) over time post-injury (0, 3, 7, 10,
and 14 days). The significant difference between groups analyzed by a Two-way ANOVA test after
normalization of variables by the Shapiro Wilk test. Data were expressed as mean ± SD. * p < 0.001
compared with those of the untreated group on the respective day and # p < 0.001 compared with
those of the MEBO® group on the respective day.

3.2.2. Effect of Z. mauritiana Fruit Extract on Expression of TGF-β, TNF-α, IL-1β, Collagen
Type I, and VEGF

Wound-healing processes require complex interactions between cells as well as nu-
merous growth factors [41], where the TGF-β hits the most crucial part throughout all
phases of wound healing. During the hemostasis and inflammation phase, the TGF-β
recruits and activates inflammatory cells, covering neutrophils and macrophages, whereas,
in the proliferative phase, it creates multiple cellular responses having re-epithelialization,
angiogenesis, granulation tissue development, and extracellular matrix deposition [41].
It stimulates fibroblasts to multiply and differentiate into myofibroblasts that participate
in wound closure in the remodeling phase [42–44]. Chronic, non-healed wounds gen-
erally produce a failure of TGF-β1 warning, while Feinberg and his co-worker declared
that TGF-β1 delivers an inhibitory effect on the expression of collagenases, which impair
collagen and ECM [45]. As shown in Figure 5, the mRNA expression of TGF-β following
excisional wound therapy with ZFE extract and MEBO®. TGF-β relative mRNA expression
in skin tissues was substantially higher in ZFE-treated wounds on day 7 or even on day
14 compared to the untreated group (p < 0.001). The relative marker’s expression of ZFE-
treated wounds was significantly higher than in the MEBO®-treated group. These notes
are coherent with the above measurements, which established the ZFE enhanced TGF-β1
expression and wound healing. Additionally, the mRNA expression in the wound tissue
showed a remarkable rise in TGF-β1 levels with ZFE-treated wound tissues compared to
the untreated wound tissues (negative control).
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Figure 5. Gene expression in wound tissues for rabbits of different groups via quantitative RT-PCR.
Data represent fold change relative to the normal control group expression after normalization to
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Bars represent mean ± SD. The significant
difference between groups analyzed by a two-way ANOVA test, where: * p < 0.001 compared to the
untreated group on the respective day.

TNF-α is one of the growth factors secreted from macrophages, which mixes with IL-1β
to increase and suppress respective collagen production and fibroblast proliferation [46].
The TNF-α stimulates NF-κB, which in turn promotes gene expression of a plethora of
pro-inflammatory cytokines including TNF-α itself and proteases, such as MMP, to free
soluble TNF-α and potentiate the effects of this inflammatory cytokine [47]. Analysis of
mRNA expression of full-thickness wound samples on day 7 post-injury revealed that the
activity of the inflammatory markers TNF-α and IL-1β was significantly down-regulated
in wounds treated with ZFE extract or MEBO® compared to the untreated wounds, as
shown in Figure 6. However, wounded rabbits treated with ZFE displayed a significantly
much more reduction in the inflammatory markers (TNF-α, and IL-1β) compared to the
MEBO®-treated group. Moreover, tissues treated with either ZFE or MEBO® on day 14 still
showing a significant decrease in both TNF-α and IL-1β mRNA expression compared to the
untreated group at (p < 0.001). It is noteworthy to mention that, the expression of TNF-α
and IL-1β in ZFE-treated wounds was markedly lower than in the MEBO®-treated group.
Suitable expression of pro-inflammatory cytokines (IL-1β and TNF-α) is necessary to recruit
neutrophils and exclude bacteria, and other contaminants from the wound site and this is
recognized by dynamic inducers of Metalloproteinase (MMP) synthesis in inflammatory
and fibroblasts cells. In wound healing, the MMP degrades and removes damaged ECM
to aid wound repair [48]. However, a lengthy duration of the inflammatory phase leads
to a problem in the healing process and these cytokines and proteinase damage the tissue
and lead to the development of chronic wounds. So, suppressing inflammatory cytokines
(TNF-α, and IL-1β) by ZFE can inhibit the ongoing inflammation and prevent wound repair
impairment. These results suggested that ZFE could accelerate the switching process from
an inflammatory to a non-inflammatory response with afterward increase in curing rate.
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Figure 6. Quantitative RT-PCR analysis of genes expression in wound tissues of rabbits. Data repre-
sent fold change relative to the normal control group expression after normalization to glyceraldehyde
3-phosphate dehydrogenase (GAPDH). Bars represent mean± SD. The significant difference between
groups analyzed by a two-way ANOVA test, where: * p < 0.001 compared with those of the untreated
group on the respective day.

Vascular endothelial growth factor (VEGF) hits a significant role in formation of new
blood vessels [49], also, it stimulates wound healing via collagen deposition, angiogenesis,
and epithelialization [50]. Moreover, wound repair is mediated by type I collagen, which is
the main protein in skin tissue and shows an essential role in connective tissue repair by
maintaining tissue health and an ECM structure for cellular adhesion and movement [51].
The task of collagen in wound healing is to attract fibroblasts and simplify the deposition of
new collagen to the wound bed [52]. As shown in Figure 7, the relative protein expression of
VEGF and type I collagen was illustrated. Analysis of the relative expression of VEGF and
type I collagen in full-thickness wound samples on day 7 post-injury showed significantly
up-regulated levels in wounds treated with ZFE or MEBO® compared to the untreated
wounds. However, wounded rabbits treated with ZFE displayed a significantly much more
elevation in the relative protein expression compared to MEBO®-treated rabbits. Moreover,
ZFE treatment or MEBO® treatment for 14 days showed significant increase in relative
protein expression when compared to untreated wounds at (p < 0.001). In addition, the
relative expression of VEGF and type I collagen in ZFE-treated wounds was markedly
higher than in MEBO®-treated wounds. These data are coherent with the early findings
that ZFE enhanced VEGF expression and improved wound healing. The relative protein
expression of VEGF was developed in ZFE-treated wound tissues related to untreated
wound tissues, which might suggest that ZFE increased VEGF expression in wound tissues.
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Figure 7. Effect of Z. mauritiana fruit extract on the expression of VEGF and collagen type I proteins:
(A) Representative Immunoblotting of VEGF, collagen type I proteins, and β-actin proteins for
all groups. (B) Expression of VEGF and collagen type I proteins, respectively, were expressed
densitometrically (using bands) in after normalization to the corresponding internal control β-actin,
as fold change relative to that of normal control rats. Bars represent mean ± SD. The significant
difference between groups analyzed by a two-way ANOVA test, where: * p < 0.001 compared with
those of the untreated group on the respective day.
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3.2.3. Histopathological Study

Seven days after treatment, Group 1 (untreated group) showed normal wound’s edge
with normal architecture features: having epidermis, well-formed dermal collagen bundles,
hair follicles, and sebaceous glands. Additionally, the wound found filled with blood
clots, sloughed granulation tissue with collagen fibers compactly organized in an irregular
pattern, extravasated RBCs, and inflammatory cellular infiltration, and finally, the striated
muscle showed necrotic myofiber in the deepest part of the wound (Figure 8A).
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collagen with marked neovascularization (Figure 9A).  

Group 2 (Z. mauritiana fruits extract-treated group) showed contracted scar tissue 
blocking the wound and the epidermis appeared to form of only 1–3 rows of epithelial 
cells. The granulation tissue from below was mainly cellular and populated with fibro-
blasts, while the reticular layer contained disorganized dense compactly arranged colla-
gen fibers (Figure 9B).  
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with normal stratified squamous keratinized epithelium. Weak scar tissue may spread 
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Figure 8. Histograms of wounded skin on day 7 after incision: (A) of Group 1 (untreated) showing the
normal edge of the wound with the normal epidermis (yellow arrow) the wound is filled with blood
clots (green circle) and underlying sloughed granulation tissue with compact and irregular collagen
bundles (yellow star); (B) of Group 2 (Z. mauritiana fruits extract) showing marked re-epithelization
(red arrow), granulation tissue filling the base of the defect from below is mainly cellular (star),
and collagen bundles as appear as disorganized coarse and wavy bundles (yellow arrows). (C) of
Group 3 (MEBO®-treated) showing scar tissue blocking the wound (star), Collagen bundles packing
the defect in a reticular pattern resembling that of the adjacent normal dermis (circle). The inset
shows inflammatory cellular infiltration mainly macrophages (yellow arrows). (Hematoxylin and
eosin stain × 200 and 400).

In Group 2 (ZFE-treated group), the blood clot observed over the wound was still
apparent, marked re-epithelization and the granulation tissue filling the defect from below
was mainly cellular. In addition to, disorganized dense collagen with fibers appeared com-
pactly arranged in an abnormal pattern resulting in distinct scarring in comparison to other
treated groups (Figure 8B). Finally, Group 3 (MEBO®-treated group), scar tissue closing
the wound and creeping of epidermal cells at wound edges were marked with a partial
re-epithelization, and a marked inflammatory cellular infiltration (mainly of macrophages)
and collagen fibers came packing the defect in a reticular pattern with a distance in between
approximately resembling that of the neighbor’s natural dermis. Finally, the reticular
dermis contained usual active, lengthened, and spindle-shaped fibroblasts with basophilic
cytoplasm and open face oval nuclei (Figure 8C).

In this case, 14 days after treatment, Group 1 (untreated group) developed a larger
wound area and was packed with a heavy coat of granulation material, which was com-
posed of several layers of connective tissue cells in an acidophilic matrix and overlying
fat inflammatory cellular infiltration. The dermis is composed of confused, weak collagen
with marked neovascularization (Figure 9A).
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Figure 9. Histograms of wounded skin 14 days after incision: (A) of Group 1 (untreated) showing
the wide wound area (yello circle), heavy inflammatory cellular infiltration in an acidophilic matrix
(green star), and the normal skin (yellow arrow). (B) of Group 2 (Z. mauritiana fruits extract) showing
the typical stratified squamous keratinized epithelium (yellow circle), dermal matrix with coarse
wavy collagen bundles in different directions (green star), and numerous newly formed hair follicles
(blue arrows). (C) of Group 3 (MEBO®-treated) showing typical epithelium with thin scar tissue
extending into the dermis (yellow arrow), reticular dermis has coarse wavy collagen bundles arranged
in different directions, and newly formed hair follicles (yellow stars). (Hematoxylin and eosin
stain × 200 and 400).

Group 2 (Z. mauritiana fruits extract-treated group) showed contracted scar tissue
blocking the wound and the epidermis appeared to form of only 1–3 rows of epithelial cells.
The granulation tissue from below was mainly cellular and populated with fibroblasts,
while the reticular layer contained disorganized dense compactly arranged collagen fibers
(Figure 9B).

Group 3 (MEBO®-treated groups), the skin tissue presented more or less normal with
normal stratified squamous keratinized epithelium. Weak scar tissue may spread into the
dermis. The dermal matrix showed many hair follicles, blood capillaries, and deficiency
of inflammatory cellular infiltration. The collagen bundles in the papillary dermis are
presented as fine interlacing bundles, and the reticular dermis is presented as coarse wavy
bundles formed in various paths (Figure 9C).

3.3. LC-HRMS Chemical Profiling

LC-MS profiling for the crude ZFE was carried out to identify their chemical com-
ponents, and identification of the annotated compounds was carried out depends on
HR-ESIMS compared to literature data. Dereplicated compounds as shown in (Table S2 and
Figure 10) belong to different phytochemical classes such as: amphibine H (1) [53], amphib-
ine B (2) [54], amphibine D (3) [54], amphibine E (4) [54], mauritine J (5) [55], amphibine F
(6) [56], zizogenin (7) [57], frangufoline (8) [56], 12-Hentriacontanol (9) [58], hexadecanoic
acid undecyl ester (10) [59], 12-hydroxy-9-tetratriacontanone (11) [58], mauritine A (12) [57],
mauritine F (13) [60], mauritine E (14) [61], mauritine B (15) [56], mauritine C (16) [56],
mauritine D (17) [56], mauritine H (18) [60], 3,6,8-Trihydroxy-1-methylanthraquinone-2-
carboxylic acid (19) [10], zizimauritic acid C (20) [62], zizimauritic acid C 21-Me ether
(21) [62], franganine (22) [63], gallocatechin-(4α→8)-gallocatechin or prodelphinidin B
(23) [64], sativanine A (24) [65], zizyflavoside B (25) [65], Zizyphine F (26) [53], 3′,4′,5,7-
Tetrahydroxyflavone (27) [66], jujubasaponin IV (28).
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Figure 10. Compounds identified and dereplicated from ZFE extract.

3.4. Computational Analysis
3.4.1. Molecular Docking Studies

To further explore the wound healing potential of the identified compounds in ZFE
extract, in-silico molecular docking experiments were performed using MOE® program.
The X-ray crystal structure of tumor necrosis factor with a small molecule inhibitor (TNF-
alpha PDB ID: 2AZ5, resolution 2.10 Å) was used to construct a protein-ligand complex
of various molecules isolated from ZFE, and obtained data were compared to the co-
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crystallized ligand as shown in Table 3. The binding free energy (in kcal/mol), binding
interactions with various active site amino acid residues, and binding accuracy (RMSD)
were used to predict binding modes and affinities of isolated molecules of ZFE.

Table 3. Interaction binding energy (kcal/mol) and binding accuracy (RMSD; Å) of ZFE-derived
compounds and co-crystallized ligand within TNFα active site (PDB ID: 2AZ5; 2.10 Å).

# Molecule Energy Score
(kcal/mol) RMSD (Å)

- 2AZ5 Co-crystallized ligand −5.5254 1.3787
1 Amphibine H. −6.6756 1.4343
2 Amphibine B. −6.7857 2.0384
3 Amphibine D. - -
4 Amphibine E. −5.9343 1.5565
5 Amphibine E., N-DeMe or Mauritine J. −6.8964 1.6562
6 Amphibine F - -
7 Zizogenin or 2,6-Dihydroxyspirostane-3,12-dione −5.7141 1.8788
8 Frangufoline −6.1900 1.8342

11 Mauritine A. - -
12 Mauritine F. - -
13 Mauritine E. −6.6522 1.7973
14 Mauritine B. −6.4077 1.4182
15 Mauritine C. - -
16 Mauritine D. - -
17 Mauritine H. −6.3098 1.6508
19 Zizimauritic acid C. −5.5227 1.7836
20 Zizimauritic acid C., 21-Me ether −5.2907 1.4763
21 Franganine −5.7895 1.6281

22 Prodelphinidin B. or
Gallocatechin(4α→8)gallocatechin −4.9952 1.6455

23 Sativanine A. −5.9033 1.9644
25 Zizyphine F. −5.5143 2.0778

Interestingly, 11 molecules showed binding free energy better than co-crystallized
ligand (<−5.5254 kcal/mol for co-crystallized ligand), even though only 3 molecules
(Amphibine B., Sativanine A., and Zizyphine F.) showed bonding interactions with amino
acid residues of 2AZ5 active site, as shown in Figure 11 and Table 3).

On the other hand, only 4 molecules showed better interaction energy than co-
crystallized ligand within transforming growth factor beta receptor type 1 kinase domain
(TGFBR1 PDB ID: 6B8Y, resolution 1.65 Å) active site, while the remaining molecules
showed either comparable or lower binding free energy compared to co-crystallized
ligand (Table 4).

Table 4. Interaction binding energy (kcal/mol) and binding accuracy (RMSD; Å) of ZFE-derived
compounds and the co-crystallized ligand within TGFBR1 kinase (PDB ID: 6B8Y; 1.65 Å).

# Molecule Energy Score
(S; kcal/mol) RMSD (Å)

- 6B8Y co-crystallized ligand −5.102 1.1231
1 Amphibine H. −6.6039 1.5284
2 Amphibine B. - -
3 Amphibine D. - -
4 Amphibine E. - -
5 Amphibine E., N-DeMe or Mauritine J. −4.2228 1.5592
6 Amphibine F. - -
7 Zizogenin or 2,6-Dihydroxyspirostane-3,12-dione −1.4649 1.5668
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Table 4. Cont.

# Molecule Energy Score
(S; kcal/mol) RMSD (Å)

8 Frangufoline −4.3323 1.5238
11 Mauritine A. - -
12 Mauritine F. - -
13 Mauritine E. −1.8020 1.4485
14 Mauritine B. - -
15 Mauritine C. - -
16 Mauritine D. - -
17 Mauritine H. −8.0128 1.3190
19 Zizimauritic acid C. −3.9723 1.6145
20 Zizimauritic acid C., 21-Me ether - -
21 Franganine −5.6339 1.3131

22 Prodelphinidin B. or
Gallocatechin(4α→8)gallocatechin −5.4270 1.2301

23 Sativanine A. −3.9078 1.3504
25 Zizyphine F. −4.9981 1.4643
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Figure 11. Showing 2D-binding interactions of co-crystallized ligand (a) and molecules 2, 23, 25 (b–d,
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Even though, 8 molecules succeed to show bonding interactions with amino acid
residues of 6B8Y actives site as shown in Figure 12 and Table 4.
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Figure 12. Showing 2D-binding interactions of co-crystallized ligand (a) and molecules 1, 5, 8, 13, 19,
21, 23, 25 (b–i, respectively) within active sites of TGFBR1 kinase (PDB ID: 6B8Y).

Finally, docking poses within Interleukin 1 beta (1L b PDB ID: 6Y8M, resolution
1.9 Å) active site showed better and promising results more than previous active sites;
12 molecules showed better binding scores than co-crystallized ligand (>−4.2536 kcal/mol,
Table 5). Out of these 12 molecules, 8 molecules succeed to show strong bonding interaction
within 6Y8M active site (ash shown in Figure 13 and Table 5).

In short, the binding modes and free energies obtained for the isolated compounds
during the molecular docking studies within active sites of TGFBR1, TNF-α, and IL-1β
confirm in-vivo animal studies results, which manifested by the significant change in the
mRNA expression of TGF-β (increased) and the inflammatory markers, TNF-α and IL-1β)
(decreased), as shown in Table 6.
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Table 5. Interaction binding energy (S; kcal/mol) and binding accuracy (RMSD; Å) of ZFE-derived
compounds and co-crystallized ligand within Interleukin 1β active site (PDB ID: 6Y8M; 1.90 Å).

# Molecule Energy Score
(S; kcal/mol) RMSD (Å)

- 6Y8M co-crystallized ligand −4.2536 1.0950
1 Amphibine H. −5.2842 1.5363
2 Amphibine B. −4.8328 1.8557
3 Amphibine D. - -
4 Amphibine E. −4.9107 1.8266
5 Amphibine E., N-DeMe or Mauritine J. −5.4092 1.5702
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Table 5. Cont.

# Molecule Energy Score
(S; kcal/mol) RMSD (Å)

6 Amphibine F. - -
7 Zizogenin or 2,6-Dihydroxyspirostane-3,12-dione −4.3238 1.7200
8 Frangufoline −5.3185 1.3011

11 Mauritine A. - -
12 Mauritine F. - -
13 Mauritine E. −4.2738 1.8927
14 Mauritine B. −5.6825 1.4982
15 Mauritine C. - -
16 Mauritine D. - -
17 Mauritine H. - -
19 Zizimauritic acid C. −4.3469 1.4960
20 Zizimauritic acid C., 21-Me ether −4.3448 1.7335
21 Franganine −4.6395 1.3794

22 Prodelphinidin B. or
Gallocatechin(4α→8)gallocatechin −3.8771 1.2185

23 Sativanine A. - -
25 Zizyphine F. −4.6249 1.9028

Table 6. Binding free energy score (S; kcal/mol) and binding interactions for different co-crystallized
ligands and ZFE-derived compounds within TNFα (PDB ID: 2AZ5); TGFBR1 kinase (PDB ID: 6B8Y);
and Interleukin 1β (PDB ID: 6Y8M) active sites.

Active Site Ligand
Binding

Energy Score
(S; kcal/mol)

Ligand—Active Site Interactions

a. a. Residue Bond Type Bond Length (Å)

TNFα
(PDB ID: 2AZ5)

Co-crystallized
ligand −5.5254

GLN 61 H-donor 2.97
TYR 119 H-pi 4.08

Amphibine B. −6.7857 TYR 59 pi-H 4.02
Sativanine A. −5.9033 TYR 119 H-pi 3.95
Zizyphine F. −5.5143 TYR 59 pi-pi 3.85

TGFBR1 kinase
(PDB ID: 6B8Y)

Co-crystallized
ligand −5.102

ASP 351 H-donor 2.72
HIS 283 H-acceptor 2.89
LYS 232 pi-H 3.94

Amphibine H. −6.6039 SER 287 H-acceptor 3.07
Mauritine J. −5.4092 LYS 337 H-donor 3.12

Frangufoline −4.3323

ILE 211 H-donor 3.22
ASP 290 H-donor 3.07
GLY 286 H-acceptor 3.43
ILE 211 pi-H 4.35

Mauritine E. −1.8020

ASP 351 H-donor 3.35
ASP 351 H-donor 2.88
LYS 232 H-acceptor 3.00
LYS 337 pi-H 3.89

Zizimauritic acid C. −3.9723 ASP 290 H-donor 3.39
Franganine −5.6339 LYS 232 H-acceptor 2.70

Sativanine A. −3.9078 GLY 212 H-acceptor 3.22

Zizyphine F. −4.9981
ASP 290 H-donor 3.13
ASP290 H-donor 2.92
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Table 6. Cont.

Active Site Ligand
Binding

Energy Score
(S; kcal/mol)

Ligand—Active Site Interactions

a. a. Residue Bond Type Bond Length (Å)

Interleukin 1β
(PDB ID:
6Y8M)

Co-crystallized
ligand −4.2536

MET 148 H-donor 2.73
MET 148 H-acceptor 2.94
THR 147 H-acceptor 2.62
GLN 149 H-acceptor 2.46

Amphibine E. −4.9107 GLU 105 pi-H 4.25

Mauritine J. −5.4092
MET 148 H-donor 3.20
ARG 11 H-acceptor 2.97

Zizogenin −4.3238 LYS 109 H-acceptor 3.09
Mauritine E. −4.2738 ARG 11 pi-cation 4.34

Mauritine B. −5.6825
GLN 149 H-acceptor 3.32
LYS 109 pi-cation 4.06

Zizimauritic acid C. −4.3469 ASN 108 H-donor 2.81
Zizimauritic acid C.,

21-Me ether −4.3448 GLN 149 H-acceptor 3.04

Prodelphinidin B. −4.8631 MET 148 H-donor 2.76

3.4.2. Antioxidant Activity Prediction

To predict the highly probable compounds with antioxidant or radical scavenging
potential inside ZFE, we subjected the structures of all dereplicated compounds (1–27)
to a neural networking based-biological activity prediction platform, namely PASS (Pre-
diction of Activity Spectra of Substances) [67]. This platform applies a comprehensive
pharmacophore-based virtual screening using a huge number of structures dataset with
more than 3000 different biological activities. The retrieved result for each structure was
provided as a score known as Pa score, as shown in Figure 14. Structures having a Pa score
> 0.5 means having high probability to show antioxidant activity in-vitro, while those ones
with a Pa scores < 0.5 means having no probability to be antioxidant agent. Accordingly,
compounds 22, 24, and 26 are probably the ones responsible for the observed antioxidant
activity of ZFE extract (Pa scores = 0.935, 0.979, and 0.775, respectively).
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4. Conclusions

To the best of our knowledge, this is the first study to evaluate the wound healing
potential ZFE along with the investigation of the chemical composition of this extract.
In conclusion, ZFE displayed remarkable wound healing activity via accelerated wound
closure rate, enhancing TGF-β1, VEGF, Type I collagen expression, and suppressing inflam-
matory markers (TNF-α and IL-1β). Furthermore, molecular docking of isolated compounds
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gave a putative prediction about the possible mode of the wound healing potential of ZFE
extract through their efficient binding interactions within three wound healing-related
proteins. Moreover, prediction of antioxidant activity of compounds with potential antiox-
idant activity was performed using PASS virtual screening platform. Finally, this study
suggested the usage of ZFE in wound care as a promising therapy to accelerate wound
healing. However, future detailed mechanistic studies are still required to confirm these
predicted modes of action.
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extract] “2B”: showing typical stratified squamous keratinized epithelium and dermal matrix with
coarse wavy collagen bundles in different directions (stars), and the newly formed hair follicles;
Group III [MEBOÒ] “2C”: showing typical epithelium, thin scar tissue extending into the dermis,
reticular dermis has coarse wavy collagen bundles arranged in different directions using Masson
trichrome stain × 400, Table S1: The primer sequences of studied genes, Table S2. Dereplicated
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